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ABSTRACT

In this paper we shows that the free boundary is Lipschitz Continues in any Dimensions
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INTRODUCTION:

In the earlier works [8], [10], the boundary behavior of solutions of non-parametric least area, or area-type problems
were studied. The main strategy was to reduce the problem to a free boundary problem so that the regularity theory for
free boundaries applies.

In [8], only the two-dimensional case was considered since the free boundary was well understood in this case, see for
example [3]. Here we adapt an idea from [1] to show that the free boundary is Lipschitz continuous in any dimension.

1. NOTATION AND MAIN RESULTS:

Let M be a C*' bounded domain in R", and let & € C°(@M). We are here interested in the behavior of the trace of the
unique solution U of the non-para-metric least problem (1.1) :

dx + [, [V — glax™!

LetT=T, UT_, where

a2 T. = {x € dM = p(x) = Ulx)and Hzp (x) < 0},
T_={x€e dM = g¢(x) < U(x)and Ha,, (x) < 0}.

Up to X'”.‘1 measure zero,sets T, and T are well defined. Suppose

X €T, (T_),and M N B, (x,)~T, (0M N B,(x,)~T_ respectively)

isof X", measure zero, for some T > 0.Then we have the following result.

THEOREM 1.The restriction of U to @M N Br(x,) is a C** function,
2

forany 4 ¢ (0,1),and U € C= (f‘l-—a" n BEI::'CO)).
2

Next, let us consider the equation for surfaces with prescribed mean curvature:
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Here we are interested in the behavior of the trace of the unique solution U (up to an additive constant) to the extremal
problem, i.e., the mean curvature function H satisfies
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THEOREM 2: Let M be a C*! bounded domain in R®, and let H be a Lipschitz continuous function on fﬁ , satisfies
(1.4), 1.5). Suppose that
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As a consequence of Theorem 1, Theorem 2 and [5], [6] (or [7]), we have —

COROLLARY: In Theorem 1, if @M is C*” (analytic)then the restriction of U to @M M Br {Xﬂ} is
2z

C k-1, Iﬂr(analytlc) for k=34,........... In Theorem 2, if oM is C k’a(analytic) and His C k-za (analytic), then the

restriction of U to @M M Br (JCD) is C&— 1 “*(analytic), for k=3,4,...

1. Proofs:

We consider first the minimal surface case. As in [8], Theorem 1 follows from the ¢ La regularity of the free
boundary of the following variational inequality.

LetB={y ER":lyl= 1), andlet U € Cl‘l(B] be the solution of (2.1) below :

(2.1) faj(DU) (V—U) dy Z0forallV €K,
B ¥

where
alu .1
a;(DU) =a/(1 + (DU)7)z,
j
K={ec" BV ZWinBandV = U on dB},

W) = W(Y2, Y30 cevvvvnnnnn , yn) is a C*! function with

n a .
(2.2) Za [W’yi/ (1+ |DW|2)E] = (< 0,W(0)=|DW(0)|=0.
Moreover, we have —
U,, <0inM ={y € B: h(y) = U(y) — W(y) > 0},

Set F=AM, and M = sup{|D*U(y)| + |D*W(y)|:y € B}.
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Let A - be the Laplace-Beltrami operator on the graph(u), and IAgI2 the length square of the second fundamental form

of the graph (u). Define 2 >0 to be a positive constant such that the first eigenvalue of the operator —ﬂg - Ix"-l g I2

on any B ip B is positive.

#.q. = {1 such that

i i

LEMMA: Let v, € F and B
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whenever & € A N S,

A geometric consequence of the lemma is that, for Ij’u I + 2 sufficiently small,

s vo— !
4,0p) =y € B,(p) o2 e AL B, (y,)~M
L i 1¥ — Yol J "
and
A(0) =fy e B2l ealen
[y — ol

hence

F = (ft}’?y ---;.}’n)r.}’?, ....,_}'n)fﬂ?’ IE}’ZJ JI‘J‘?.)I é p

and f is a uniformly Lipschitz continuous function. The £ 1’“, 0 < @ << 1, regularity of F follows from [2] and [7].

For the surfaces with prescribed mean curvature, the proof is similar. In this case, we use the same test function V .

Consider the operator L=i‘-g + (£

lv=DH= |:Hy,Hu)En M n B, where H(y, U) = H(ya, ...., Yy U). Thus

n n

LV = ijh'ﬂ —Z{,L Ll +L(U—-W)—¢LR
= = (1+(DU)?)?
in M N By, (v,).

By choosing ¢, oyl 2|§j |, [vg| + p. sufficiently small, and by using (1.6), one has

1

1. FINAL REMARKS:

1. Similar results hold for a general class of quasi-linear equations which result from a nonparametric variational
integral associated to an elliptic parametric integral, see [8].

2. Consider the problem (1.1) with ¢p € C1(dM), then the lemma is true even when Vg € graph (@) N F.

This follows from boundary regularity for obstacle problems. See for example [9]. As a consequence, F is a
Lipschitz graph over @M near y, where H 3p4(yo) < 0.
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