International Journal of Mathematical Archive-2(4), Apr. - 2011, Page: 452-464
@§ I A Available online through www.ijma.info ISSN 2229 - 5046

THE APPROXIMATE SOLUTIONS OF COUPLED MATRIX RICCATI CONVOLUTION
DIFFERENTIAL EQUATIONS

ZEYAD AL-ZHOUR* and MUTAZ ALSABBAGH

Department of Basic Sciences and Humanities, College of Engineering, University of Dammam (UD),
P. O. Box 1982, Dammam 31451, Kingdom of Saudi Arabia (KSA)

E-mails: zeyadl1968@yahoo.com

(Received on: 30-12-10; Accepted on: 08-01-11)

ABSTRACT

I this paper, we present the common approximate solutions of coupled matrix Riccati convolution differential equations by
using the successive approximation method and Kronecker convolution products. The maximum error of n — approximation by
using this method is also considered. Furthermore, an illustrative example is given.
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1. INTRODUCTION AND PRELIMINARY RESULTS:

In the field of matrix convolution algebra and system identification; there has been interest in convolution and Kronecker
convolution products of matrices which are very useful in applications. In fact, these products are very important role in control
system analysis, semi-Markov system, statistics, stability theory of differential equations, communication systems, perturbation
analysis of matrix differential equations and other fields of pure and applied mathematics [e.g.,1-5,8-11]. For example, Nikolaos
[11] established some inequalities involving convolution product of matrices and presented a new method to obtain closed form
solutions of transition probabilities and dependability measures and then solved the renewal matrix equation by using the
convolution product of matrices, Sumita [12] established the matrix Laguerre transformation to calculate matrix convolutions and
evaluated a matrix renewal function, Boshnakov [3] showed that the entries of the autocovariances matrix function can be
expressed in terms of the Kronecker convolution product and Kilicman and Al-Zhour [8] presented the iterative solution of such
coupled matrix equations based on the Kronecker convolution structures.

One family of matrix problems is the coupled matrix Riccati convolution differential equations; depending on the problem
considered, different terms may appear. However, in this case, the system is difficult to find the exact solution and it is often not
necessary to compute exact solutions, approximate solutions are sufficient because sometimes computational efforts rapidly
increase with the size of matrix functions. In this paper, we find the common numerical solutions of the coupled matrix Riccati
convolution differential equations by using the successive approximation method and Kronecker convolution products, the way
exists which transform the coupled matrix differential equations into forms for which solutions may be readily computed. An
illustrative example is also considered. The solution procedure presented here may be considered as a continuation of the method
proposed in [6].

2. BASIC DEFINITIONS AND RESULTS:

We begin this section by recalling the successive approximation method, matrix convolution products of matrices (namely,
convolution and Kronecker convolution products), and study some basic results related to these products that will be used in our
investigation to the common solution of coupled matrix Riccati convolution differential equations. Before starting, throughout we

consider matrices over the field of real numbers R . The set of 71 -by-n absolutely integrable real matrices for ¢ > 0 is denoted
by M’ (R) or R™" . For simplicity we write M ' instead of M’ (R), and when m =n we write M ; instead of

m,n m,n m,n
M!

n,n°

Definition: 2.1. Let

u =g(tu) , ult,)=u, 2.1
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be differential equation such that g is real continuous function on D =[a,b]X[c,d]. Then u(t)is a solution of the differential

equation in (2.1) on the interval [a, b] if the following conditions hold

Gy (t,u(t)) € D forallt € [a,b], (i) u'(t) = g(t,u(t)) forallt € [a,b]

(iii) [a,b] in t, for any initial value u(?,) = u,

Definition: 2.2. The function g(Z,u) is said to be satisfy Lipschtiz condition with a variable # on D if there exists a constant
K such that

|g(t,ul)—g(t,u2)| < K|u1 —u2| for all (t,u,),(t,uz)e D. (2.2)

Lemma: 2.3. Let g(¢,u) be continuous function and satisfy Lipschtiz condition with a variable # on D . Then the differential
equation:

u =g(tu), ulty)=u,, a<t<b, forany t, in[a,b]
has a unique solution #(?) on the interval [a,b].
The differential equation defined in (2.1) can be solved numerically by using the Successive Approximation Method as:

u,(t)=u, +J.g(s,un_1(s))ds , n=12,.. (2.3)

Iy

This method generates the following sequence of functions:
{u, Oy=tu, ), w,@, .y u, s, (2.4)

and each function of this sequence satisfy the initial condition u(to) =U,, but in general not satisfy the differential equation
1

u = g(t,u). If there exists positive integer 71 such that u,,,(f) =u,(¢) for all n <k, then u,(t) is a solution of the
integral equation defined in (2.3) and also a solution of the differential equation defined in (2.1).

Remarks: 2.4. (i) If g(¢,u) is a continuous function on D , then g(¢,u) is bounded, that is
|g(t,w)| <M forall(t,u)e D, 2.5)

where M is a constant. The sequence {M u (1 )} exist if the following condition holds

. b
=ty < B Ju—u,| <b. h:mm{a,ﬁ}. 6
(ii) The infinite series
NOEDN TG EING] 2.7
k=0

is convergent if and only if
NOEDY [t () —u, (0)] 2.8)
k=0

is convergent. This occurs when the infinite sequence {un (t)}::o is convergent.
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@i) If limu, () = u(t) , the we obtain the exact solution as follows:
n—oo

u(@) = lim u, ()= lim {uo + j g(s,un_l(s))ds}

Ty

=u,+ }i_r)rolojg(s,un_l (s)ds = u, +Jg(s, lnignmun_1 (s)jds

Iy Iy

= u,+ j g(s,u(s))ds. (2.9)

Ty

(iv) The maximum error of 1 — approximation by using successive approximation method is given by
S i B
R,()=|u@®)—u, | <MY K - 2.10)
i=1 L

where K, M and h are defined in (2.2), (2.5) and (2.6), respectively.

m,n

products of A(?) and B(t) are matrix functions defined for > 0 by (see, e.g.,[2,3,8,9,11]):

Definition: 2.5. Let A(?) = [fu NO]le M! and B(t) =g ir H]leM ,f ,- The convolution and Kronecker convolution

(i) Convolution Product

A(t)* B(t) =[h, (t)] with h, (1) = ZI fot=x)g, (x)dx = Z fu @) *g,. (2). (2.11)
k=1

k=1 (

(#i) Kronecker Convolution Product

A ®B() =Lf, (1) * BO)], . @.12)

where f; (t) * B(r) is the ij -th submatrix of ordernX p,A(r)® B(f)is of ordermnXnpand A(t)* B(t)is of order
mxp.

Lemma: 2.6 Let A(¢),B(t),C(t) e M,f and D, (t) = 6(t)I, (where I, € M, is scalar identity matrix) . Then for any
constants & andﬂ (see [2, 8, 11])

@ (@A) + BB(1))* C(1) = a(A(t) * C(1)) + B(B(1)* C(1)):
@) A(1) * (B(1) * C(1)) = (A() * B())* C(1) ;

i) A(t) % D, (t) = D, (1) * A(t) = A(t) ;

@) (A@) = B(®))" = B" (1) A" (1).

W |A@) = B@)| <|A@)||B(@)| for any matrix norm|| .

Lemma: 2.7 LetA(t)e M! | B(t)e M,l,’q ,C(t)e M! and D(t)e M;’S . Then (see [8, 11])

m,n n,r

(A(t) (;)B(t)j x [C(t) (;)D(t)j = (A() * C(0))®(B(1) * D(1)). 2.13)
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But

(A(t) (:DB(t)j(C(t) (:bD(t)j + (A()C())®(B1)D()). 2.14)
Corollary: 2.8 Let A(f) € M,f ,B(t)e Mrln andlet D, (t) = &(¢)I, be Dirac identity matrix .Then (see [8, 11])
D, (@A) = diag(A(t), A®), -, AD)):

(i) (A(t) ®D, (r)j " (Dn ® B(t)J _ (Dn H® B(t)j . (A(t) ®D, (z)) — A()®B():

Giii) 7r(A® B) = tr(A) % 1r(B) .

Lemma: 2.9 Let A(?) € M}fm , B(t)e M;,q and X (t) € M,fyp . Then (see, [8])

Vec(A(t) * X (t) * B(t)) = (BT 0H® A(t)) *VecX (1). (2.15)

3. MAIN PROBLEM AND SOLUTION PROCEDURE:

In this section, we will present the approximate solutions of the following coupled matrix Riccati convolution differential
equations:

X;(t)Z{QI(Z)+BI(I)*Xl(t)+Xl(t)*Al(t)+Xl(t)*S“(t)*Xl(t)
+Xl(t)*Szz(t)*Xz(t)+Xz(t)*Szz(t)*Xl(t)+X2(t)*Slz(t)*Xz(t)}, (3.1

X;(t)Z{QZ(Z)+BZ(Z)*Xz(t)+X2(t)*A2(t)+Xz(t)*Szz(t)*Xz(t)
+X2(t)*SH(t)*Xl(t)+Xl(t)*S“(t)*Xz(t)+X1(t)*SZI(t)*Xl(t)}. (3.2)

Subject to:
X, (1,)=X,,,

where X, and X, , are constant matrices, and

X,t,)=X (3.3)

2f

Q, (1), B, (1), A, (1),S,,(1), S, (1), S, (1), Q, (1), B,(1),A,(1),S,, (e M, 34

are real continuous matrix functions on the interval z =[f,,? 7 ] and called * Time-Varying Matrix convolution Functions”

By using the Vec -notation in Lemma 2.9 of (3.1)-(3.3), we obtain:
VeeX , (t) = VecQ, () + {A{ (®D. (1)+D, (1)®B, (t)} #VecX (1)
+ {XZT O®X,()+ X (N®X, (t)} #VecS,, (1)

+ {X{ (t)éXz(t)} £VecS,, (t) + {X,T X, (z)} sVecS, (1), (35)

VeeX, () = VecQ, (1) + {AZT (@D, (1)+ D, (1)®B, (z)} sVecX, (1)
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+ {XlT(t)(:DXz(t) + XzT(t)(:DXl(t)} #VecS,, (1)

+ {X{ O®X, (t)} xVecS,, (1) + {XZT ®X, (t)} £VecS,, (7). 3.6)

Subject to
Vee(X,(1,))=Vec(x,, ), Veclx,(t,))=Vec(x,,) G.7)

Define the 2-convolution norm of A(t)e M ,f forall # >0 as follows:

JA@) = (AT @) % A@)). (3.8)
Thus, it is easy to show that:

@forA; (e M, (1<i,j<2),

AL () ALt
[ (0 12()} <4max|A; (1) . (3.9)
A, (1) Ay, () 5 Isi,js2ll = T2
(i) for A,()e M| (i=12),
HAl(t)®A2(t) =4, )], *|A, @), - (3.10)
2

Lemma 3-1- Let A, (7), B, (¢) and S () (i, j =1,2) be matrix functions determined by (3.4). Also let

X,(t), Yt)e R™, L.(t) :{A,.T ®D, (t)+Dn(t)éBi(t)} G,j=12), 3.11)
X =[X,0.X,(0)]e M"won, Y&)=[V,(0),Y,(0]e M],, . (3.12)
Then
VeeX (1) = VeeX. (1), X, (0] = | VX | pyp G.13)
e VecX , (1) 2t 1 .
Furthermore, if the following functions: ¥/, : [f,,,]XR 2y RZ"ZXI, i =1,2,3 are defined by
L (1) *[VecX (¢
(@) w,(t,VecX (1)) = (03 VeeX, 0] ; (3.14)
L, (1) % [VecX , (1)]
XT(HO®X, (1) S XIO®X, )+ X (@ X, (1)
b VecS,,(t) |. 315
By, (t,VecX (1)) = . « , (3.15)
¢ ¢ ¢ VecS,, (t)
X[ D®X,+X, ®X,(1) . X, (®X,(1)
(XZT éXz(t)j*VecSlz(t)
(3.16)

(© v, (t,VecX (1)) = . .
(Xf ®X, (t)j #VecS,, ()
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Then the following inequalities are true:
1

@) |, (t.VecX (1)) =, (1.VecY (1)), < 4n> * a(t) *|VecX (1) - VecY (1) ; (3.17)
where

a(r) = nrleazxmAi @),.|B, )|, 1<i<2}. (3.18)

(i) [, (1, VeeX (1)) =y, (1,VeeY ()], < 8y@)*(|X @), + Y )], ) [VecX (1)-Vecy @) (3.19)
where

() = H,lixmsii @),.i=12}. (3.20)

(i) w5 (2. VecX (1)) =y, (t.VecY (1)), Sm(t) (“X(t)||2 +||Y(t)||2)*||VecX(t)—VecY(t)||2; (3.21)
where

ne) = max{|Sij (t)”2 1L, j<L2, i+ j}. (3.22)

Proof: (i) From (3.9) and the definition of {/, we have
L, (1) * [VecX ,(t) = VecY,(1)]
t,VecX (1)) =W, (t,VecY (1)) = .
y/l( ec. ( )) '//1( ec ( )) |:L2 (l‘) " [Vech(t) —VecY2 (l‘)]

Now

VecX,(t) —VecY, (1)
VecX ,(t) —VecY, (1) )

VecX () B VecY, ()
VecX, () VecY,(t)

v, (2, VeeX (1)), (1, VecY 1)), <2 ngxﬂLi @),.i =12}

= 2max{|L, (1)] i =12}

2

= 2max{|L, (1), i = 1,2} |[VecX (1) = VecY (1), (3.23)
Also, from (3.10) we have |
|L. @), =]A] (t)®D, 1)+ D,(")®B, ()| (i, j=12)
2
<|D. ()®B, (1) +|AT©®D, (1)
2 2
=, @], #|B,0, + a7 @), *[D, @],
1
=n? {|Bi o, +]a7 (f)"z} : (3.24)

Thus from (3.23) and (3.24) we have

lw, (. VecX (1)) =y, (2. VecY 1)), < 2max n? x ﬁ|Bi o), + ||Af (t)||2]* [VeeX (1) = VecY (1)),

1
= 4n? = max{[B, )], |4, ()]} [VeeX (1) - Veer 1),

1

=4n? * a(t) H|VecX (1) — VecY (1),
Similarly we can prove (i) and (iii).

If we let
© 2010, IJMA. All Rights Reserved 457
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on=[o,®» 0,0 a=maxa() : 1, <151,
X0 =[X,() X,0]te R™" and  y=max{p@) : 1, <r<s, )} (3.25)
X(lf)=[le Xzf 77=max{77(t) B SlSl‘f}

Then by Lemma 3.1, the coupled matrix Riccati convolution differential equations defined by (3.5)-(3.7) can be rewrited as
follows:

VecX (1) = F(1,VecX (1)) , VeeX(t,) =Vec|X,,,X,,]. (3.26)
where F : [to 1 ]X R¥™ — R s a function defined by

F(t,VecX (1)) =VecQ(t) +y, (t,vecX (t)) + ¥, (t,VecX (1)) + y,(t,VecX (1)) . (3.27)

Corollary: 3.2. Let {Ai (1), B;(1),0,(1),S,; (1) : 1<, j < 2} be continuous matrix functions on z ={[f,7,]=[0,1], and let
0>0,

X, =[X,.X, ]e R"" =X |+5. (3.28)
X0 =[X,0),X,0]e R . Y@ =[Y,(),Y,(t)]e R™", (3.29)
”X(t) - Xf|| <5 ”Y(t) Y, || <s. (3.30)

Then the function F'(¢,VecX (t)) determined by (3.27) satisfy the following Lipschtiz condition on [0,1]:

|F(2.VecX (1)) = F(1,VecY ()|, < K *|VecX (1) = VecY (1), . (3.31)

where

1
K = 2(2n2a+8;e+ne} (3.32)
Proof: By assumptions and from (3.17), (3.19) and (3.21) we have
|F(t,VecXt)) = F (t,VecY (1)),

= |VecQ(t) +y, (1,VecX (1)) + ¥, (t,VecX (1)) + v, (1, VecX (1))
—VecQ(t) =y, (t,VecY (1)) =y, (1,VecY (1)) =y, (1, VecY (1)),

=, (t.VecX (1)) =y, (t.VecY (1)) + , (1, VecX (1)) =y, (t.VecY (1)) +y,(t,VecX (1)) =y, (1,VecY (1)),

< |w, (2. VecX (1)) =y, (tVecY (1)), +|w, (1. VecX (1)) =y, (1. VecY (1))
+ |, @ VecX @)~y (1, VeeY @), +n@) X @), +[Y @), }[VeeX (1)~ VecY (1), -

= (4;12 sa+ 8y X 0|, +|r @), no{x o), +|r o, }J s{Veex (1) = Veey 1), }
By using assumptions: € = ”Xf"2 +0, ”X(t) -X; ”2 < J implies

© 2010, IJMA. All Rights Reserved 458



ZEYAD AL-ZHOURY et al. / The approximate solutions of coupled matrix riccati convolution differential equations /IJMA- 2(4), Apr.-2011,

Page: 452-464
Ixol, -[x,], <s. x|, <|x,],+5=¢.

Now by (3.33), (3.25) and since ¢ € [0,1] we have
|F (t.VecX (1)) = F(t,VecY (¢, < (4;1; *a+ 16y €+2n % g] * ﬂ|VecX (t)=VecY (1) |, }
= 2[2;15 wQ+ 8y e+ ej * ﬂ|VecX(t) - VecY(t)||2}
- 2{2;1; a+8ye + ngJ s{Veex (1) = Vecy (1), }

1
< 2(2,12 a+8ye + ng] {VeeX (1)~ Veey 1), }

= K #|VecX (1) = VecY (1),

Corollary: 33.Let § >0, 1€ [1,,1,1=[01], [X()-X | <6, e=|x,| +6. X, =[X,,.X,

q:max{| [0,(),0,)] ||2 1, SZStf},
X (1) =[X, ), X, (0] satisty X (t)= X |, <& . Then

supﬂ|F(t,vecX)||2 ity Sttt }S M,

where
1

M =q+2nae+ (47/+ %njgz,

and @, ¥, are defined in (3.25).

Proof: For any 7 € [#,,,]=[0,1] and ”X(t) -X, ”2 <0, we have

|F . VeeX )], = Q)+, (2, VecX 1)+, (1, VecX (6) + 5 (1, VecX (1)),
<o), +|w, (t.VecX 0))||, + v, (t.VecX 1))], +[w (1. VecX (1)),

From (3.17)-(3.22) of Lemma 3.1 and (3.25), we have

lw, (2. VecX (1) =y, (1. VecY (1), < dna t#|VecX (1) - VecY (1)),

When Y (¢) =0, we obtain
1 1 1
I, (2. VecX ()], <4n’ar t*||VecX (1), < 4n’ot+ & =2n>aer’ .

v, ¢, VecX 1)) =y, (1, VecY 1)), < 8y + (X )|, +|Y ), ) [VeeX (1) — VecY (1),
When Y (¢) = 0, we obtain
[ @ VeeX @), <8y+ (X )], )% (Veex )], ) < 8y €71 = 4pe’s.

© 2010, IJMA. All Rights Reserved
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w1, VeeX ) —, (1, VeeY ), < n+ (X )], +[Y )], ) [VeeX (1) = Veey @), (3.41)

When Y () = 0, we obtain
vy (. VecX (1))||, <mp+€’t = %neztz . (3.42)

Since t € [0,1], then

|F@,VecX 1)), <||Q@)||, +|w, 2. VecX (1)||, + |w, (1. VecX (1)) + w5 (2, VecX (1)|,
1
<g+2nlae’ + 4yt +%7]€2t2

1
= q+{2n2as+(47+%n}92}t2.

1

> 1
<g+ 2n2ae+(47+ Enjgz =M.
This completes the proof of Corollary 3.3.

Theorem: 3.4. Let {Ai (1), B;(1),0,(1),S; (1) : 1<, j < 2} be continuous matrix functions on z =[7,,7,]=[0,1].

Letd >0, €= ”Xf ||2 +dand M determined by (3.36). Suppose that

h= min{l,i} . (3.43)
M

Then the coupled matrix Riccati convolution differential equations defined in (3.1)-(3.4) has a unique solution
X =[x,0),%,0)]

on the interval [1— A,1] such that X (#)is the limit of 2-convolution norm of the following successive approximation sequence:

xw (t)},,zo (3.44)
such that
X (p) t
X (1) :{ 1(17)( )}’ (3.45)
X, @
X =X, , i=12, (3.46)
and

Xl(p“) = le + j [Q] (u)+ B, (u) * Xl(p) (u)+ Xl(p) (u)* A (u)

F X W) Sy, ) X @) b+ [[X 7 @)% 8, )% X3P )

1
+ X7 () xSy, (u)x X7 W)+ X (u)* S, (u)* X3P (u)]du. (3.47)
(P () — l[ » »
X0y =X, + [0, )+ By () X3P )+ X1 () % A, (u)
1

X3 () Sy )+ X7 )+ [[X 37 ) % S, )+ X7 ()
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F X ) S, ) F X @)+ X ()% S, ) % X () .

Furthermore, the maximum error is given by
(p) N 1 h’
—
R, ()= "VecX (t)—VecX (r)||2 <MY K —
r=l1 .

where M, K and h are defined in (3.36), (3.32) and (3.43), respectively.

(3.48)

(3.49)

Proof: The function F(#,VecX(t)) determined by (3.27) satisfies Lipschtiz condition by Corollary 3.2 and bounded with

constant M by Corollary 3.3. Now applying Lemma 2.3, then the unique solution of the following equivalent coupled matrix

Riccati convolution differential equations determined by (3.26):

VeeX (1)=F(1,VecX(t) , VecX(t,)=VecX,,.X,,

on the interval [1— A,1] is VecX (¢) which is given by the sequence: {X 2 (u)}p20 ,where X°(¢) = VecX ;. Also

t
VecX "™V (1) = VecX , + ‘[F(M,VECX P (u))du
1

Q@)+ B, ) * X7 )+ X7 ()% A ) + X7 )+, () + X7 ()
= Vech +J. ’
O, )+ B, ) X7 )+ X7 () * A, () + X7 () % S, (u) % X (u)

j‘ X P w)* S, () * X (u)+ X7 (u) % S, (u)* X7 )+ X (u)* S, (u)* X (u)
+ du
X7 ) S, ) x X7 )+ X7 () # S, () X7 () + X7 () % Sy, (u) = X7 (u)

This implies:

J'VVl(p) (u)du

X(p+1) t X
VecX(”*l)(t):{ @) =Veel VY |+ Vec

(p+1) X.. : .
X,"(0) 2f J'Wz(p) (w)du

1
where

W, (u) ={0, (u) + B,(u) * X P () + X (u) * A(u) + X P () * S, (u) * X 7 (u)
+ X ()% S, () * X7 )+ X7 () % S,, () * X P (u)+ X P %S, (u)* X3P () },

WA @) =10, ) + By ) % X 37 () + X7 (1) * Ay () + X 37 (1) % S () % X 7 ()

+ XV W) xS, () * X P @)+ X u)* S, w)* X )+ X w)*S,, w)* X" (u) }.

Thus from (2.10) of Remark 2.4, the maximum error due to the above truncation is given by (3.49).

(3.50)

(3.51)

(3.52)

(3.53)

. )
Remark: 3.5. Observe that the convergence interval is [1 —/,1] and the radius of convergence is i = mm{l’ﬁ ,0>0.

Since the convergence interval depends on ratioﬁ , then the ratio — must be maximum value. Since M also depend on 0,

we need to find & such that — is maximum value. Now we have h = ﬁ implies h' = o M , that is
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1
h'(8)=6"M = §_l{q+2n2a’8+[4}/+%nj€2}, (3.54)

where € = "Xf ||2 +0.

Example: 3.6 Consider the coupled matrix Riccati convolution differential equations on € [0,1]

X, (0=0,(1)+B,(1)* X,(t). X,(t)=0, (1) + B, (1) * X, (1),

Q(t)_tt 0.() = 5t 3t B ()= t 2t B.(1) = 2t
O P et I Mt VRPN I I A

XI—X—OOXI—X—11
(H= "Iy ool (D= 2700

Here, the matrix functions O, (¢),Q, (¢), B, (¢) and B, (¢) are continuous on [0,1]. According to (3.27), we construct the
function F’ as follows:

where

F(t,VecX (1)) =VecQ(t) +y,(t,VecX (1)),

where

X =[x,0.x,0]. x0=[0,®,0,®).

L, (0)[VecX (1]

y,(t,vecX (1)) = |:L2 (0)[VecX , ()]

} L L) =D,()®B,(1) , L,(1)=D,(t)®B, (1)

It is easy to verify that this function is bounded and satisfies the Lipschtiz condition. Furthermore, computation shows that:

o, =20 Jeuol, =& . (B0l =20 [Baol, =2
25 9 5
alt) = maxﬂ|Bl ®),.|B, (t)||2}:> o= 2‘[5"1‘]{ /?ﬂ ’ /6;3 } - - 2.04124.

q()=max{lo, 0),.|0, )|, }= q = {2[?;‘1‘{ /% o, Jer } — /6 ~2.44949,

|

yt)=0 , n®)=0 = y=0 , n=0.
If we choose & = 0.1, then computation also shows that:
0 011
0 011
1 1

K=20Qn*a+8+ne=~11574, M =g+ 2n20(8+(47+%77)82 ~11.19172,

—J2f = e=maxv2r +5=2+0.1~15142,

te[0,1]

2

h =min 1—0,L =(0.008935.
11.19172
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The first two approximate solutions of X, (¥) are:

X0 =X, +[[0,60+B @)= X @)u
1
[o 0} {u u} {u 2u} {0 o} lr_l ﬁ—l}
= +J. + * du=—| | 5 .
0 0] <||u u 2u  4u 00 21t =1 t7 -1

XP(6)=X,, + j [0, @) + B, )+ X (w)
1

u u| 2 lu4—3u2 lu4—3u2
2 2
_lz—l 2 -1 Ll’s—lt3+i L 5_1 3 2
1 1120 2 20 20 2 20
= — + —
2 2
_lz—l t* =1 _ 5—l‘3+2 ils—t3+2
10 10 10 10
Ly Lpip U Ly Llpp U
1120 2 20 20 2 20
2
Ly pyrL Ly pyp L
10 10 0

The first two approximate solutions of X, (¥) are:

XV =X, + j [Q2 (u)+B,(w)* XV (u)] du

S E N P P N

11 t§u2+5u Eu2+3u
+[12 2

= du
—1 1 1 u®+u u’ +u
L o302
2 2
15, 1, 1 15, 1, 1

—t =t +— —t =t +—
| 3 2 6 3 2 6

X ()= X, + [[0, o)+ B, () X )
1

© 2010, IJMA. All Rights Reserved 463



ZEYAD AL-ZHOURY et al. / The approximate solutions of coupled matrix riccati convolution differential equations /IJMA- 2(4), Apr.-2011,
Page: 452-464

—u’+=u* -2 —u’+=u’ -1
1 1] “|[5u 3ul] [2u u 2 2 2 2
= +‘[ + * du
1 1 1 u u 0 2l/t 1 1 1 1 1 1
—u+—u’+— —u+—u’+—
3 2 6 3 2 6
Ly e 28 L5 7 U
1 11 “1I5u 3u 15 24 12 15 24 12
= +.[ + du
11 pjLwu r s 1 4, 1, L 4 2
—u+—u"+—-u —u+—u"+—u
30 12 6 30 12 6
Lo M s 23,5 5, 1067 1., 7 s 115 3, 815
90 120 36 2 360 90 120 36 2 360
Loty tp 1M Lot tp et
180 60 18 2 45 180 60 18 2 45
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