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ABSTRACT 

The effect of the ratio � (the strain retardation time to the sress relaxation time )  on magneto-hydrodynamic  

viscoelastic fluid  (Walters’ lquid B’)  layer heated From below confined between tow horizontal planes has been 

studied. Linear stability theory and normal mode analysis are used to derive an differential equation of sixth order, and 

an exact solution  for natural instability is obtained.Critical Rayleigh  numbers and wave numbers for the onset of 

instability are discussed graphically as functions of � , the Chandrasekhar number for various values of the Fourier  

number, and relaxation time at a constant value for Prandtl number .  
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1. INTRODUCTION: 

 

The phenomenal growth of energy requirements in recent years has been attracting considerable attention all over the 

word. This has resulted in a continuous exploration of new ideas and aveneus in harnessing various conventional 

energy sources, such as tidal waves, wind power, geo-thermal energy, etc. It is obvious that in order to utilize geo-

thermal energy to a maximum, one should have a complete and precise knowledge of amount of perturbations needed 

to generate convection currents in geo-thermal fluid. Also, knowledge of the quantity of perturbations that are essential 

to initiate convection currents in mineral fluids found  in the earth’s crust helps one to utilize the minimal energy to 

extract the minerals. For example, in the recovery of hydrocarbons from underground petroleum deposits, the use of 

thermal process increasingly gaining importance as it enhances recovery. Heat is injected into the reservoir in the form 

of hot water or stream, or a burning  part of the crude in the reservoir can generate heat. In all such thermal recovery 

processes, fluid flow takes place through a conducting medium and convection currents are deterimental. 

 

To the author’s knowledge, the first work, which deals directly with this problem, appears in a brief report by Green 

[17]. His analysis, which is restricted to the case when both bounding surfaces are free, was carried out in terms of a 

two-time-constant model due to Oldroyd [5,6]. The same problem was also attacked in some detail byVest and Arpaci 

[2] who employed a non-time-constant model due to Maxwell fluid [1,4]. This latter work has recently been extended 

by Takashima [9,10] to the case  when the fluid layer is rotating about a vertical axis at a constant rate. All these 

investigations show that the presence of elasticity in a visco-elastic fluid distablized the fluid layer heated from below.  

 

In technological fields there exists an important class of fluids, called non-Newtonian fluids,which are also being 

studied extensively because of their practical applications,such as fluid film lubrication, analysis of polymers in 

chemical engineering etc. One such fluid is called viscoelastic fluid and Walters [8] and Beard Walters [3] ded d the 

governing equation for the boundary flow for a prototype viscoelastic fluid which they have designated as liquid B′ , 

when this liquid had a very short memory.  

 

The method of the matrix exponential, proposed by Bohar [9], and applied by Ezzat [9], which constitutes the basis of 

the state space approach oh modern control theory  is  applied  to  the  non-dimensional  equations  of  a  visco-elastic  

fluid flow of hydromagnetic free convection flows. Ezzat and Abd-Elaal  [11]  studied  the effects of the free convection 

currents with one relaxation time on the flow of a visco-elastic  conduction  fluid  through a  porous medium,  which  is  

bounded  by  a  vertical plane  surface.  In  these  workes,  more  general  model  of  magnetohydrodynamic free 

convection  flow  which  also includes  the  relaxation  time of  heat convection and  the electric permeability of the 

electomagnetic field  are used. The  inclusion  of  the relaxation  time  and  electric  permeability modify  the governing  

thermal  and electro-magnetic equations, changing  them  from  parabolic  to hyperbolic  type,  and  there by eliminating  

the unrelastic result  that  thermal  disturbance  is  realized  instantaneously everywhere  withen the fluid.Zaki [15]  
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studied the stability of viscoelastic conducting liquid (Walters’  liquid  B’ ) heated from below and presence of an 

electric field.Othman and Zaki [12] studied the effect of  thermal relaxation time on a electrohydrodynamic viscoelastic 

fluid (Oldroyd liquid) layer heated from below. 

 

The purpose of the present paper is to study  the effect of the ratio � on the onset of instability in a horizontal layer of 

viscoelastic conducting fluid  (Walter’s )B liquid ′  heated from below with relaxation times in the presence of a 

magnetic field and elastic parameters. 

� 

2. MATHEMATICAL FORMULATION:  

 

Let an infinite electrically conducting, viscoelastic fluid layer (Walters’ liquid B’) occupying the space between two 

horizontal rigid boundaries, which are at distance L apart. We choose the origin on the lower boundary, the Cartesian 

coordinate system x,y,z such that z is perpendicular to the boundaries and the fluid is permeated  by a uniform external 

magnetic field )H0,0,( �=h  of intensity �H  aligned in the  vertical  direction. The lower surface at  z = 0  and the 

upper surface at Lz = are maintained at constant temperatures Tο and 1T , respectively, and the fluid in the 

quiescent state is heated from below such that 
L

TT 1−
=β ο

is the adverse temperature gradient.  

 

The continuity equation 
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the momentum  equation is the form [8]  
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the energy equation [7] 
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and 

0
x

h

i

i =
∂
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,                                                                                                                                                                      (4) 

 

the equation of state is given by 

 

])TT(�1[�� �� −−= .                                                                                                                                                 (5) 

 

where � is the mass density, �� is the reference density at the lower boundary, �  is the coefficient of volume 

expansion, w)v,(u,v i = is the velocity of the fluid, P is the pressure, )-0,(0,g i g= is  the gravitational  

acceleration, ��  is the dynamic  viscosity, �K is the elastic constant of Walters’ liquid B’,  1�  is the (stress) 
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relaxation time, 2�  is the (strain)  retardation time, ck  is the thermal diffusivity, vC  is the specific heat at constant 

volume, T is the temperature of the fluid  and �  is the relaxation time. 

 

We first obtain the following steady solutions (denoted by an over bar) 

 

0wv ===u ,                                                                                                                                                             (6) 
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Under Boussinesq approximation, the equations governing the disturbances can be written as (Chandrasekhar [16]): 
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where 
  is the kinematic viscosity. The dependent variables T,w ′′ and h′ represent respectively the z-component of 

the perturbation in the velocity, the temperature and the z-component of the perturbation in the magnetic flied. There   
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Now,introducing the nondimensional varaibles by given 
�

Hk
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 as the units of length, time, 

velocity, temperature and magnetic flied, respectively, we obtain the equation governing the disturbances as: 
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There, 
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P = is the Prandtl number, 
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the elastic parameter of  (Walters’ lquid B’) . 

 

Following the normal mode  analysis we assume that  the  solutions of Eqs. (14)-(16) are given by 

�

[ ] [ ] [ ])byax(ictexp(z)H(z),W(z),),,,(h,T,w ++Θ=′′′ tzyx                                                                 (17)  

 

 where a, b are the (real) wave numbers in the x and y directions and c is the time constant (which is complex in 

general) . Thus we arrive 
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there,  
zd

d
D = ,  

22 ba� +=   is  the horizontal wave number and  c is the  stability  parameter which in general, 

a complex constant. 

 

In  seeking   solutions  of  these  equations  we  must  impose  certain  boundary conditions at the lower surface z = 0  

and the upper surface z = 1. In this paper we shall  restrict ourselves to the case when both boundary surfaces are stress-

free, non- deformable and isothermal. 

 

The boundary conditions for W, Θ  and H are given by 

 

10,zat0H
WDW 2 =====                                                                                                                   (21) 

 

Since 
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rm PP −
is exceedingly small under most terrestrial, the frist term on the left-hand of  Eq. (21) may  be  ignored. 

Consequently, we  can  eliminate  H  from  Eqs. (19) and (21) without any differentiation; thus, 
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This means that under the above application the solution the underlying problem  can be carried out independently of 

the bondary conditions on the magnetic flied. 
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Therefore, the boundary conditions for 
andW   are given by 

10,zat0
WDW 2 ====                                                                                                                           (23) 

 

Equations (19) and (22)  subject to the boundary conditions (23) constitute an eigenvalue system of sixth order. 

 

1. Solution:  

The eigenvalue system defined by Eqs.(19), (22) and (23) can readily combined  
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together with 

)3,2,1,(m10,zat0WDW 2m
�====                                                                                           (25) 

Examination of (25) and (26)  indicates that relevant solution for W (chracterizing the lowest mode) is given by 
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then, we can rewrite Eq. (27) in the form 

 

[ ] [ ] 121

r

2 �)c1(�B)*
�

K1(PcBQ�B)�c1(cR
−− +

��
�

��
� −+++=  

          [ ] [ ] 1
F)c1()�c1(�B)�c1(cc)F�1(B 22 −

++++++                                                               (28) 

 

where �W is a constant , it must be remember that c can be complex and  
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1. OVERSTABILITY MOTIONS AND CONCLUSIONS: 

 

Let us now separate the right-hand side of Eq. (28) into the real and imaginary parts after setting �ic =  with 

� being real. Then, we have 
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There, xR and yR  are real-valued functions of �,,K,Q,P *

r το and � , and explicit expansions for these 

functions are follows: 
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It is apparent from Eq. (29) that for arbitrary assigned values of ,K,�,�,P *

r ο  

FQ,  and �, R will be complex, but the physical meaning of R requires it to be real. 

 

Consequently, from the condition that R must be real, so we have either 

 

0�andRR == x                                                                                                                                 (33) 

or 

0RandRR == yx                                                                                                                             (34) 

 

From Eq. (34) we obtain the eigenvalue equation for a neutral stationary instability, 
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For Newtonian viscous fluid, when the magnetic flied is absent i.e. ,0Q =  Eq. (36) reduces to  
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which agrees with the classical result (Chandrasekhar [16]) Equation (28) will give the critical Rayleigh number  cR  

for the onset of stationary instability. 

 

On the other hand Eq. (35) leads,  
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For assigned values of Q  and K,F,�,�,P *
�r  Eqs. (38) and (39) define R as a function of � , the minimum  of this 

function determines the critical Rayleigh number cR for the onset of oscillatory convection (i.e. overstability) should 

be compared with that the onset of stationary convection (i.e. ordinary instability). The type of instability, which takes 

place in practice, will be that corresponding to the lower value of the critical Rayleigh number. 

 

In order to determine the conditions under which instability sets in overstability Q and  F,K,�,�,,P *
�r were 

assigned fixed values and the value of �  was evaluated numerically from Eq. (38).Using this value of � , the value of 
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R was evaluated numerically from Eq. (37). If the value �was negative, the neutral state was considered to be 

stationary. The procedure was then repeated for various values of �  in order to locate the minimum of R.  .   

 

We have plotted the variation of the  Rayleigh number R with the wave numbere �  using Eq. (37) satisfying (38) for 

the onset of overstable and stationary  case for values of the dimensionless parameters 

0.4�0.1,0.02,�0.2,K100,P *

�r
==== and  0.5,1.0F =  of the Fourier number (elastic parameter). 

 

Figures 1 and 2 correspond to two values 1000 100, Q = respectively, of the Chandrasekhar number. Figures 1 and 2 

show that the Rayleigh number R increases with an increase in the magnetic field and decreases as the relaxation time 

�  and elastic parameter F increases i.e the onset instability is delayed as Q increases while it is hastened as � and F 

increases. 

 

The critical Rayleigh number cR and the critical  wave number c� obtained in that manner for both  stationary 

instability and oscillatory instability (over-stability ) is shown in Figes 3 and 4 respectively, as functions of  Q  for 

values of dimensionless parameters 0.5. 0.1, F and 0.4�0.1,0.02,�0.2,K100,P *

�r
=====  It is seen from 

Fig. 3 that the critical Rayleigh number cR decreases as the relaxation time  � and Foureir number F increases. From 

Fig. 4 we notice that the critical wave number c� increases with an increase in the elastic  parameter F ,  the relaxation 

time  � and magnetic flied , also we see that the value of c�  for an oscillatory instability is greater than that of a 

stationary instability. Figures 5 and 6 correspond to two values  1000,100,Q = respectively of the magnetic flied, for 

values of the dimensionless parameters 0.40.04,� and0.1F0.1,�0.2,K100,P *

�r
===== . Figures 1 and 2 

show that the Rayleigh number R increases with an increase in the ratio of of the (strain) retradation to the the (stress) 

relaxation times �  i.e the onset instability is  delayed as  �  increases. 

 

Natural convection instability of a visco-elastic  fluid (Walter’s lquid B’) heated from below in the presence of 

magnetic field has been analyzed numerically. The study focused on the effect of a magnetic field , relaxation time, the 

ratio of of the (strain) retradation to the the (stress) relaxation times � , and Foureir number F (elastic parameter)  on 

the convection phenomenon. From the above analysis, we conclude that the elastic parameter,  , the ratio of of the 

(strain) retradation to the the (stress) relaxation times � ,  the relaxation time and the presence of magnetic field have a 

profound influence on the threshold of instability.  
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Fig. 1. Variation of   R  with  �  for various values of F and  �  at 
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3.0=γ and 100=Q . 0=ω represents the onset stationary convection. 
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