COMMON FIXED POINT THEOREMS IN FUZZY METRIC SPACE FOR SINGLE AND SET-VALUED M-MAPS

*K. P. R. Rao¹, K. R. K. Rao ² and V. C. C. Raju³

¹,² Department of Applied Mathematics Acharya Nagarjuna University – Dr .M. R. Appa Row Campus, Nuzvid -521 201, Krishna Dt., A. P., INDIA

³Department of Mathematics, University of Botswana, Private Bag UB 00704, Gaborone, Botswana

E-mail: varanasi@mopipi.ub.bw, kprrao2004@yahoo.com

(Received on: 22-03-11; Accepted on: 06-04-11)

ABSTRACT

In this paper, we introduce the notion of M-maps w.r.t. a single map and a pair of maps in fuzzy metric spaces and obtain common fixed point theorems for two pairs of sub compatible maps satisfying implicit relations. Our results generalize and extend several comparable results in existing literature like Abbas.et.al [2], Kumar et.al. [9] to the setting of single and set-valued maps and also by relaxing some more conditions.

Key words: Fuzzy Metric space , set-valued M-maps , sub compatible mappings.

AMS Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION AND PRELIMINARIES:

In this paper we obtain two common fixed point theorems for two pairs of single and multi valued mappings by using property (E.A) type definition.

First, we give some known preliminaries.

Definition 1.1 ([17]): Let X be any set. A fuzzy set A in X is a function with domain X and values in [0,1].

Definition 1.2 ([13]): A binary operation *: [0,1]× [0,1] → [0,1] is called a continuous t-norm if ([0,1], *) is an abelian topological monoid with the unit 1 such that a * b ≤ c * d , whenever a ≤ c and b ≤ d for all a,b,c,d ∈ [0,1].

Note that among a number of possible choices for*, ‘* = min ’ is the strongest possible universal t-norm (see [13]).

Definition 1.3 ([8]): The triplet (XM,*) is called a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set in X× [0,∞) satisfying the following conditions for all x,y,z X and t, s, > 0,

(i) M (x,y,t) > 0 , M(x, y, 0) = 0 ;

(ii) M (x,y,t) = 1 for all t > 0 if and only if x = y ;

(iii) M (x,y,t) = M (y,x,t) ;

*Corresponding author: *K. P. R. Rao*, E-mail: kprrao2004@yahoo.com
(iv) \(M(x, y, t) \) \(\ast \) \(M(y, z, s) \leq M(x, z, t+s) \).

(v) \(M(x, y, \cdot) : [0, \infty) \to [0, 1] \) is a continuous function.

Lemma 1.4 (\cite{6}): Let \((X, M, \ast)\) be a fuzzy metric space. Then \(M(x, y, t)\) is non-decreasing with respect to \(t\) for all \(x, y \in X\).

Lemma 1.5 (\cite{12}): Let \((X, M, \ast)\) be a fuzzy metric space. Then \(M\) is a continuous function on \((0, X_2)\times(0, \infty)\).

Let \((X, M, \ast)\) be a fuzzy metric space. For \(t > 0\), the open ball \(B(x, r, t)\) with center \(X x \in X\) and radius \(0 < r < 1\) is defined by

\[
B(x, r, t) = \{ y \in X : M(x, y, t) > 1-r \}.
\]

The collection of \(\{B(x, r, t) : x \in X, \ 0 < r < 1, \ t > 0\}\) is a neighborhood system for a topology \(\tau\) on \(X\) induced by the fuzzy metric. This topology is Hausdorff.

A sequence \(\{x_n\}\) in \(X\) converges to \(x\) if and only if for each \(\varepsilon > 0\) and each \(t > 0\) there exists \(n_0 \in N\) such that \(M(x_n, y, t) > 1-\varepsilon\) for all \(n \geq n_0\).

Lemma 1.6 (\cite{10}): Let \((X, M, \ast)\) be a fuzzy metric space and \(M(x, y, t) \to 1\) as \(t \to \infty\) for all \(x, y \in X\). If \(M(x, y, kt) \geq M(x, y, t)\) for all \(x, y \in X, \ t > 0\) and for a number \(k \in (0, 1)\) then \(x = y\).

Here afterwards, we assume that \(B(X)\) is the set of nonempty bounded subsets of fuzzy metric space \((X, M, \ast)\).

For \(A, B \in B(X)\) and for every \(t > 0\), define

\[
M(A, B, t) = \inf \{M(a, b, t) : a \in A, b \in B\}.
\]

If \(A = \{a\}\), then \(\delta_M(A, B, t) = M(a, B, t)\).

If \(A = \{a\}\), \(B = \{b\}\) then \(\delta_M(A, B, t) = \delta_M(a, b, t)\).

From the definition it follows that

\[
\delta_M(A, B, t) = \delta_M(B, A, t) \geq 0.
\]

\[
\delta_M(A, B, t) = 1 \iff A = B = \{ \text{singleton} \}.
\]

\[
\delta_M(A, B, t+s) \geq \delta_M(A, C, t) \ast \delta_M(C, B, s) \text{ for all } A, B, C \in B(X) \text{ and for all } s, t > 0.
\]

Definition 1.7: A sequence \(\{A_n\}\) in \(B(X)\) is said to be convergent to a set \(A \in B(X)\) if \(\delta_M(A_n, A, t) \to 1\) as \(n \to \infty\) for all \(t > 0\).

Immediately one can prove the following

Lemma 1.8: Let \(\{A_n\}\) and \(\{B_n\}\) are sequences in \(B(X)\) converging to \(A\) and \(B\) in \(B(X)\), respectively. Then \(\delta_M(A_n, B_n, t) \to \delta_M(A, B, t)\) as \(n \to \infty\) for all \(t > 0\).

Lemma 1.9: If \(\delta_M(A, B, kt) \geq \delta_M(A, B, t)\) for all \(A, B \in B(X)\) and for all \(t > 0\), \(0 < k < 1\) then \(A = B = \{ \text{singleton} \}\) provided \(M(x, y, t) \to 1\) as \(t \to \infty\) \(\forall x, y \in X\).

Definition 1.10 (\cite{7}): The maps \(F : X \to B(X)\) and \(f : X \to X\) are said to be weakly compatible or sub compatible if they commute at coincidence points, i.e., for each point \(u \in X\) such that \(Fu = \{fu\}\), we have \(Ffu = fFu\).
Generally to prove common fixed point theorems for two pairs of maps or Gungck type maps using property (E.A), introduced in [1] one can tempt to assume that the range set of one mapping is closed or one of the mappings is surjective. In this paper, we relax some conditions by introducing the following two definitions.

Definition 1.11: Let \((X,M,\ast)\) be a fuzzy metric space and \(f:X\rightarrow X\) and \(F:X\rightarrow B(X)\). Then \((f,F)\) is said to be a pair of \(M\)-maps with respect to \(f\) if there exists a sequence \(\{x_n\}\) in \(X\) such that for every \(t>0\), \(M(fx_n,z,t)\rightarrow1\) and \(\delta_M(Fx_n(z), t)\rightarrow1\) as \(n\rightarrow\infty\) for some \(z\in f(X)\).

Definition 1.12: Let \((X,M,\ast)\) be a fuzzy metric space and \(f,g:X\rightarrow X\) and \(F,G:X\rightarrow B(X)\). Then \((f,F)\) and \((g,G)\) are sub compatible, if there exist sequences \(\{x_n\}\) in \(X\) such that for every \(t>0\), \(M(fx_n,z,t)\rightarrow1\) and \(\delta_M(Fx_n(z), t)\rightarrow1\) as \(n\rightarrow\infty\) for some \(z\in f(X)\cap g(X)\).

2. IMPLICIT RELATION:

Let \(\Phi\) denote the class of all continuous functions \(\varphi:[0,1]^{6}\rightarrow R\) satisfying

\[\varphi(u,1,1,v,v,1)\geq0\text{ or }\varphi(u,1,v,1,1,v)\geq0\text{ or }\varphi(u,v,1,1,v,v)\geq0\text{ Implies }u\geq v.\]

These are the same examples of implicit relations.

Example 2.1:

\[\varphi(t_1,t_2,t_3,t_4,t_5,t_6)=t_1-\min\{t_2,t_3,t_4,t_5,t_6\}.\]

Example 2.2:

\[\varphi(t_1,t_2,t_3,t_4,t_5,t_6)=t_1-\min\{t_2,t_3,t_4t_5,t_6\}.\]

Example 2.3:

\[\varphi(t_1,t_2,t_3,t_4,t_5,t_6)=t_1-\frac{t_1t_4t_5t_6}{1+t_2}.\]

Example 2.4:

\[\varphi(t_1,t_2,t_3,t_4,t_5,t_6)=\frac{t_1-t\psi(t_2,t_3,t_4,t_5,t_6)}{\psi(t,1,1,1,1)\forall t\in[0,1]}\text{ where }\psi\text{ is increasing in each coordinate and }\psi(t,1,1,1,1).\]

3. MAIN RESULTS:

Theorem 3.1: Let \((X,M,\ast)\) be a fuzzy metric space and \(f,g:X\rightarrow X\) and \(F,G:X\rightarrow B(X)\) be maps satisfying

\[\varphi\left(\delta_M(Fx,Gy,kt), M(fx,gy,t), \delta_M(fx,Fx,t), \delta_M(gy,Gy,t), \delta_M(fx,Gy,t), \delta_M(gy,Fx,t)\right)\geq0\]

for all \(x,y\in X, t>0\) and \(k\in(0,1)\) where \(\varphi\in\Phi\),

the pairs \((f,F)\) and \((g,G)\) are sub compatible ,

(a) \((f,F)\) is a pair of \(M\)-maps with respect to \(f\) and \(Fx\subseteq g(X)\) for all \(x\in X\).

(b) \((g,G)\) is a pair of \(M\)-maps with respect to \(g\) and \(Gx\subseteq f(X)\) for all \(x\in X\).

Then \(f, g, F, G\) have a unique common fixed point \(z\in X\) such that

\[Fz=Gz=\{z\} = \{fz\} = \{gz\}\]

Proof: Suppose (3.1.3)(a) holds.

Since \((f,F)\) is a pair of \(M\)-maps with respect to \(f\) there exists a sequence \(\{x_n\}\) in \(X\) such that for every \(t>0\),

\[\lim_{n\to\infty} M(fx_n,z,t)=1\text{ and }\lim_{n\to\infty} \delta_M(Fx_n(z), t)=1\text{ for some }z\in f(X).\]
Hence there exists \(u \in X \) such that \(z = fu \).

Since \(Fx \subseteq g(X) \) for all \(x \in X \) there exist \(\alpha_n \in Fx_n \) and \(y_n \in X \) such that \(\alpha_n = gy_n \) for all \(n \).

Also \(M(gy_n, z, t) \geq \delta_M(Fx_n, \{z\}, t) \to 1 \) as \(n \to \infty \).

Hence \(\lim_{n \to \infty} M(gy_n, z, t) = 1 \).

Now,

\[
\phi \left(\delta_M(Fx_n, Gy_n, kt), M(fx_n, gy_n, t), \delta_M(fx_n, Fx_n, t), \delta_M(gy_n, Gy_n, t), \delta_M(fx_n, Gy_n, t), \delta_M(gy_n, Fx_n, t) \right) \geq 0.
\]

Letting \(n \to \infty \) we have,

\[
\phi \left(\delta_M(\{z\}, \lim_{n \to \infty} Gy_n, kt), 1, 1, \delta_M(\{z\}, \lim_{n \to \infty} Gy_n, t), \delta_M(\{z\}, \lim_{n \to \infty} Gy_n, t), 1 \right) \geq 0.
\]

Hence

\(\delta_M(\{z\}, \lim_{n \to \infty} Gy_n, kt) \geq \delta_M(\{z\}, \lim_{n \to \infty} Gy_n, t) \) from property of \(\phi \).

From Lemma 1.9, we have \(\lim_{n \to \infty} Gy_n = \{z\} \).

Thus \(\lim_{n \to \infty} Fx_n = \lim_{n \to \infty} Gx_n = \lim_{n \to \infty} fx_n = \lim_{n \to \infty} gy_n = \{z\} = \{fu\} \).

Now,

\[
\phi \left(\delta_M(Fu, Gy_n, kt), M(fu, gy_n, t), \delta_M(fu, Fu, t), \delta_M(gy_n, Gy_n, t), \delta_M(fu, Gy_n, t), \delta_M(gy_n, Fu, t) \right) \geq 0.
\]

Letting \(n \to \infty \) we have,

\[
\phi \left(\delta_M(Fu, \{z\}, kt), 1, \delta_M(\{z\}, Fu, t), 1, 1, \delta_M(\{z\}, Fu, t) \right) \geq 0.
\]

\(\delta_M(Fu, \{z\}, kt) \geq \delta_M(\{z\}, Fu, t) \).

Hence \(Fu = \{z\} \). Thus \(Fu = \{z\} = \{fu\} \).

Since \(\{z\} = Fu \subseteq g(X) \), there exists \(v \in X \) such that \(z = gv \).

Now,

\[
\phi \left(\delta_M(Fx_n, Gv, kt), M(fx_n, gv, t), \delta_M(fx_n, Fx_n, t), \delta_M(gv, Gv, t), \delta_M(fx_n, Gv, t), \delta_M(gv, Fx_n, t) \right) \geq 0.
\]

Letting \(n \to \infty \) we have,

\[
\phi \left(\delta_M(\{z\}, Gv, kt), 1, 1, \delta_M(\{z\}, Gv, t), \delta_M(\{z\}, Gv, t), 1 \right) \geq 0.
\]

\(\delta_M(\{z\}, Gv, kt) \geq \delta_M(\{z\}, Gv, t) \).
Hence $Gv = \{z\}$. Thus $Gv = \{z\} = \{gv\}$.

Since the pairs (f, F) and (g, G) are sub compatible, we have

$$Fz = \{fz\} \text{ and } Gz = \{gz\}.$$

$$\varphi \left(\delta_{M}(Fz, Gv, kt), M(fz, gv, t), \delta_{M}(fz, Fz, t) \right) \geq 0.$$

$$\varphi \left(M(fz, z, kt), M(fz, z, t), 1, M(fz, z, t) \right) \geq 0.$$

Hence $fz = z$. Thus $Fz = \{fz\} = \{z\}$.

Also,

$$\varphi \left(\delta_{M}(Fu, Gz, kt), M(fu, gz, t), \delta_{M}(fu, Fu, t) \right) \geq 0.$$

$$\varphi \left(M(gz, z, kt), M(gz, z, t), 1, M(gz, z, t) \right) \geq 0.$$

Hence $gz = z$. Thus $Gz = \{gz\} = \{z\}$.

Thus z is a common fixed point of f, g, F and G such that $Fz = Gz = \{z\} = \{fz\} = \{gz\}$.

Uniqueness of common fixed point follows easily from (3.1.1). The following example illustrates Theorem 3.1.

Example 3.2: Let $X = [0,1]$ and $d(x, y) = |x - y|$ and $a * b = \min\{a, b\} \forall a, b \in [0,1]$. Define

$$M(x, y, t) = \frac{t}{t + d(x, y)} \forall t > 0 \text{ and } \forall x, y \in X.$$

Then $(X, M, *)$ is a fuzzy metric space.

Define $F, G : X \to B(X)$ and $f, g : X \to X$ as follows,

$$fx = \begin{cases} \frac{1}{2} & \text{if } x \in [0,\frac{1}{2}], \\ \frac{1}{4} + \frac{1}{4} & \text{if } x \in (\frac{1}{2}, 1) \end{cases}, \quad gx = \begin{cases} \frac{1}{2} & \text{if } x \in (0, \frac{1}{2}], \\ 0 & \text{if } x \in (\frac{1}{2}, 1] \cup \{0\} \end{cases}$$

$$Fx = \left\{ \frac{1}{2} \right\}, \quad Gx = \left\{ \frac{1}{2} \right\} \text{ if } x \in [0, \frac{1}{2}],$$

$$\left\{ \frac{1}{2}, \frac{1}{2} \right\} \text{ if } x \in (\frac{1}{2}, 1].$$

Then $Fx = \left\{ \frac{1}{2} \right\} \subseteq g(X) = [\frac{1}{2}, 1) \cup \{0\} \forall x \in X$. $Gx = \left[\frac{1}{2}, \frac{1}{2} \right] \subseteq f(X) = (\frac{1}{2}, \frac{1}{2}]$ for all $x \in (\frac{1}{2}, 1]$.

Case (i): if $x \in X, y \in [0, \frac{1}{2}]$ then, $\delta_{M}(Fx, Gy, kt) = 1$

Case (ii): if $x \in X, y \in (\frac{1}{2}, 1]$ then,

$$\delta_{M}(Fx, Gy, kt) = \inf \left\{ M(a, b, kt) : a \in Fx, b \in Gy \right\}$$
Thus \(\delta_M(Fx,Gy,kt) \geq M(fx,gy,t) \) \(\forall \ x,y \in X \), \(\forall \ t > 0 \) where \(k = \frac{1}{2} \).

(3.1.1) is satisfied with \(k = \frac{1}{2} \) and \(\varphi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min \{t_2, t_3, t_4, t_5, t_6\} \).

Clearly \((f,F)\) and \((g,G)\) are sub compatible.

For \(\{x_n\} = \left\{\frac{1}{2} - \frac{1}{2n}\right\} \) we have \(\{fx_n\} \to \frac{1}{2} \), \(Fx_n = \frac{1}{2} \), \(\frac{1}{2} \in f(X) \), \(Fx \subseteq g(X) \) \(\forall \ x \in X \) so (3.1.1)(a) is satisfied. But (3.1.1)(b) is not satisfied since \(Gx \not\subseteq f(X) \) \(\forall \ x \in (\frac{1}{2},1] \).

Thus all the conditions of Theorem 3.1 are satisfied and \(\frac{1}{2} \) is the unique common fixed point of \(f, g, F \) and \(G \).

In this example note that the maps \(f \) and \(g \) are not surjective and the sets \(f(X) \) and \(g(X) \) are not closed.

Theorem 3.3: Let \((X,M,\ast)\) be a fuzzy metric space and \(f, g : X \to X \) and \(F, G : X \to B(X) \) be maps satisfying (3.1.1), (3.1.2) and (3.3.1) \((f,F)\) or \((g,G)\) is a pair of \(M\)-maps with respect to \((f,g)\).

Then \(f, g, F \) and \(G \) have a unique common fixed point \(z \in X \) such that \(Fz = Gz = \{z\} = \{fx\} = \{gz\} \).

Proof: Suppose \((f,F)\) is a pair of \(M\)-maps with respect to \((f,g)\). Then there exists a sequence \(\{x_n\} \) in \(X \) such that for every \(t > 0 \),

\[M(fx_n, z, t) \to 1 \quad \text{and} \quad \delta_M(Fx_n, \{z\}, t) \to 1 \quad \text{for some} \quad z \in f(X) \cap g(X) \, . \]

Hence there exist \(u, v \in X \) such that \(z = fu = gv \).

Now

\[\varphi\left(\delta_M(Fx_n,Gv,kt), M(fx_n,gv,t), \delta_M(fx_n,Fx_n,t), \delta_M(gv,Gv,t), \delta_M(Fx_n,Gv,t), \delta_M(gv,Fx_n,t) \right) \geq 0 \, . \]

Letting \(n \to \infty \), we have

\[\varphi\left(\delta_M(z,Gv,kt), 1, 1, \delta_M(z,Gv,t), \delta_M(z,Gv,t), 1 \right) \geq 0 \, . \]

\(\delta_M(\{z\}, Gv, kt) \geq \delta_M(\{z\}, Gv, t) \, . \)

Hence \(Gv = \{z\} \). Thus \(Gv = \{z\} = \{gv\} \).

\[\varphi\left(\delta_M(Fu,Gv,kt), M(fu,gv,t), \delta_M(fu,Fu,t), \delta_M(gv,Gv,kt), \delta_M(gv,Fu,t) \right) \geq 0 \, . \]

\[\varphi\left(\delta_M(Fu,\{z\}, kt), 1, \delta_M(\{z\}, Fu, t), 1, \delta_M(\{z\}, Fu, t) \right) \geq 0 \, . \]

\(\delta_M(Fu, \{z\}, kt) \geq \delta_M(\{z\}, Fu, t) \, . \)
Hence \(Fu = \{ z \} \). Thus \(Fu = \{ z \} = \{ fu \} \).

From (3.1.2), we have \(Fz = \{ fz \} \) and \(Gz = \{ gz \} \).

The rest of the proof follows as in Theorem 3.1. The following example illustrates Theorem 3.3.

Example 3.4: Let \(X = [0,1] \) and \(d(x, y) = |x - y| \) and \(a * b = \min \{ a, b \} \) \(\forall \ a,b \in [0,1] \) Define \(M(x,y,t) = \frac{t}{t + d(x,y)} \) \(\forall \ t > 0 \) and \(\forall \ x, y \in X \)

Then \((X,M,\ast) \) is a fuzzy metric space.

Define \(F,G : X \to B(X) \) and \(f,g : X \to X \) as follows

\[
fx = \begin{cases}
\frac{1}{2} & \text{if } x \in [0, \frac{1}{2}], \\
\frac{x+1}{1} & \text{if } x \in (\frac{1}{2}, 1]
\end{cases} \quad \text{and} \quad gx = \begin{cases}
1 - x & \text{if } x \in (0, \frac{1}{2}], \\
0 & \text{if } x \in (\frac{1}{2}, 1] \cup \{0\}
\end{cases}
\]

\[
Fx = \begin{cases}
\{ \frac{1}{2} \} & \text{if } x \in [0, \frac{1}{2}], \\
[\frac{1}{2}, \frac{1}{2}] & \text{if } x \in (\frac{1}{2}, 1]
\end{cases} \quad \text{and} \quad Gx = \begin{cases}
\{ \frac{1}{2} \} & \text{if } x \in [0, \frac{1}{2}], \\
[\frac{1}{2}, \frac{1}{2}] & \text{if } x \in (\frac{1}{2}, 1]
\end{cases}
\]

\(
\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min \{ t_2, t_3, t_4, t_5, t_6 \}
\)

Case (i): If \(x, y \in [0, \frac{1}{2}] \) then, \(\delta_M(Fx,Gy, kt) = 1 \)

Case (ii): If \(x \in [0, \frac{1}{2}], y \in (\frac{1}{2}, 1] \) then,

\[
\delta_M(Fx,Gy, kt) = \inf \left\{ M(a,b,kt) : a \in Fx, b \in Gy \right\} = \inf \left\{ \frac{kt}{kt + \frac{1}{2}} : a \in [\frac{1}{2}, \frac{1}{2}], b \in [\frac{1}{8}, \frac{1}{2}] \right\} = \frac{kt}{kt + \frac{1}{16}}
\]

\[
M(fx,gy,t) = \frac{t}{t + d(fx,gy)} = \frac{t}{t + \frac{1}{2}}
\]

Case (iii): If \(x \in (\frac{1}{2}, 1], y \in [0, \frac{1}{2}] \) then,

\[
\delta_M(Fx,Gy, kt) = \inf \left\{ \frac{kt}{kt + d(a,b)} : a \in [\frac{1}{2}, \frac{1}{2}], b = \frac{1}{2} \right\} = \frac{kt}{kt + \frac{1}{16}}
\]

\[
\delta_M(Fx,Fx, t) = \inf \left\{ \frac{kt}{kt + d(a,b)} : a \in [\frac{1}{2}, \frac{1}{2}], b \in [\frac{1}{8}, \frac{1}{2}] \right\} = \frac{t}{t + \frac{1}{8}}
\]

Case (iv): If \(x, y \in (\frac{1}{2}, 1] \) then,

\[
\delta_M(Fx,Gy, kt) = \inf \left\{ \frac{kt}{kt + d(a,b)} : a \in [\frac{1}{16}, \frac{1}{2}], b \in [\frac{1}{8}, \frac{1}{2}] \right\}
\]

\[M(fx, gy, t) = \frac{t}{t + d(fx, gy)} = \frac{t}{t + d(\frac{x+y}{2}, 0)} = \frac{t}{t + \frac{x+y}{2}}. \]

In all cases
\[\delta_M(Fx, Gy, \frac{1}{2}t) \geq \min \left\{ M(fx, gy, t), M(fx, Gy, t), M(gy, Gy, t), M(Fx, Gy, t) \right\} \forall x, y \in X, \forall t > 0. \]

Clearly \((f, F)\) and \((g, G)\) are sub compatible.

For \(\{x_n\} = \left\{ \frac{1}{2} - \frac{1}{2n} \right\}\) we have \(\{gx_n\} \to \frac{1}{2}, Gx_n = \left\{ \frac{1}{2} \right\}\), \(\{1\} \in f(X) \cap g(X)\)

Hence \((g, G)\) is a pair of \(M\)-maps with respect to \((f, g)\).

Thus all the conditions of Theorem 3.3 are satisfied and \(\frac{1}{2}\) is the unique common fixed point of \(f, g, F\) and \(G\).

In this example note that
(i) the maps \(f\) and \(g\) are not surjective.
(ii) \(f(X)\) and \(g(X)\) are not closed.
(iii) \(Fx \subsetneq g(X)\) \(\forall x \in (\frac{1}{2}, 1]\) and \(Gx \subsetneq f(X)\) \(\forall x \in (\frac{1}{2}, 1]\).

Recently Abbas et.al. [2] used the following implicit relation. Let \(\Psi\) be a class of all continuous functions \(\varphi: [0,1]^5 \to [0,1]\) which are increasing in each coordinate and \(\varphi(t, t, t, t, t) > t\) for all \(t \in [0,1]\). Using this implicit relation Abbas et.al. [2] proved the following:

Theorem: 3.5 (Theorem 2.1, [2]): Let \((X, M, *)\) be a fuzzy metric space. Let \(f, g, F\) and \(G\) be self maps on \(X\) satisfying

(i) \(F(X) \subseteq g(X)\) and \(G(X) \subseteq f(X)\) and there exists a constant \(k \in (0, \frac{1}{2})\) such that

(ii) \(M(Fx, Gy, kt) \geq \varphi \left\{ M(fx, gy, t), M(fx, FY, t), M(gy, gy, t), M(Fx, gY, \alpha t), M(Gy, fx, (2-\alpha) t) \right\} \)

for all \(x, y \in X, t > 0\) and \(\alpha \in (0,2)\) where \(\varphi \in \Psi\)

Then \(F, G, f\) and \(g\) have a unique common fixed point in \(X\) provided

(iii) the pair \((F, f)\) or \((G, g)\) satisfies (E.A) property,

(iv) one of \(F(X), G(X), f(X), g(X)\) is a closed subset of \(X\) and

(v) the pairs \((F, f)\) and \((G, g)\) are weakly compatible.

Theorem: 3.6 (Theorem 2.3, [2]): Let \((X, M, *)\) be a fuzzy metric space. Let \(f, g, F\) and \(G\) be self maps on \(X\) satisfying (ii), (v),

(i) The pairs \((F, f)\) and \((G, g)\) satisfy common (E.A) property and,

(ii) \(f(X)\) and \(g(X)\) are closed subsets of \(X\).

Then \(F, G, f\) and \(g\) have a unique common fixed point in \(X\).
These two theorems can be extended to two pairs of multi valued and single valued maps and improved respectively as follows.

Theorem: 3.7 Let \((X,M,\delta)\) be a fuzzy metric space and \(f, g : X \to X\) and \(F, G : X \to B(X)\) be maps satisfying

\[
\delta_m(Fx, Gy, t) \geq \varphi \left\{ \frac{M(fx, gy, t), \delta_m(fx, Fx, t), \delta_m(gy, Gy, t)}{\delta_m(fx, Gy, t), \delta_m(gy, Fx, t)} \right\}
\]

for all \(x, y \in X, t > 0\) where \(\varphi \in \Psi\).

(3.7.2) the pairs \((f, F)\) and \((g, G)\) are sub compatible (3.7.3)(a) \((f, F)\) is a pair of \(M\)-maps with respect to \(f\) and \(Fx \subseteq g(X)\ \forall x \in X\).

Then \(F, G, f\) and \(g\) have a unique common fixed point \(z \in X\) such that \(Fz = Gz = \{z\} = \{fz\} = \{gz\}\).

Theorem: 3.8 Let \((X,M,\delta)\) be a fuzzy metric space and \(f, g : X \to X\) and \(F, G : X \to B(X)\) be maps satisfying (3.7.1), (3.7.2) and (3.8.1) \((f, F)\) or \((g, G)\) is a pair of \(M\)-maps with respect to \(f\) and \(g\).

Then \(F, G, f\) and \(g\) have a unique common fixed point \(z \in X\) such that \(Fz = Gz = \{z\} = \{fz\} = \{gz\}\).

REFERENCES:
