BEHAVIOR OF SOLUTIONS FOR FREE BOUNDARY PROBLEMS

¹S. Mujeeb-Uddin* and ²Sanjeev Rajan

¹Deptt. of Mathematics, G.F. College Shahjahanpur (U.P.)

²Head, Deptt. of Mathematics, Hindu College, Moradabad (U.P.)

E-mail: syedmujeebuddin.qfc@qmail.com

(Received on: 25-03-11; Accepted on: 08-04-11)

ABSTRACT

 $\it In$ this paper we shows that the free boundary is Lipschitz Continues in any Dimensions

Keywords: Regularity, Laplace – Beltrami Operator, Lipschitz Function

INTRODUCTION:

In the earlier works [8], [10], the boundary behavior of solutions of non-parametric least area, or area-type problems were studied. The main strategy was to reduce the problem to a free boundary problem so that the regularity theory for free boundaries applies.

In [8], only the two-dimensional case was considered since the free boundary was well understood in this case, see for example [3]. Here we adapt an idea from [1] to show that the free boundary is Lipschitz continuous in any dimension.

1. NOTATION AND MAIN RESULTS:

Let M be a $C^{2,1}$ bounded domain in \mathbb{R}^n , and let $\Phi \in C^0(\partial M)$. We are here interested in the behavior of the trace of the unique solution U of the non-para-metric least problem (1.1):

 $\min\{I[V]: V \in BV(M)\},\$

(1.1)
$$I[V] \equiv \int_{M} (1 + (DV)^{2})^{\frac{1}{2}} dx + \int_{\partial M} |V - \phi| dX^{n-1}$$

Let T = T + UT, where

(1.2)
$$T_+ = \{x \in \partial M = \phi(x) > U(x) \text{ and } H_{\partial M}(x) < 0\},$$

$$T_{-} = \{x \in \partial M = \phi(x) < U(x) \text{ and } H_{\partial M}(x) < 0\}.$$

Up to X^{n-1} measure zero, sets T_\pm and T are well defined. Suppose

$$x_0 \in T_+(T_-)$$
, and $\partial M \cap B_r(x_0) \sim T_+(\partial M \cap B_r(x_0) \sim T_- respectively)$

is of X^{n-1} , measure zero, for some r > 0. Then we have the following result.

THEOREM 1. The restriction of U to $\partial M \cap B_{\frac{r}{2}}(x_0)$ is a $C^{1,\alpha}$ function,

for any
$$\alpha \in (0,1)$$
, and $U \in C^{\frac{1}{2}} \left(\overline{M} \cap B_{\frac{T}{2}}(x_0) \right)$.

Next, let us consider the equation for surfaces with prescribed mean curvature:

S. Mujeeb-Uddin* and Sanjeev Rajan/ Behavior of solutions for free boundary problems /IJMA- 2(4), Apr.-2011, Page: 533-536

$$(1.3) \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left[\frac{\partial U}{\partial x_i} / (1 + (DU)^2)^{\frac{1}{2}} \right] = H(x) \operatorname{in} M.$$

Here we are interested in the behavior of the trace of the unique solution U (up to an additive constant) to the extremal problem, i.e., the mean curvature function H satisfies

$$(1.4) \quad |\int_A H dx| < X^{n-1} \left(\hat{\sigma} A \right)$$

for every Caccioppoli set A \subseteq M, A $\neq \phi$, M and

(1.5)
$$| \int_{M} H dx = X^{n-1} (\partial M),$$
 (cf. [4]).

THEOREM 2: Let M be a $C^{2,1}$ bounded domain in \mathbb{R}^n , and let H be a Lipschitz continuous function on \overline{M} , satisfies (1.4), 1.5). Suppose that

(1.6).
$$H_{\partial M}(x) \leq H(x) - C_0 \text{ for } x \in \partial M \cap B_r(x_0)$$

for a positive constant C_0 . Then the restriction of U to $\partial M \cap B_{\underline{r}}(x_0)$ is a $C^{1,\alpha}$

function, for any $\alpha \in (0,1)$, and $U \in C^{1/2}$ $(\overline{M} \cap B_{\frac{r}{2}}(x_0))$.

As a consequence of Theorem 1, Theorem 2 and [5], [6] (or [7]), we have –

COROLLARY: In Theorem 1, if ∂M is $C^{k,\alpha}$ (analytic), then the restriction of U to $\partial M \cap B_{\frac{r}{2}}(x_0)$ is $C^{k-1,\alpha}$ (analytic), for k=3,4,............ In Theorem 2, if ∂M is $C^{k,\alpha}$ (analytic) and H is $C^{k-2,\alpha}$ (analytic), then the restriction of U to $\partial M \cap B_{\frac{r}{2}}(x_0)$ is $C^{k-1,\alpha}$ (analytic), for k=3,4,...

1. Proofs:

We consider first the minimal surface case. As in [8], Theorem 1 follows from the $C^{1,\alpha}$ regularity of the free boundary of the following variational inequality.

Let $B = \{y \in \mathbb{R}^n : |y| \leq 1\}$, and let $U \in C^{1,1}(B)$ be the solution of (2.1) below :

$$(2.1) \quad \int_{B} \alpha_{j}(DU)(V-U) \quad dy \ge 0 \text{ for all } V \in K,$$

where

$$\alpha_j(DU) = \frac{\partial U}{\partial y_j} / (1 + (DU)^2)^{\frac{1}{2}},$$

$$K = \{ V \in C^{0,1}(B) : V \ge W \text{ in } B \text{ and } V = U \text{ on } \partial B \},$$

 $W(y) = W(y_2, y_3, ..., y_n)$ is a $C^{2,1}$ function with

(2.2)
$$\sum_{i=2}^{n} \frac{\partial}{\partial y_i} \left[W_{yi} / (1 + |DW|^2)^{\frac{1}{2}} \right] \le -C_0 < 0, W(0) = |DW(0)| = 0.$$

Moreover, we have -

$$U_{y1} < 0 \text{ in } M = \{ y \in B : h(y) = U(y) - W(y) > 0 \}.$$

Set $F = \partial M$, and $M = \sup\{|D^2U(y)| + |D^2W(y)|: y \in B\}$.

S. Mujeeb-Uddin* and Sanjeev Rajan/Behavior of solutions for free boundary problems /IJMA-2(4), Apr.-2011, Page: 533-536 Let Δ_g be the Laplace-Beltrami operator on the graph(u), and $|A_g|^2$ the length square of the second fundamental form of the graph (u). Define $2\rho>0$ to be a positive constant such that the first eigenvalue of the operator $-\Delta_g - \|A_g\|^2$ on any $B_{2\rho}$ \subset B is positive.

LEMMA: Let $y_0 \in F$ and $B_{2p}(y_0) \subseteq B$. Then there is a cone $\bigwedge \subseteq R_+^n = \{X \in R^n : x_1 > 0\}$ such that

$$Dh(y) \cdot \xi \leq 0$$
 for $y \in B_{\rho}(y_0)$,

$$Dh(y) \cdot \xi < 0 \text{ for } y \in M \cap B_o(y_0),$$

whenever $\xi \in \Lambda \cap S^{n-1}$.

A geometric consequence of the lemma is that, for $|y_0| + \rho$ sufficiently small,

$$A_+(y_0) = \left\{ y \in B_\rho(y_0) : \frac{y - y_0}{|y - y_0|} \in \Lambda \right\} \subseteq B_\rho(y_0) \sim M$$

and

$$A_{-}(y_0) = \left\{ y \in B_{\rho}(y_0) : \frac{y_0 - y}{|y - y_0|} \in \Lambda \right\} \subseteq \overline{M}$$

hence

$$F = (f(y_2, ..., y_n), y_2, ..., y_n) for |(y_2, ..., y_n)| \le \rho$$

and f is a uniformly Lipschitz continuous function. The $C^{1,\alpha}$, $0 < \alpha < 1$, regularity of F follows from [2] and [7].

For the surfaces with prescribed mean curvature, the proof is similar. In this case, we use the same test function V.

Consider the operator L= Δ_g + ($|A_g|^2 - H^2 + (DH \cdot v)$). Then

$$Lv = DH = (H_{y_n}H_u)in M \cap B$$
, where $H(y, U) = H(y_2,, y_n, U)$. Thus

$$LV = \sum_{j=2}^{n} \xi_{j} H_{yj} - \sum_{j=2}^{n} \xi_{j} L \left(\frac{W_{yj}}{(1 + (DU)^{2})^{\frac{1}{2}}} \right) + L(U - W) - \varepsilon LR$$

 $in M \cap B_{2\rho}(y_0).$

By choosing ε , $\sum_{j=2}^{n} |\xi_j|$, $|y_0| + \rho$, sufficiently small, and by using (1.6), one has

$$LV \ge \frac{1}{2} C_0 > 0 \ in \ M \cap B_{2\rho}(y_0).$$

1. FINAL REMARKS:

- 1. Similar results hold for a general class of quasi-linear equations which result from a nonparametric variational integral associated to an elliptic parametric integral, see [8].
- 2. Consider the problem (1.1) with $\phi \in C^{1,\alpha}(\partial M)$, then the lemma is true even when $y_0 \in G$ graph $(\phi) \cap F$. This follows from boundary regularity for obstacle problems. See for example [9]. As a consequence, F is a Lipschitz graph over ∂M near y_0 where $H_{\partial M}(y_0) < 0$.

REFERENCES:

- (1) Alt, H., The fluid flow through porous media: regularity of the free surface, Math, Manuscripts 21, 1977, pp. 255-272.
- (2) Caffarelli, L., The regularity of free boundaries in high dimensions, Acta Math 139, 1978, pp. 155-184.
- (3) Caffarelli, L., and Riviere, N., Asymptotic behavior of free boundaries at their singular points, Annals of Math. 106, 1977, pp. 309-317.
- (4) Giusti, E., On the equation of surfaces of prescribed mean curvature- existence and uniqueness without boundary conditions, Inven. Math. 40, 1978, pp. 11-137.
- (5) Isakov, V. H., Inverse theorems concerning the smoothness of potential, Diff. Eqn. 11, 1975, pp. 66-74. Eng. Tr. Vol. 12, 1976, pp. 50-56.
- (6) Isakov, V.H., Analyticity of solutions of nonlinear transmission problems, Ibid. 12, 1976, pp. 59-68. Eng. Tr. Vol. 12, 1976, pp. 41-47.
- (7) Kinderlehrer, D., and Nirenberg, L., Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa 4, 1977, pp. 373-391.]
- (8) Lin, F. H., Behavior of non-parametric solutions and free boundary regularity, to appear in proceedings of the Centre for Math. Analysis, ANU. 1986.
- (9) Lin, F.H. Regularity for a Class of Parametric Obstacle Problems, Ph. D. thesis 1985, University of Minnesota.
- (10) Lau, C.P., and Lin, F.H., The best Holder exponent for solutions of the nonparametric least area problem, Indiana University, Math. Journal 34, No. 4, 1985, pp. 809-813.
- (11) Simon, L., Boundary regularity for solutions of the nonparametric least area problem, Annals of Math. 103, 1976, pp. 429-455.
