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ABSTRACT 

In this paper we shows that the free boundary is Lipschitz Continues in any Dimensions  

  

Keywords: Regularity, Laplace – Beltrami Operator, Lipschitz Function 
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INTRODUCTION: 

 

In the earlier works [8], [10], the boundary behavior of solutions of non-parametric least area, or area-type problems 

were studied. The main strategy was to reduce the problem to a free boundary problem so that the regularity theory for 

free boundaries applies. 

 

In [8], only the two-dimensional case was considered since the free boundary was well understood in this case, see for 

example [3]. Here we adapt an idea from [1] to show that the free boundary is Lipschitz continuous in any dimension.  

 

1. NOTATION AND MAIN RESULTS: 

 

Let M be a C2,1 bounded domain in Rn, and let  We are here interested in the behavior of the trace of the 

unique solution U of the non-para-metric least  problem (1.1) : 

 

 
 

 (1.1)   |dXn-1                                                                                

 

Let T = T + UT_, where 

 

(1.2)      

                                          

  
 . 

 
 

 
 

 
 

 

for any  

 

Next, let us consider the equation for surfaces with prescribed mean curvature: 
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Here we are interested in the behavior of the trace of the unique solution U (up to an additive constant) to the extremal 

problem, i.e., the mean curvature function H satisfies 

 

 
 

for every Caccioppoli set A M, A  

 

 
(cf. [4]). 

 

THEOREM 2: Let M be a C2,1 bounded domain in Rn, and let H be a Lipschitz continuous function on , satisfies 

(1.4), 1.5). Suppose that 

 

 
 

for a positive constant C0. Then the restriction of U to  is a  

function, for any ). 

 

As a consequence of Theorem 1, Theorem 2 and [5], [6] (or [7]), we have – 

 

COROLLARY: In Theorem 1, if  (analytic),then the restriction of U to  is 

(analytic), for k=3,4,........... In Theorem 2, if  is (analytic) and H is  (analytic), then the 

restriction of U to  is (analytic), for k=3,4,... 

 

1. Proofs: 

We consider first the minimal surface case. As in [8], Theorem 1 follows from the  regularity of the free 

boundary of the following variational inequality. 

  

Let B= {y  Rn : | y |  be the solution of (2.1) below : 

 

 
where 

 

 
 

                  W(y) = W(y2, y3, …………, yn) is a C2,1 function with  

 

 
 

Moreover, we have – 

 
  

 

Set F=   
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Let be the Laplace-Beltrami operator on the graph(u), and |Ag|
2 the length square of the second fundamental form 

of the graph (u). Define >0 to be a positive constant such that the first eigenvalue of the operator  

on any B is positive. 

 

LEMMA: Let  Then there is a cone  such that  

 

 
 

 

whenever  

 

A geometric consequence of the lemma is that, for  sufficiently small, 

 

 
 

and   

 

 
 

hence  

 

 
 

and f is a uniformly Lipschitz continuous function. The  regularity of  F follows from [2] and [7].  

 

 

For the surfaces with prescribed mean curvature, the proof is similar. In this case, we use the same test function V .  

 

Consider the operator L=   Then  

 

 where H(y, U) = H(y2, …., yn, U). Thus 

 

 
 

 
 

By choosing  sufficiently small, and by using (1.6), one has  

 

 
 

1. FINAL REMARKS: 

 

1. Similar results hold for a general class of quasi-linear equations which result from a nonparametric variational 

integral associated to an elliptic parametric integral, see [8]. 

 

2. Consider the problem (1.1) with  then the lemma is true even when  graph  

This follows from boundary regularity for obstacle problems. See for example [9]. As a consequence, F is a 

Lipschitz graph over  near y0 where (y0) < 0.  
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