International Journal of Mathematical Archive-4(11), 2013, 8-16 MAAvailable online through www.ijma.info ISSN 2229 - 5046

MATHEMATICAL TREATING OF ELECTROMAGNETIC WAVE

E. Edfawy*

Current address: Mathematics Department, Faculty of Science, Taif University, K.S.A. Permanent address: Mathematics Department, Faculty of Science, Assuit University, Egypt.

(Received on: 29-09-13; Revised & Accepted on: 29-10-13)

ABSTRACT

In this paper, we studied the magnetic field distribution in the infinitely long, eccentric tube carrying a steady, axial current and placed parallel to an infinite line current. We consider the solution of magnetic field components in the region between the two cylinder. The distance between the tube and the line current is let to vary and the results are discussed.

Keywords: Magnetic field, Electric field, Wave motion, Maxwell equation.

1- INTRODUCTION

Roger, et al. [1] Improving automatic analysis of the electrocardiogram acquired during magnetic resonance imaging using magnetic field gradient artefact suppression. Jianhua et al. [2] investigated the influence of electrode position and output current on the corrosion related electro-magnetic field of ship. Kamlesh et al. [3] studied the magnetic field effects on electro-photoluminescence of photoinduced electron transfer systems in a polymer film. Jianwei et al. [4] investigated the attenuation of natural convection by magnetic force in electro-nonconducting fluids, Balan [5] investigated the rheological characterization of complex fluids in electro-magnetic fields. Kang-Xian [6]Studied on the electro-optic effects of double-layered quantum wires in magnetic fields. Tong [7] investigated the an exact solution for the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric-magnetic fiber composites. Alexander et al. [8] investigated theelectro-mechanical resonant magnetic field sensor. Ingo et al. [9] studied the phase equilibrium in electro-magnetic fields. Braams et al. [10] investigated the confinement of plasma by radio-frequency electro-magnetic fields. One of Newton's great achievements was to show that all of the phenomena of classical mechanics can be deduced as consequences of three basic, fundamental laws, namely Newton's laws of motion. It was likewise one of Maxwell's great achievements to show that all of the phenomena of classical electricity and magnetism - all of the phenomena discovered by Oersted, Ampere, Henry, Faraday and others whose names are commemorated in several electrical units - can be deduced as consequences of four basic, fundamental equations. We describe these four equations in this chapter, and, in passing, we also mention Poisson's and Laplace's equations. We also show how Maxwell's equations predict the existence of electromagnetic waves that travel at a speed of $3 \times$ $10^8 m s^{-1}$ This is the speed at which light is measured to move, and one of the most important bases of our belief that light is an electromagnetic wave.

Before embarking upon this, we may need a reminder of two mathematical theorems, as well as a reminder of the differential equation that describes wave motion.

The two mathematical theorems that we need to remind ourselves of are:

The surface integral of a vector field over a closed surface rs equal to the volumeintegral of its divergence.

The integral of a vector field around a closed plane curve is equal to the surface integral of its curl.

A function f(x - vt) represents a function that is moving with speed v in the positive x-direction, and a. function g(x + vt) represents a function that is moving with speed v in the negative x-direction. It is easy to verify by substitution that y = Af + Bg is a solution of the differential equation

$$\frac{d^2y}{dt^2} = v^2 \frac{d^2y}{dx^2}$$

(1.1)

Indeed it is the most general solution, since f and g are quite general functions, and the function y already contains the only two arbitrary integration constants to be expected from a second order differential equation (1.1) is, then, the differential equation for awave inone dimension. For a function $\psi(x, y, z)$ in three dimensions, the corresponding wave equation is ú (1.2)

$$\ddot{\Psi} = v^2 \nabla^2 \Psi$$

It is easy to remember which side of the equation v^2 is on from dimensional considerations.

One last small point before proceeding -1 may be running out of symbols! I may need to refer to surface charge density, a scalar quantity for which the usual symbol is σ . I shall also need to refer to magnetic vector potential, for which the usual symbol is A. And I shall need to refer to area, for which either of the symbols A or σ are commonly used - or, if the vector nature of area is to be emphasized, \mathbf{A} or σ . What I shall try to do, then, to avoid this difficulty, is to use \mathbf{A} for magnetic vector potential, and σ for area, and I shall try to avoid using surface charge density in any equation. However, the reader is warned to be on the lookout and to be sure what each symbol means in a particular context.

2. MAXWELL'S FIRST EQUATION

Maxwell's first equation, which describes the electrostatic field, is derived immediately from Gauss's theorem, which in turn is a consequence of Coulomb's inverse square law. Gauss's theorem states that the surface integral of the electrostatic field D over a closed surface is equal to the charge enclosed by that surface. That is

$$\int_{surface} \boldsymbol{D}.\,d\sigma = \int_{volume} \rho dv. \tag{2.1}$$

Here ρ is the charge per urut volume.

But the surface integral of a vector field over a closed surface is equal to the volume integral of its divergence, and therefore

$$\int_{volume} div \mathbf{D} \, dv = \int_{volume} \rho dv. \tag{2.2}$$

Therefore $div \mathbf{D} = \rho_{i}$ (2.3)

or, in the nabla notation, $\nabla D = \rho$. (2.4)

This is the first of Maxwell's equations.

3. POISSON'S AND LAPLACE'S EQUATIONS

Equation (2.4) can be written $\nabla E = \rho/\epsilon$ where ϵ is the permittivity. But **E** is minus the potential gradient; i.e. $E = -\nabla V$ Therefore,

$$\nabla^2 V = -\frac{\rho}{\varepsilon}.$$
(3.1)

This is Poisson's equation. At apoint in space where the charge density is zero, it becomes

$$\nabla^2 V = 0, \tag{3.2}$$

which is generally known as Laplace's equation. Thus, regardless of how many charged bodies there may be an a place of interest, and regardless of their shape or size, the potential at any point can be calculated from Poisson's or Laplace's equations. Courses in differentia! equations commonly discuss how to solve these equations for a variety of boundary conditions - by which is meant the size, shape and location of the various charged bodies and the charge carried by each. It perhaps just needs to be emphasized that Poisson's and Laplace's equations apply only for static fields.

4.MAXWELL'S SECOND EQUATION

Unlike the electrostatic field, magnetic fields have no sources or sinks, and the magnetic lines of force are closed curves. Consequently the surface integral of the magnetic field over a closed surface is zero, and therefore

$$div \mathbf{B} = \mathbf{0},\tag{4.1}$$

or, in the nabla notation $\nabla \cdot \boldsymbol{B} = 0.$ (4.2)

This is the second of Maxwell's equations. © 2013, IJMA. All Rights Reserved

5. MAXWELL'S THIRD EQUATION

This is derived from Ampere's theorem, which is that the line integral of the magnetic field H around a closed circuit is equal to the enclosed current.

Now there are two possible components to the "enclosed" current, one of which is obvious, and the other, I suppose, could also be said to be "obvious" once it has been pointed out' Let's deal with the immediately obvious one first, and look at figure .1.

In figure.1, I am imagining a metal cylinder with current flowing from top to bottom (i.e. electrons flowing from bottom to top. It needn't be a metal cylinder, though. It could just be a volume of space with a stream of protons moving from top to bottom. In any case, the current density (which may vary with distance from the axis of the cylinder) is J, and the total current enclosed by the dashed circle is the integral of J throughout the cylinder. In a more general geometry, in which J is not necessarily perpendicular to the area of interest, and indeed in which the area need not be planar, this would be $\int J d\sigma$.

Now for the less obvious component to the "enclosed current". See figure.2.

In figure.2, I imagine two capacitor-plates in the process of being charged Thereis undoubtedly a current flowing in the connectingwires. There is a magnetic fieldat A, and theline integral of the field around the upper dotted curve is undoubtedly equal to the enclosed current. The current is equal to the rate at which charge is being built up on the plates. Electrons are being deposited on the lower plate and are leaving the upper plate. There is also a magnetic field at B (it doesn't suddenly stop'), and the field at B is just the same as the field at A, which is equal to the rate at which charge is being built lip on the plates. The charge on the plates (which may not be uniform. and indeed won't be while the current is still flowing or if the plates are not infinite inextent!) is equal to the electric field D between the plates. Thus the current is equal to the integral of \dot{D} over the surface of the plates. Thus the line integral of H around cuher of the dashed closed loops is equal to $\int \dot{D} . d\sigma$.

In general, both types of current (the obvious one in which there is an obvious flow of charge, and the less obvious one, where the electric field is varying because of a real flow of charge elsewhere) contributes to the magnetic field, and so Ampere's theorem in generalmust read

$$\int_{loop} H.\,ds = \int_{area} (\dot{D} + J).\,d\sigma.$$
(5.1)

But the lineintegral of a vector field arounda closedplane curve is equal to the surface integral of its curl, and therefore

$$\int_{area} cuel H. d\sigma = \int_{area} (\dot{D} + J). d\sigma.$$
(5.2)

Thus we arrive at:

$$curl H = \dot{D} + J, \tag{5.3}$$

or, in the nabla notation, $\nabla \times H = \dot{D} + J$.

This is the third of Maxwell's equations.

6. THE MAGNETIC EQUIVALENT OF POISSON'S EQUATION

This deals with a static magnetic field, where there is no electrostatic field or at least any electrostatic field is indeed static - i.e. not changing. In that case *curl* H = J. Now the magnetic field can be derived from the curl of the magnetic vector potential. defined by the two equations

$$\boldsymbol{B} = \boldsymbol{curl}\,\boldsymbol{A} \tag{6.1}$$

And
$$div \mathbf{A} = 0.$$
 (6.2)

(See [1] for a reminder of this.) Together with $H = B/\mu$

(μ =permeability), this gives us

$$curl\,curl\,A = \mu J. \tag{6.3}$$

If we now remind ourselves of the jabberwockian-sounding vector differential operator equivalence

$$carl curl \equiv grad \, div - nabla-squared$$
, (6.4)

together with equation (6.2) this gives us

$$\nabla^2 \mathbf{A} = -\mu \mathbf{J}.\tag{6.5}$$

I don't know if this equation has any particular name, but it plays the same role for electrostatic fields that Poisson's equation plays for electrostatic fields. No matter what the distribution of currents, the magnetic vector potential at any point must obey equation (6.5)

7. MAXWELL'S FOURTH EQUATION

This is derived from the laws of electromagnetic induction.

Faraday's and Lenz's laws of electromagnetic induction tell us that the E.M.F. inaelosed circuit is equal to minus the rate of change of B-flux through the circuit. The E.M.F. around a closed circuit is the line integral of E .ds around the circuit, where E is the electric field. The line integral of E around the closed circuit is equal to the surface integral of its curl. The rate of change of B-flux through a circuit is the surface integral of B. Therefore

$$curl E = -\dot{B}, \tag{7.1}$$

or. in the nabla notation, $\nabla \times E = -\dot{B}$.

This is the fourth of Maxwell's equations .

8. SUMMARY A/MAXWELL'S AND POISSON 'S EQUATIONS

Maxwell's equations:

$\nabla . \boldsymbol{D} = \rho$	(8.1)
$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}.$	(8.2)

© 2013, IJMA. All Rights Reserved

(7.2)

(5.4)

$$\nabla \times \boldsymbol{H} = \boldsymbol{D} + \boldsymbol{J}. \tag{8.3}$$

$$\nabla \times \boldsymbol{E} = -\dot{\boldsymbol{B}}.\tag{8.4}$$

Sometimes you may see versions of these equations with factors such as 4π or c scattered liberally throughout them. If you do, my best advice is to white them out with a bottle or erasing tluid. or otherwise Ignore them. r shall try to explain in [2], where they come from. They serve no scientific purpose, and are merely conversion factors between the many different systems of units that have been used in the past.

Poisson's equation for the potential an electrostatic field:

$$\nabla^2 \boldsymbol{V}. = -\rho/\varepsilon \tag{8.5}$$

The equivalent of Poisson's equation for the magnetic vector potential on a static magnetic field

$$\nabla^2 A = -\mu J. \tag{8.6}$$

9. ELECTROMAGNETIC WAVES

Maxwell predicted the existence of electromagnetic waves, and these were generated experimentally by Hertz shortly afterwards. Inaddition, the predicted speed of the waves was $3 \times 10^8 m s^{-1}$, the same as the measured speed of light. showing that light is an electromagnetic wave .

In an isotropic, .homogeneous, no conducting, uncharged medium, where the permittivity and permeability are scalar quantities, Maxwell's equations can be written

$$\nabla \cdot \boldsymbol{E} = \boldsymbol{0} \tag{9.1}$$

$$\nabla \cdot \boldsymbol{H} = \boldsymbol{0} \tag{9.2}$$

 $\nabla \times \boldsymbol{H} = \varepsilon \boldsymbol{E}.$ (9.3)

$$\nabla \times \boldsymbol{E} = -\mu \dot{\boldsymbol{H}}.$$
(9.4)

Take the *curl* of equation (9.3) and make use of equation (6.4):

$$grad \ div \ \mathbf{H} - \nabla^2 \mathbf{H} = \varepsilon \frac{\partial}{\partial t} \mathbf{curl} \mathbf{E}.$$
(9.5)

Substitute for *div H* and *curl E* from equations(9.2) and(9.4) to obtain

$$\nabla^2 H = \varepsilon \mu \ddot{H}. \tag{9.6}$$

Comparison with equation (1.2) shows that this is a wave of speed $1/\sqrt{\epsilon\mu}$. (Verify that this has the dimensions of speed.)

In a similar manner the reader should easily be able to derive the equation

$$\nabla^2 \boldsymbol{E} = \varepsilon \mu \boldsymbol{\ddot{E}}.\tag{9.7}$$

In a vacuum, the speed is $\frac{1}{\sqrt{\varepsilon_0\mu_0}}$. With $\mu_0 = 4\pi \times 10^{-7}$ H m⁻¹ and $\varepsilon_0 = 8.854 \times 10^{-12}$ F m⁻¹ this comes to 2.998 × 10^{8} ' m s⁻¹.

10. GAUGE TRANSFORMATIONS

We recall [3] that a static electric field *E* can be derived from the negative of the gradient of a scalar potential function of space:

$$\boldsymbol{E} = -\boldsymbol{grad} \, \boldsymbol{V}. \tag{10.1}$$

The zero of the potential is arbitrary. We can add any constant (withthe dimensions of potential) to V. For example, if we define V' = V + C, where C is a constant (in the sense that it is not a function of x, y, z) then we can still calculate the electric field from E = -grad V'© 2013, IJMA. All Rights Reserved

We also recall [4] that a static magnetic field **B** can be denved from the **curl** of a magnetic vector potential function:

$$\boldsymbol{B} = \boldsymbol{curlA}.\tag{10.2}$$

Let us also recall here the concept of the *B*- flux from [5]:

$$\Phi_{\rm B} = \iint \mathbf{B}.\,\mathrm{d}\mathbf{A} \tag{10.3}$$

It will be worth while here to recapitulate the dimensions and SI units of these quantities: $E \quad MLT^{-2}O^{-1} \quad Vm^{-1}$

B	$MT^{-1}Q^{-1}$	Т		
V	$\mathrm{M}\mathrm{L}^{2}\mathrm{T}^{-2}\mathrm{Q}^{-1}$	V		
A	$MLT^{-1}Q^{-1}$	Tm	or	${ m Wb}~{ m m}^{-1}$
Φ_{B}	$ML^{2}T^{-1}Q^{-1}$	Tm ²	or	Wb

Equation (10.2) is also true for a nonstatic field. Thus a time-varying magnetic field con be represented by the **curl** of a time-varying magnetic vector potential. However,

we know from the phenomenon of electromagnetic induction that a varying magnetic field has the same effect as an electric field. so that, if the fields are not static, the electric field is the result of anelectrical potential gradient and a varying magnetic field. so that equation (10.1) holds only forstatic fields.

If we combine the Maxwell equation $curl E = -\dot{B}$ with the equation for the definition or the magnetic vector potential curl A = B, we obtain $curl (E + \dot{A}) = 0$. Then, since curl grad of any scalar function is zero, we can define a potential function V such that

$$\boldsymbol{E} + \dot{\boldsymbol{A}} = -\boldsymbol{grad} \, \boldsymbol{V}. \tag{10.4}$$

(We could have chosen a plus sign, but we choose a minus sign so that it reduces to the familiar E = -grad V for a static field.) Thus equations (10.4) and(10.2) define the electric and magnetic potentials - or at least they define the gradient of V and the *curl* of A. But we recall that, In the static case, we can add an arbitrary constant to V (as long as the constant is dimensionally similar to), and the equation E = -grad V', where V' = V + C, still holds. Can we find a suitable-transformation for V and A such that equations (10.2)and(10.4) still hold In the nonstatic case? Such a transformation would be *a gauge transformation*.

Let χ be some arbitrary scalar function of space and time. I demand little of the form of χ ; indeed I demand only two things. One is that it is a "well-behaved" function, in the sense that it is .everywhere and at all times single-valued, continuous and differentiable. The other is that it should have dimensions $ML^2T^{-1}Q^{-1}$. This is the same as the dimensions of magnetic *B*-flux, but I am not sure that it is particularly helpful to think of this. It will, however, be useful to note that the dimensions of *grad* χ and of $\dot{\chi}$ are, respectively, the same as the dimensions of magnetic vector potential (*A*) and of electric potential (*V*).

Let us make the transformations

$$\mathbf{A}' = \mathbf{A} - \mathbf{grad} \, \chi \tag{10.5}$$

And $V' = V + \dot{\chi}$. (10.6)

We shall see very quickly that this transformation (and we have a wide choice in the form of χ) preserves the forms of equations (10.2) and (10.4), and therefore this transformation (or, rather, these transformations, since χ can have any well-behaved form) are gauge transformations.

Thus curl A = B becomes curl $(A' + grad\chi) = B$. And since curl grad of any scalar field is zero, this becomes

curlA' = B.

Also,
$$gradV = -(E + \dot{A})$$

Becomes $grad(V' - \dot{\chi}) = -(E + \dot{A}' + grad\dot{\chi})$. or $gradV' = -(E + \dot{A}')$.

© 2013, IJMA. All Rights Reserved

Thus the form or the equations is, preserved. If we make a gauge transformation to the potentials such as equations (10.5) and (10.5), this does not change the fields E and B, so that the fields E and B are gauge invariant. Maxwell's equations in their usual form are expressed in terms of E and B, and are hence gauge invariant,

11.MAXWELL'SEQUATIONS IN POTENTIAL FORM

In their usual form, Maxwell's equations for an isotropic medium, written in terms of the fields. Are

$$div \mathbf{D} = \rho \tag{11.1}$$

$$div \mathbf{B} = 0 \tag{11.2}$$

$$curl H = \dot{D} + J \tag{11.3}$$

$$curl E = -\dot{B}. \tag{11.4}$$

If we write the fields in terms of the potentials:

$$\boldsymbol{E} = -\boldsymbol{A} - \boldsymbol{grad} \, \boldsymbol{V} \tag{11.5}$$

And
$$B = curl A$$
, (11.6)

together with $D = \varepsilon E$ and $B = \mu H$, we obtain for the first Maxwell equation, after some vector calculus and algebra,

$$\nabla^2 V + \frac{\partial}{\partial t} (div \mathbf{A}) = -\frac{\rho}{\varepsilon}$$
(11.7)

For the second equation, we merely verify that zero is equal to zero. (div curl A = 0.)

For the third equation, which requires a little more vector calculus and algebra, we obtain

$$\nabla^2 \mathbf{A} - \varepsilon \mu \, \frac{\partial^2 \mathbf{A}}{\partial t^2} = \mathbf{grad} \left(div \mathbf{A} + \varepsilon \mu \frac{\partial V}{\partial t} \right) - \mu J. \tag{11.8}$$

The speed .of electromagnetic waves in the medium is $1/\sqrt{\epsilon\mu}$ and, in a vacuum, equation (11.8) becomes

$$\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = \operatorname{grad}\left(\operatorname{div} \mathbf{A} + \frac{1}{c^2} \frac{\partial V}{\partial t}\right) - \mu_0 J.$$
(11.9)

wherec is the speed of electromagnetic waves in a vacuum .

The fourth Maxwell equation, when written in terms of the potentials, tells us nothing new (try it). so equations (11.7) and (11.8) (or (11.9)*in vacuo*) are Maxwell's equations in potential form.

These equations look awfully difficult - but perhaps we can find a gauge transformation, using some form for χ , and subtracting grad $\dot{\xi}$ from A and adding $\dot{\xi}$ to V, which will make the equations much easier and which will still give the right answers for E and for B.

One of the things that make equations (11.7) and (11.9) look particularly difficult is that each equation contains both A and V; that is, we have two simultaneous differential equations to solve for the two potentials. It would be nice If we had one equation for A and one equation for V. This can beachieved, as we shall shortly see, if we can find a gauge transformation such that the potentials are related by

$$divA = -\frac{1}{c^2} \frac{\partial V}{\partial t}$$
(11.10)

You should check that the two sides of this equation are dimensionally similar. Whatwould be the SI units?

You'll see that this is chosen so as to make the "difficult" part of equation (11.9) zero.

If we make a gauge transformation and take the divergence of equation(10.5) and the tune derivative of equation (10.6), we then see that condition (11.10) will be satisfied by a function χ that satisfies

$$\nabla^2 \xi - \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2} = divA' - \frac{1}{c^2} \frac{\partial V'}{\partial t}$$
(11.11)

© 2013, IJMA. All Rights Reserved

Don't worry - you don't have to solve this equation and lind the function χ ; you just have to be assured that some such function exists such that, when applied to the potentials, the potentials will be related by equation(11.10) Then, if you substitute equation(11.10) into Maxwell's equations in potential Corm (equations (11.7) and (11.9), you obtain the following forms for Maxwell's equations in vacuo in potential form, and the *A* and *V* are now separated:

$$\nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon_0} \tag{11.12}$$

And
$$\nabla^2 A - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = -\mu_0 J$$
(11.13)

And. since these equations were arrived at by a gauge transformation, their solutions, when differentiated, will give the right answers for the fields.

12. RETARDED POTENTIAL

In a static situation, in which the charge density ρ , the current density J, the electric field E and potential V, and the magnetic field B and potential I are all constant in time (i.e. they are functions of x, y and z but not of t) we already know how to calculate, in vacuo, the electric potential from the electric charge density and the magnetic potential from the current density. The formulas are

$$V(x, y, z) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(x', y', z')dv'}{R}$$
(12.1)

and
$$A(x, y, z) = \frac{\mu_0}{4\pi} \int \frac{J(x', y', z')dv'}{R}$$
 (12.2)

Here *R* is the distance between the point (x',y',z') and the point (x, y, z), and v' is a volume element at the point (x',y',z'). I can't remember if we have written these two equations in exactly that form before, but we have certainly used them, and given lots of examples of calculating *V* in [6], and one of calculating *A* in [7].

The question we are now going to address is whether these formulas are still valid in a nonstatic situation, in which the charge density ρ , the current density J, the electric field E and potential V, and the magnetic field B and potential A are all varying in time (i.e. they are functions of x, y, z and t). The answer is "yes, but. ...". The relevant formulas are indeed

$$V(x, y, z, t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(x', y', z', t') dv'}{R}$$
(12.3)

and
$$A(x, y, z, t) = \frac{\mu_0}{4\pi} \int \frac{J(x', y', z', t')dv'}{R}$$
, (12.4)

but notice the t' on the right hand side and the t on the left hand side' What this mean is that, if $\rho(x', y', z', t')$ is the charge density at a point (x', y', z') at time t', equation (12.3) gives the correct potential at the point (x', y', z') at some slightly later lime t, the time difference t - t' being equal to the time R/c that it takes for an electromagnetic signal to travel from (x', y', z') to (x, y, z). If the charge density at (x', y', z') changes, the information about this change cannot reach the point instantaneously; it takes a time R/c for the information to be transmitted from one point to another. The same considerations apply to the change in the magnetic potential when the current density changes, as described by equation (12.4). The potentials so calculated are called, naturally, the retarded potentials. While this result has been arrived at by a qualitative argument, infact equations (12.3) and 4 can be obtained as a solution of the differential equations (11.12) and (11.13). Mathematically there is also a solution that gives an "advance potential" that is one in which t' - t rather than t - t' is equal to R/c. You can regard, if you wish, the retarded solution as the "physically acceptable" solution and discard the "advance" solution as not being physically significant. That is, the potential cannot predict in advance that the charge density is about to change, and so change its value before the charge density does. Alternatively one can think that the laws of physics, from the mathematical view at least allow the universe to run equally well backward as well as forward, though in fact the arrow of time is such that cause must precede effect (a condition which, in relativity, leads to the conclusion that information cannot be transmitted from one place to another at a speed faster than the speed of light), One is also reminded that the laws of physics, from the mathematical view at least, allow the entropy of an isolated thermodynamics system to increase (see [8] in the Thermodynamics part of these notes)-although in the real universe the arrow of time is such that the entropy in fact increases. Recall also the following passage from Through the Looking-glass and What Alice Found There.

Alice was just beginning to say, "There's a mistake somewhere - -"when the Queen began screaming, so loud that she had to leave the sentence unfinished, "Oh, oh, oh!" should the Queen. shaking her hand about as if she wanted to shake it off. "My finger's bleeding I Oh, oh, oh, oh!".

Her screams were so exactly like the whistle of a steam-engine, that Alice had to hold both her hands over her ears.

"What is the matter?" she said, as soon as there was a chance of making herself heard, "Have you pricked your finger?" "I haven't pricked it yet" the Queen said, "butI soon shall --- oh, oh, oh!"

"When do you expect to do it?" Alice asked, feeling very much inclined to laugh.

"When I fasten my shawl again," the poor Queen groaned out: "the brooch will come undone directly. Oh, oh!" .As she said the words the brooch flew open, and the Queen clutched wildly at it, and tried to clasp it again.

"Take care!" cried Alice, "You're holding it all crooked!" .And she caught at the brooch: but it was too late: the pin had slipped, and the Queen had pricked her finger.

"That accounts for the bleeding, you see," she said to Alice with a smile. "Now you understand the way things happen here."

"But why don't you scream now?". Alice asked, holding-her hands ready to put overhears again. "Why, I've done all the screaming already," said the Queen. "What would be the good of having it all over again?"

13- REFERENCES

[1] Roger Abächerli, Sven Hornaff, Remo Leber, Hans-JakobSchmid, Jacques Felblinger, Improving automatic analysis of the electrocardiogram acquired during magnetic resonance imaging using magnetic field gradient artefact suppression, Journal of Electrocardiology, Volume 39, Issue 4, Supplement, October 2006, Pages S134-S139.

[2] Jianhua Wu, Shaohua Xing, Chenghao Liang, Lu Lu, Yonggui Yan, The influence of electrode position and output current on the corrosion related electro-magnetic field of ship, Advances in Engineering Software, Volume 42, Issue 10, October 2011, Pages 902-909.

[3] KamleshAwasthi, NobuhiroOhta, Magnetic field effects on electro-photoluminescence of photoinduced electron transfer systems in a polymer film, Journal of Photochemistry and Photobiology A: Chemistry, Volume 221, Issue 1, 10 June 2011, Pages 1-12.

[4] Jianwei Qi, Nobuko I Wakayama, Akira Yabe, Attenuation of natural convection by magnetic force in electrononconducting fluids, Journal of Crystal Growth, Volume 204, Issue 3, July 1999, Pages 408-412.

[5] C. Balan, Diana Broboana, E. Gheorghiu, L. Vékás, Rheological characterization of complex fluids in electromagnetic fields, Journal of Non-Newtonian Fluid Mechanics, Volume 154, Issue 1, September 2008, Pages 22-30.

[6] Kang-Xian Guo, T.P. Das, Chuan-Yu Chen, Studies on the electro-optic effects of double-layered quantum wires in magnetic fields, Physica B: Condensed Matter, Volume 293, Issues 1–2, December 2000, Pages 11-15.

[7] Z.H. Tong, S.H. Lo, C.P. Jiang, Y.K. Cheung, An exact solution for the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric–magnetic fiber composites, International Journal of Solids and Structures, Volume 45, Issue 20, 1 October 2008, Pages 5205-5219.

[8] Alexander B. Temnykh, Richard V.E. Lovelace, Electro-mechanical resonant magnetic field sensor, Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 484, Issues 1–3, 21 May 2002, Pages 95-101.

[9] Ingo Müller, Phase equilibrium in electro-magnetic fields, International Journal of Engineering Science, Volume 11, Issue 10, October 1973, Pages 1053-1064.

[10] C.M. Braams, W.J. Schrader, J.C. Terlouw, Confinement of plasma by radio-frequency electro-magnetic fields, Nuclear Instruments and Methods, Volume 4, Issue 5, June 1959, Pages 327-331.

Source of support: Nil, Conflict of interest: None Declared