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ABSTRACT 
In this paper, we studied the magnetic field distribution in the infinitely long, eccentric tube carrying a steady, axial 
current and placed parallel to an infinite line current. We consider the solution of magnetic field components in the 
region between the two cylinder. The distance between the tube and the line current is let to vary and the results are 
discussed. 
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1- INTRODUCTION  
 
Roger, et al. [1] Improving automatic analysis of the electrocardiogram acquired during magnetic resonance imaging 
using magnetic field gradient artefact suppression. Jianhua et al. [2] investigated the influence of electrode position and 
output current on the corrosion related electro-magnetic field of ship. Kamlesh et al. [3] studied the magnetic field 
effects on electro-photoluminescence of photoinduced electron transfer systems in a polymer film. Jianwei et al. [4] 
investigated the attenuation of natural convection by magnetic force in electro-nonconducting fluids. Balan [5] 
investigated the rheological characterization of complex fluids in electro-magnetic fields. Kang-Xian [6]Studied on the 
electro-optic effects of double-layered quantum wires in magnetic fields.Tong [7] investigated the an exact solution for 
the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric–magnetic fiber 
composites. Alexander et al. [8] investigated theelectro-mechanical resonant magnetic field sensor. Ingo et al. [9] 
studied the phase equilibrium in electro-magnetic fields. Braams et al. [10] investigated the confinement of plasma by 
radio-frequency electro-magnetic fields. One of Newton's great achievements was to show that all of the phenomena of 
classical mechanics can be deduced as consequences of three basic, fundamental laws, namely Newton's laws of 
motion. It was likewise one of Maxwell's great achievements to show that all of the phenomena of classical electricity 
and magnetism - all of the phenomena discovered by Oersted, Ampere, Henry, Faraday and others whose names are 
commemorated in several electrical units - can be deduced as consequences of four basic, fundamental equations. We 
describe these four equations in this chapter, and, in passing, we also mention Poisson's and Laplace's equations. We 
also show how Maxwell's equations predict the existence of electromagnetic waves that travel at a speed of  3 ×
108 𝑚𝑚 𝑠𝑠−1 This is the speed at which light is measured to move, and one of the most important bases of our belief that 
light is an electromagnetic wave.  
 
Before embarking upon this, we may need a reminder of two mathematical theorems, as well as a reminder of the 
differential equation that describes wave motion.  
 
The two mathematical theorems that we need to remind ourselves of are:  
 
The surface integral of a vector field over a closed surface rs equal to the volumeintegralof itsdivergence.  
 
The  integral of a vector field around a closed plane curve is equal to the surface integral of its curl.  
 
A function 𝑓𝑓� 𝑥𝑥 –  𝑣𝑣𝑣𝑣� represents a function that is moving with speed 𝑣𝑣 in the positive 𝑥𝑥 -direction, and a. function 
𝑔𝑔(𝑥𝑥 +  𝑣𝑣𝑣𝑣) represents a function that is moving with speed v in the negative x-direction. It is easy to verify by 
substitution that𝑦𝑦 =  𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵is a solution of the differential equatlon  
 
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2  = 𝑣𝑣2 𝑑𝑑2𝑦𝑦

𝑑𝑑𝑥𝑥2                                                                                                                                                                  (1.1) 
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Indeed it is the most general solution, since𝑓𝑓and 𝑔𝑔are quite general functions, and the function 𝑦𝑦 already contains the 
only two arbitrary integration constants to be expected from a second order differential equauon. Equation (1.1) is, 
then, the differential equation for awave  inone dimension. For a function ψ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)in three dimensions, the 
correspondmg wave equauon is  
Ψ̈ = 𝑣𝑣2∇2ψ                                                                                                                                                                     (1.2) 
 
It is easy to remember which side of the equation 𝑣𝑣2 is on from dimensional considerations. 
 
One last small point before proceeding -1 may be running out of symbols! I may need to refer to surface charge density, 
a scalar quantity for which the usual symbol is 𝜎𝜎. I shall also need to refer to magnetic vector potential, for which the 
usual symbol is 𝑨𝑨. And I shall need to refer to area, for which either of the symbols 𝑨𝑨 or 𝜎𝜎 are commonly used - or, if 
the vector nature of area  is to be emphasized, 𝑨𝑨 or 𝜎𝜎. What I shall try to do, then, to avoid this difficulty, is to use 𝑨𝑨for 
magnetic vector potential, and 𝜎𝜎 for area, and I shall try to avoid using surface charge density in any equation. 
However, the reader is warned to be on the lookout and to be sure what each symbol means in a particular context.  
 
2. MAXWELL'S FIRST EQUATION  
 
Maxwell's first equation, which describes the electrostatic field, is derived immediately from Gauss's theorem, which in 
turn isa consequence of Coulomb's inverse square law. Gauss's theorem states that the surface integral of the 
electrostatic field 𝑫𝑫 over a closed surface is equal to the charge enclosed by that surface. That is  
∫ 𝑫𝑫.𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  ∫ 𝜌𝜌𝜌𝜌𝜌𝜌.𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣                                                                                                                                        (2.1) 
 
Here 𝜌𝜌 is the charge per urut volume.  
 
But the surface integral of a vector field over a closed surface is equal to the volume integralof its divergence, and 
therefore  
 
∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑫𝑫 𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = ∫ 𝜌𝜌𝜌𝜌𝜌𝜌.𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣                                                                                                                                     (2.2) 
 
Therefore   𝑑𝑑𝑑𝑑𝑑𝑑 𝑫𝑫 =  𝜌𝜌,                                                                                                                                                  (2.3) 
 
or, in the nabla notation,   ∇.𝑫𝑫 =  𝜌𝜌.                                                                                                                              (2.4) 
 
This is the first of Maxwell's equations.  
 
3. POISSON'S AND LAPLACE'S EQUATIONS 
 
Equation (2.4) can be written ∇.𝑬𝑬 =  𝜌𝜌 𝜀𝜀�  where 𝜀𝜀  is the permittivity. But 𝑬𝑬 is minus the potential gradient; i.e. 
𝑬𝑬 = − ∇ 𝑉𝑉Therefore, 
 
∇2𝑉𝑉 = −  𝜌𝜌 𝜀𝜀� .                                                                                                                                                                (3.1) 
 
This is Poisson's equation. At apoint in space where the charge density is zero, it becomes  
 
∇2𝑉𝑉 = 0,                                                                                                                                                                        (3.2) 
 
whichis generally known as Laplace's equation. Thus, regardless of how many charged bodies there may be an a place 
of interest, and regardless of their shape or size, the potential at any point can be calculated from Poisson's or Laplace's 
equations. Courses in differentia! equations commonly discuss how to solve these equations for a variety of boundary 
conditions - by which is meant the size, shape and location of the various charged bodies and the charge carried by 
each. It perhaps just needs to be emphasized that Poisson's and Laplace's equations apply only for static fields.  
 
4.MAXWELL'S SECOND EQUATION  
 
Unlike the electrostatic field, magnetic fields have no sources or sinks, and the magnetic lines of force are closed 
curves. Consequently the surface integral of the magnetic field over a closed surface is zero, and therefore  
 
                                            𝑑𝑑𝑑𝑑𝑑𝑑 𝑩𝑩 = 0,                                                                                                        (4·1) 

 
or, in the nabla notation      ∇ .𝑩𝑩 =  0.                                                                                                                          (4.2) 
 
This is the second of Maxwell's equations.  
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5. MAXWELL'S THIRD EQUATION  
 
This is derived from Ampere's theorem, which is that the line integral of the magnetic field 𝑯𝑯 around a closed circuit is 
equal to the enclosed current.  
 
Now there are two possible components to the "enclosed" current, one of which is obvious, and the other, I suppose, 
could also be said to be "obvious" once it has been pointed out' Let's deal with the immediately obvious one first, and 
look at figure .1.  
 

 
Figure: 1 

 
In figure.1 , I am imagining a metal cylinder with current flowing from top to bottom (i.e. electrons flowing from 
bottom to top. It needn't be a metal cylinder, though. It could just be a volume of space with a stream of protons moving 
from top to bottom. In any case, the current density (which may vary with distance from the axis of the cylinder) isJ, 
and the total current enclosed by the dashed circle is the integral ofJ throughout the cylinder. In a more general 
geometry, in which Jis not necessarily perpendicular to the area of interest, and indeed in which the area need not be 
planar, this would be ∫ 𝑱𝑱.𝑑𝑑𝑑𝑑. 
 
Now for the less obvious component to the "enclosed current". See figure.2.  
 

 
Figure: 2 

 
In figure.2, I imagine two capacitor-plates in the process of being charged Thereis undoubtedly a current flowing in the 
connectingwires. There is a magnetic fieldat 𝑨𝑨, and theline integral of the field around the upper dotted curve is 
undoubtedly equal to the enclosed current. The current is equal to the rate at which charge is being built up on the 
plates. Electrons are being deposited on the lower plate and are leaving the upper plate. There is also a magnetic field at 
𝑩𝑩 (it doesn't suddenly stop'), and the field at 𝑩𝑩 is just the same as the field at A, which is equal to the rate at which 
charge is being built lip on the plates. The charge on the plates (which may not be uniform. and indeed won't be while 
the current is still flowing or if the plates are not infinite inextent!) is equal to the integral of the charge density times 
the area. And the charge density on the plates.by Gauss's theorem, is equal to the electric field D between the plates. 
Thus the current is equal to the integral of 𝑫̇𝑫over the surface of the plates. Thus the line integral of𝑯𝑯 around cuher ofthe 
dashed closed loops is equal to ∫ 𝐷̇𝐷.𝑑𝑑𝑑𝑑. 
 
In general, both types of current (the obvious one in which there is an obvious flow of charge, and the less obvious one, 
where the electric field is varying because of a real flow of charge elsewhere) contributes to the magnetic field, and so 
Ampere's theorem in generalmust read  
 
∫ 𝑯𝑯.𝒅𝒅𝒅𝒅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  ∫ �𝑫̇𝑫 + 𝑱𝑱�.𝒅𝒅𝒅𝒅.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                                                                                                                                     (5.1) 
 
 

A 

B 
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But the lineintegral of a vector field arounda closedplane curve is equal to the surface integral of  its curl, and therefore  
 
∫ 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑯𝑯.𝒅𝒅𝒅𝒅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  ∫ �𝑫̇𝑫 + 𝑱𝑱�.𝒅𝒅𝒅𝒅.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                                                                                                                  (5.2) 
 
Thus we arrive at:  
 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑯𝑯 =  𝑫̇𝑫 + 𝑱𝑱,                                                                                                                                                          (5.3) 
 
or, in the nabla notation,   ∇ × 𝑯𝑯 =  𝑫̇𝑫  +  𝑱𝑱.                                                                                                                 (5.4) 
 
This is the third of Maxwell's equations.  
 
6. THE MAGNETIC EQUIVALENT OF POISSON'S EQUATION  
 
This deals with a static magnetic field, where there is no electrostatic field or at least any electrostatic field is indeed 
static - i.e. not changing. In that case 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐻𝐻 =  𝐽𝐽. Now the magnetic field can be derived from the curl of the magnetic 
vector potential. defined by the two equations 
 
           𝑩𝑩 =  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑨𝑨                                                                                                                                                        (6.1) 
 
And   𝑑𝑑𝑑𝑑𝑑𝑑 𝑨𝑨 =  0.                                                                                                                                                           (6.2) 
 
(See  [1] for a reminder of this.) Together with 𝑯𝑯 = 𝑩𝑩/𝜇𝜇 
 
(𝜇𝜇 =permeability), this gives us  
 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑨𝑨 = 𝜇𝜇 𝑱𝑱.                                                                                                                                     (6.3) 
 
If we now remind ourselves of the jabberwockian-sounding vector differential operator equivalence  
 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ≡  𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑑𝑑𝑑𝑑𝑑𝑑 –nabla-squared ,                                                                                                                    (6.4) 
 
together with equation (6.2) this gives us  
 
𝛻𝛻2𝑨𝑨 =  −𝜇𝜇𝑱𝑱.                                                                                                                                                                   (6.5) 
 
I don't know if this equation has any particular name, but it plays the same role for electrostatic fields that Poisson's 
equation plays for electrostatic fields. No matter what the distribution ofcurrents, the magnetic vector potential at any 
point must obey equation  (6.5) 
 
7. MAXWELL'S FOURTH EQUATION  
 
This is derived from the laws of electromagnetic induction.  
 
Faraday's and Lenz's laws of electromagnetic induction tell us that the E.M.F. inaelosed circuit is equal to minus the 
rate of change of B-f1ux through the circuit. The E.M.F. around a closed circuit is the line integral of E .ds around the 
circuit, where E is the electric field. The line integral of E around the closed circuit is equal to the surface integral of its 
curl. The rate of change of B-flux through a circuit is the surface integral of 𝑩𝑩. Therefore  
 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =  − 𝑩̇𝑩,                                                                                                                                                               (7.1) 
 
or. in the nabla notation,   ∇  ×  𝑬𝑬 =  − 𝑩̇𝑩.                                                                                                                    (7.2) 
 
This is the fourth of Maxwell's equations . 
 
8.  SUMMARY A/MAXWELL'S AND POISSON 'S EQUATIONS  
 
UMaxwell's equations: 
 
∇.𝑫𝑫 =  𝜌𝜌                                                                                                                                                                         (8.1) 
 
∇.𝑩𝑩 =  𝟎𝟎.                                                                                                                                                                        (8.2) 
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∇  ×  𝑯𝑯 =  𝑫̇𝑫 + 𝑱𝑱.                                                                                                                                                           (8.3) 

 
∇  ×  𝑬𝑬 =  − 𝑩̇𝑩.                                                                                                                                                              (8.4) 
 
Sometimes you may ·see versions of these equations with factors such as 4𝜋𝜋 or c scattered liberally throughout them. If 
you do, my best advice is to white them out with a bottle or erasing tluid. or otherwise Ignore them. r shall try to 
explain in [2], where they come from. They serve no scientific purpose, and are merely conversion factors between the 
many different systems of units that have been used in the past.  
 
Poisson's equation for the potential an electrostatic field:  
 
∇2𝑽𝑽.  =  −𝜌𝜌/𝜀𝜀                                                                                                                                                               (8.5) 
 
The equivalent of Poisson's equation for the magnetic vector potential on a static magnetic field  
 
𝛻𝛻2𝑨𝑨 =  −𝜇𝜇𝑱𝑱.                                                                                                                                                                   (8.6) 
 
9. ELECTROMAGNETIC WAVES  
 
Maxwell predicted the existence of electromagnetic waves, and these were generated experimentally by Hertz shortly 
afterwards. Inaddition, the predicted speed of the waves was 3 ×  108 𝑚𝑚 𝑠𝑠−1, the same as the measured speed of light. 
showing that light is an electromagnetic wave .  
 
In an isotropic, .homogeneous, no conducting, uncharged medium, where the permittivity and permeability are scalar 
quantities, Maxwell's equations can be written  
 
∇ .𝑬𝑬 = 0                                                                                                                                                                         (9.1) 

 
∇ .𝑯𝑯 = 0                                                                                                                                                                         (9.2) 

 
∇  × 𝑯𝑯 = 𝜀𝜀𝑬𝑬.̇                                                                                                                                                                   (9.3) 

 
∇  × 𝑬𝑬 = −𝜇𝜇𝑯𝑯.̇                                                                                                                                                                (9.4) 
 
Take the 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 of equation (9.3) and make use of equation (6.4) : 
 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑 𝑯𝑯−  ∇2𝑯𝑯 =  𝜀𝜀 𝜕𝜕

𝜕𝜕𝜕𝜕
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄.                                                                                                                               (9.5) 

 
Substitute for 𝑑𝑑𝑑𝑑𝑑𝑑 𝑯𝑯 and curl E from equations(9.2) and( 9.4) to obtain  
 
∇2𝑯𝑯 = 𝜀𝜀𝜀𝜀𝑯𝑯.̈                                                                                                                                                                    (9.6) 

 
Comparison with equation (1.2) shows that this is a wave of speed 1/√𝜀𝜀𝜀𝜀   . (Verify that thishas the dimensions of 
speed.)  
 
In a similar manner the reader should easily be able to derive the equation  
 
∇2𝑬𝑬 = 𝜀𝜀𝜀𝜀𝑬𝑬.̈                                                                                                                                                                     (9.7) 
 
In a vacuum, the speed is 1

�𝜀𝜀0𝜇𝜇0
. With 𝜇𝜇0 = 4𝜋𝜋 × 10−7  H m-1and𝜀𝜀0 = 8.854 × 10−12    F m-1this comes to 2.998 ×

108 ' m s-1 .  
 
10. GAUGE TRANSFORMATIONS 
 
We recall [3] that a static electric field 𝑬𝑬 can be derived from the negative of the gradient of a scalar potential function 
of space:  
 
𝑬𝑬 =  −𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑉𝑉.                                                                                                                                                           (10.1) 
 
The zero of the potential is arbitrary. We can add any constant (withthe dimensions of potential) to 𝑉𝑉. For example, if 
we define 𝑉𝑉′ =  𝑉𝑉 +  𝐶𝐶, where 𝐶𝐶 is a constant (in the sense that it is not a function of 𝑥𝑥,𝑦𝑦, 𝑧𝑧) then we can still calculate 
the electric field from 𝑬𝑬 =  − 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑉𝑉′  
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We also recall [4] that a static magnetic field 𝑩𝑩 can be denved from the 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 of a magnetic vector potential function:  
 
𝑩𝑩 =  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄.                                                                                                                                                                (10.2) 
 
Let us also recall here the concept of the B- flux from [5]: 
 
ΦB =  ∬𝐁𝐁. d𝑨𝑨                                                                                                                                                             (10.3) 
 
It will be worth while here to recapitulate the dimensions and SI units of these quantities:  

𝑬𝑬      MLT−2Q−1                 Vm−1 
 
𝑩𝑩      MT−1Q−1                     T 
 
𝑉𝑉      ML2T−2Q−1                 V 
 
𝑨𝑨      MLT−1Q−1                 Tm        or       Wb m−1 
 
ΦB       ML2T−1Q−1            Tm2      or       Wb  
 

Equation (10.2) is also true for a nonstatic field. Thus a time-varying magnetic field con be represented by the curl of a 
time-varying magnetic vector potential. However,  
 
we know from the phenomenon of electromagnetic induction that a varying magnetic field has the  same effect as an  
electric field. so that, if  the fields are not static, the electric field is the result of anelectrical potential gradient and a 
varying magnetic field. so that equation (10.1) holds only forstatic fields . 
 
If  we combine the Maxwell equation 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑬𝑬 =  − 𝑩̇𝑩 with the equation for the definition or the magnetic vector 
potential 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑨𝑨 =  𝑩𝑩, we obtain𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝑬𝑬 +  𝑨̇𝑨) =  0. Then, since curl grad of any scalar function is zero, we can 
define a potential function 𝑉𝑉 such that  
 
𝑬𝑬 + 𝑨̇𝑨 = −𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑉𝑉.                                                                                                                                                     (10.4) 
 
(We could have chosen a plus sign, but we choose a minus sign so that it reduces to the familiar 𝑬𝑬 =  −𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑉𝑉 for a 
static field.) Thus equations (10.4) and(10.2) define the electric and magnetic potentials - or at least they define the 
gradient of 𝑉𝑉 and the curl of A. But we recall that, In the static case, we can add an arbitrary constant to V (as long as 
the constant is dimensionally similar to ), and the equation 𝑬𝑬 =  −𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑉𝑉′, where 𝑉𝑉′ =  𝑉𝑉 +  𝐶𝐶, still holds. Can we 
find a suitable-transformation for 𝑉𝑉 and A such that equations (10.2)and(10.4) still hold In the nonstatic case? Such a 
transformation would be a gauge transformation. 
 
Let 𝜒𝜒 be some arbitrary scalar function of space and time. I demand little of the form of 𝜒𝜒; indeed I demand only two 
things. One is that it is a "well-behaved" function, in the sense that itis .everywhere and at all times single-valued, 
continuous and differentiable. The other is  that it should have dimensions ML2T−1Q−1. This is the same as the 
dimensions of magnetic B-flux, but I am not sure that it is particularly helpful to think of this. It will, however, be 
useful to note that the dimensions of grad𝜒𝜒 and of 𝜒̇𝜒 are, respectively, the same as the dimensions of magnetic vector 
potential (𝑨𝑨) and of electric potential (𝑉𝑉). 
 
Let us make the transformations  
          𝑨𝑨′ = 𝑨𝑨 –  𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝜒𝜒                                                                                                                                               (10.5) 

 
And   𝑉𝑉′ =  𝑉𝑉 +  𝜒̇𝜒.                                                                                                                                                     (10.6) 
 
We shall see very quickly that this transformation (and we have a wide choice in the form of 𝜒𝜒) preserves the forms of 
equations (10.2) and (10.4), and therefore this transformation (or, rather, these transformations, since 𝜒𝜒 can have any 
well-behaved form) are gauge transformations.  
 
Thus 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑨𝑨 =  𝑩𝑩 becomes curl(A' + grad𝜒𝜒) =B. And since curl grad of any scalar field is zero. this becomes  
 
curlA' = B. 
 
Also, 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 =  − (𝑬𝑬 +  𝑨̇𝑨) 
 
Becomes grad(𝑉𝑉′ −  𝜒̇𝜒) = −(𝑬𝑬 + 𝑨̇𝑨′ +  𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝜒̇𝜒). or 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝑉𝑉′ =  −�𝑬𝑬 +  𝑨̇𝑨′ �. 
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Thus the form or the equations is, preserved. If we make a gauge transformation to the potentials such as equations 
(10.5) and(10.5), this does not change the fields E and B, so that the fields E and B are gauge invariant. Maxwell's 
equations in their usual form are expressed in terms of E and B, and are hence gauge invariant,  
 
11.MAXWELL'SEQUATIONS IN POTENTIAL FORM  
 
In their usual form, Maxwell's equations for an isotropic medium, written in terms of the fields. Are 
 
𝑑𝑑𝑑𝑑𝑑𝑑 𝑫𝑫 = 𝜌𝜌                                                                                                                                                                     (11.1) 

 
𝑑𝑑𝑑𝑑𝑑𝑑 𝑩𝑩 =  0                                                                                                                                                                   (11.2) 

 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑯𝑯 = 𝑫̇𝑫 + 𝐽𝐽                                                                                                                                                           (11.3) 

 
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑬𝑬 =  −𝑩̇𝑩.                                                                                                                                                             (11.4) 
 
If we write the fields in terms of the potentials:  
                 𝑬𝑬 =  − 𝑨̇𝑨  −  𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑉𝑉                                                                                                                                 (11.5) 
 
And          𝑩𝑩 =  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑨𝑨,                                                                                                                                               (11.6) 

 
together with𝑫𝑫 =  𝜀𝜀𝑬𝑬 and 𝑩𝑩 =  𝜇𝜇𝑯𝑯, we obtain for the first Maxwell equation, after some vector calculus and algebra,  
 
𝛻𝛻2𝑉𝑉 + 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑑𝑑𝑑𝑑𝑑𝑑 𝑨𝑨) =  −𝜌𝜌

𝜀𝜀
                                                                                                                                             (11.7) 

 
For the second equation, we merely verify that zero is equal to zero. (div curl A = 0.) 
 
For the third equation, which requires a little more vector calculus and algebra, we obtain  
 
𝛻𝛻2𝑨𝑨 − 𝜀𝜀𝜀𝜀 𝜕𝜕

2𝑨𝑨
𝜕𝜕𝑡𝑡2 = 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 �𝑑𝑑𝑑𝑑𝑑𝑑𝑨𝑨 + 𝜀𝜀𝜀𝜀 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� –𝜇𝜇𝜇𝜇.                                                                                                              (11.8) 

 
The speed .of electromagnetic waves in the medium is 1/√𝜀𝜀𝜀𝜀 and, in a vacuum, equation (11.8)becomes 
 
𝛻𝛻2𝑨𝑨 − 1

𝑐𝑐2
𝜕𝜕2𝑨𝑨
𝜕𝜕𝑡𝑡2 = 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 �𝑑𝑑𝑑𝑑𝑑𝑑𝑨𝑨 +  1

𝑐𝑐2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� –𝜇𝜇0𝐽𝐽.                                                                                                              (11.9) 

 
wherec is the speed of electromagnetic waves in a vacuum .  
 
The fourth Maxwell equation, when written in terms of the potentials, tells us nothing new (try it). so equations (11.7) 
and (11.8)  (or (11.9)in vacuo) are Maxwell's equations in potential form.  
 
These equations look awfully difficult - but perhaps we can find a gauge transformation, using some form for 𝜒𝜒, and 
subtracting grad 𝜉𝜉̇ from A and adding 𝜉𝜉̇ to 𝑉𝑉, which will make the equations much easier and which will still give the 
right answers for E and for B.  
 
One of the things that make equations (11.7) and (11.9) look particularly difficult is that each equation contains both 
Aand 𝑉𝑉; that is, we have two simultaneous differential equations to solve for the two potentials. It would be nice If we 
had one equation for A and one equation for 𝑉𝑉. This can beachieved, as we shall shortly see, if we can find a gauge 
transformation such that the potentials are related by  
 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  −  1

𝑐𝑐2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                                                                                                          (11.10) 
 
You should check that the two sides of this equation are dimensionally similar. Whatwould be the SI units?  
 
You'll see that this is chosen so as to make the "difficult" part of equation (11.9) zero.  
 
If wemake a gauge transformation and take the divergence of equation(10.5) and the tune derivative of equation (10.6) , 
we then see that condition (11.10) will be satisfied by a function 𝜒𝜒 that satisfies  
 
𝛻𝛻2𝜉𝜉 − 1

𝑐𝑐2
𝜕𝜕2𝜉𝜉
𝜕𝜕𝑡𝑡2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴′ −  1

𝑐𝑐2
𝜕𝜕𝑉𝑉′

𝜕𝜕𝜕𝜕
                                                                                                                                   (11.11) 
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Don't worry - you don't have to solve this equation and lind the function 𝜒𝜒; you just have to be assured that some such 
function exists such that, when applied to the potentials, the potentials will be related by equation(11.10) Then, if you 
substitute equation(11.10) into Maxwell's equations in potential Corm (equations (11.7) and (11.9), you obtain the 
following forms for Maxwell's equations in vacuo in potential form, and the A and 𝑉𝑉are now separated:  
 
                𝛻𝛻2𝑉𝑉 − 1

𝑐𝑐2
𝜕𝜕2𝑉𝑉
𝜕𝜕𝑡𝑡2 = − 𝜌𝜌

𝜀𝜀0
                                                                                                                                   (11.12) 

 
And         𝛻𝛻2𝐴𝐴 − 1

𝑐𝑐2
𝜕𝜕2𝐴𝐴
𝜕𝜕𝑡𝑡2 = −𝜇𝜇0𝐽𝐽                                                                                                                                 (11.13) 

 
And. since these equations were arrived at by a gauge transformation, their solutions, when differentiated, will give the 
right answers for the fields.  
 
12. RETARDED POTENTIAL 
 
In a static situation, in which the charge density 𝜌𝜌, the current density 𝐽𝐽, the electric field E and potential 𝑉𝑉, and the 
magnetic field B and potential I  are all constant in time (i.e. they are functions of  𝑥𝑥,𝑦𝑦 and 𝑧𝑧 but not of 𝑡𝑡) we already 
know how to calculate, in vacuo, the electric potential from the electric charge densityand the magnetic potential from 
the current density. The formulas are  
 
𝑉𝑉(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧 )  = 1

4πε0
∫ 𝜌𝜌�𝑥𝑥′ ,𝑦𝑦′ ,𝑧𝑧′ �𝑑𝑑𝑑𝑑 ′

𝑅𝑅
                                                                                                                                                 (12.1) 

 
and 𝑨𝑨(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧 )  = μ0

4π ∫
𝑱𝑱�𝑥𝑥′ ,𝑦𝑦′ ,𝑧𝑧′ �𝑑𝑑𝑑𝑑 ′

𝑅𝑅
.                                                                                                                                            (12.2) 

 
Here R is the distance between the point (x',y',z') and the point (x, y, z),and v' is a volume element at the point (x',y',z'). I 
can't remember if we have written these two equations in exactly that form before, but we have certainly used them, 
and given lots of examples of calculating V in  [ 6 ], and one of calculating A in [7 ]. 
 
The question we are now going to address is whether these formulas are still valid in a nonstatic situation, in which the 
charge density 𝜌𝜌, the current density 𝐽𝐽, the electric field E and potential V, and the magnetic field B and potential A are 
all varying in time (i.e. they are functions of𝑥𝑥,𝑦𝑦, 𝑧𝑧 and 𝑡𝑡). The answer is "yes, but. .. ". The relevant formulas are indeed  
 
 𝑉𝑉(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧, 𝑡𝑡 )  = 1

4πε0
∫ 𝜌𝜌�𝑥𝑥′ ,𝑦𝑦′ ,𝑧𝑧′ ,𝑡𝑡 ′ �𝑑𝑑𝑑𝑑 ′

𝑅𝑅
                                                                                                                         (12.3)  

 
and 𝐴𝐴(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧, 𝑡𝑡 )  = μ0

4π ∫
𝐽𝐽�𝑥𝑥′ ,𝑦𝑦′ ,𝑧𝑧′ ,𝑡𝑡 ′ �𝑑𝑑𝑑𝑑 ′

𝑅𝑅
,                                                                                                                            (12.4)  

 
but notice the 𝑡𝑡′ on the right hand side and the 𝑡𝑡 on the left hand side' What this mean is that, if𝜌𝜌(𝑥𝑥′ ,𝑦𝑦′ , 𝑧𝑧′ , 𝑡𝑡′) is the 
charge density at a point (𝑥𝑥′ ,𝑦𝑦′ , 𝑧𝑧′) at time 𝑡𝑡′,equation (12.3) gives the correct potential at the point (𝑥𝑥′ ,𝑦𝑦′ , 𝑧𝑧′)at some 
slightly later lime 𝑡𝑡, the time difference 𝑡𝑡 − 𝑡𝑡′  being equal to the time 𝑅𝑅 𝑐𝑐�  that it takes for an electromagnetic signal to 
travel from(𝑥𝑥′ ,𝑦𝑦′ , 𝑧𝑧′) to (𝑥𝑥,𝑦𝑦, 𝑧𝑧). If the charge density at (𝑥𝑥′ ,𝑦𝑦′ , 𝑧𝑧′)changes, the information about this change cannot 
reach the point instantaneously; it takes a time 𝑅𝑅 𝑐𝑐�  for the information to be transmitted from one point to another. The 
same considerations apply to the change in the magnetic potential when the current density changes. as described by 
equation (12.4). The potentials so calculated are called, naturally, the retarded potentials. While this result has been 
arrived at by a qualitative argument,infact equations (12.3) and 4 can be obtained as a solution of the differential 
equations (11.12) and (11.13).Mathematically there is also a solution that gives an "advance potential" thatis one in 
which𝑡𝑡′ −  𝑡𝑡  rather than 𝑡𝑡 − 𝑡𝑡′  is equal to 𝑅𝑅 𝑐𝑐� .You can regard, if you wish, the retarded solution as the "physically 
acceptable" solution and discard the "advance" solution as not being physically significant. That is, the potential cannot 
predict in advance that the charge density is about to change, and so change its value before the charge density does. 
Alternatively one can think that the laws of physics, from the mathematical view at least allow the universe to run 
equally well backward as well as forward, though in fact the arrow of time is such that cause must precede effect (a 
condition which, in relativity, leads to the conclusion that information cannot be transmitted from one place to another 
at a speed faster than the speed of light), One is also reminded that the laws of physics, from the mathematical view at 
least, allow the entropy of an isolated thermodynamics system to increase (see [8 ] in the Thermodynamics part of these 
notes)-although in the real universe the arrow of time is such that the entropy in fact increases. Recall also the 
following passage from Through the Looking-glass andWhat Alice Found There. 
 
Alice was just beginning to say, "There's a mistake somewhere - -"when the Queen began screaming, so loud that she 
had to leave the sentence unfinished, "Oh, oh, oh!" shouted the Queen. shaking her hand about as if she wanted to 
shake it off. "My finger's bleeding I Oh, oh, oh, oh!". 
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Her screams were so exactly like the whistle of a steam-engine, that Alice had to hold both her hands over her ears.  
 
"What is the matter?" she said, as soon as there was a chance of making herself heard, "Have you pricked your finger?"  
"I haven't pricked it yet" the Queen said, "butI soon shall --- oh, oh, oh!"  
 
"When do you expect to do it?" Alice asked, feeling very much inclined to laugh.  
 
"WhenI fasten my shawl again," the poor Queen groaned out: "the brooch will come undone directly. Oh, oh!" .As she 
said the words the brooch flew open, and the Queen clutched wildly at it, and tried to clasp it again.  
 
"Take care!" cried Alice, "You're holding it all crooked!" .And she caught at the brooch: but it was too late: the pin had 
slipped, and the Queen had pricked her finger.  
 
"That accounts for the bleeding, you see," she said to Alice with a smile. "Now you understand the way things happen 
here."  
 
"But why don't you scream now?". Alice asked, holding-her hands ready to put overhears again. "Why, I've done all the 
screaming already," said the Queen. "What would be the good of having it all over again?" 
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