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ABSTRACT

This paper presents numerical solutions for hybrid fuzzy differential equations by an application of the single-term
Haar wavelet series (STHWS) technique, fourth order Runge-Kutta Method and Runge-Kutta Fehlberg method to
solve the hybrid fuzzy differential equations [6 - 7]. The discrete solutions obtained through STHWS technique are
compared with that of the Improved Euler method. The applicability of the STHWS technique is more suitable to
solve the hybrid fuzzy differential equations.
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1. INTRODUCTION

Hybrid systems are devoted to modelling, design, and validation of interactive systems of computer programs and
continuous systems. That is, control systems that are capable of controlling complex systems which have discrete
event dynamics as well as continuous time dynamics can be modelled by hybrid system. The differential systems
containing fuzzy valued functions and interaction with a discrete time controller are named hybrid fuzzy differential
systems. For analytical results on stability properties and comparison theorems we refer reader to [10, 11, 14].

In this article we developed numerical methods for addressing hybrid fuzzy differential equations by an application
of the STHW technique which was studied by S. Sekar and team of his researchers [15 - 21]. In section 2 we list
some basic definitions for fuzzy valued functions. In Section 3 reviews hybrid fuzzy differential systems. In Section
4 contains the properties of Haar wavelets and STHWS technique for approaching hybrid fuzzy differential
equations and a convergence theorem. In Section 5 contains a numerical example to illustrate the theorem. We refer
[1, 2,9, 12 - 13] for the numerical treatment of fuzzy differential equations.

2. PRELIMINARIES

Denote by E'the set of all functions u : R — [0, 1] such that (i) u is normal, that is, there exist an X, € R such that
u(XO)zl, (i) u is a fuzzy convex, that is, for X,y € R and 0 <1 <1, u(Zx + (1 — 2)y) = min{u(x), u(y)}, (iii) u is
upper semicontinuous, and (iv) [u]° = the closure of {x €R: u(x) > 0} is compact. For 0 < « <1, we define [u]“ ={x
€R:u(x) > a}. An example ofau € Elis given by
4x -3, if xe(0.75,1],
u(x)=4-2x+3,if xe(1,1.5), (1)
0,if x¢(0.75,1.5)
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The a-level sets of u in (1) are given by

[u]* = [0.75 + 0.254, 1.5 — 0.54]. @)
For later purpose, we define 0cE!as ﬁ(x) =1ifx=0and 6(X) =0if x=0.

Next we review the Seikkala derivative [22] of x: | — E'where /c R is an interval. If[X(t)*]=[x*(t), X* (t)]

for all t€ / and @ €10, 1], then [X'()*]=[(X")'(t), (X*)'(t)] if X’(t)e E*. Next consider the initial value
problem (I\VP)

U(X)_{x'(t): f(t,x(t))

~1x(0)=x, ©

where f : [0,00) X R — R is continuous. We would like to interpret (3) using the Seikkala derivative and X, € E.

Let [X,]% =[X,", X,“] and [x()]“ =[x" (), X“(t)] . By the Zadeh extension principle we get f: [0, <) x
E' — E' where [f(tx)]" =[min{f(t,u):u e[g‘(t),i“(t)}},max{f(t,u):u e[f‘(t),i“(t)]}}.
Then x: [0, c©) — E' is a solution of (3) using the Seikkala derivative and Xy € Elif

(x* () = minff(t.u):u e [x* @0, x* ) x (0) = x,°,
(%) () =maxf(t,u):u e [x* . % O} % ) =%,
for all £ €[0,00) and a €0, 1]. Lastly consider an f : [0,c0) X R x R — R which is continuous and the VP

{x'(t): f(t, x(t) k),

x(0)=x,

(4)

As in [3], to interpret (4) using the Seikkala derivative and xo, k eE', by the Zadeh extension principle we use
f:[0,0) x E' xE' — E* where

[ (txk)]" :[min{f (tuu,):ue]x ©.X“ (0] u, €[k, R]}
max{f (tuu,):ue [1“ (), X~ (t)],uk € [K’, R“]}]

where kK“ = lka , Kk J Then x: [0, w0) — E' is a solution of (4) using the Seikkala derivative and xo, k € E! if
(x ),(t)z minf(tu,u,):u e b @ x“ 0], <l K ]}’K 0 =x,", for all t €[0,00) and & €0, 1].
(Y“) (t)= max{f(t, Uu,):ue [5“ (t), X* (t)l u, € [lg"‘ , E“]},g“ (0) = x,“,
3. THE HYBRID FUZZY DIFFERENTIAL SYSTEM

Consider the hybrid fuzzy differential system

X'(t)= (. x(t) Acx(t)) telt, ,tm]}

X(tk ) =X, »

where X' denotes Seikkala differentiation, 0 <ty <t; < * * - <t < ¢ * -, t >o,

()

f eC[R* x E' x E', E'], 4 eC[E*, E*]. To be specific the system look like
© 2013, IIMA. All Rights Reserved 24
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x(t)=1...

Assuming that the existence and uniqueness of solution of (5) hold for each [t, t«], by the solution of (3) we mean
the following function:

X (1) t, <t<t,
X () t, <t<t,,

X(t) = x(t,ty, X, K. . .

We note that the solution of (5) are piecewise differentiable in each interval for t € [t t.,] for a fixed X, € E'! and
k=0,1,2,...

Using a representation of fuzzy numbers studied by Goestschel and Woxman [4] and Wu and Ma [23], we may

represent xeE* by a pair of functions (X(r), x(r)), 0 <r <1, such that (i) g(r), is bounded, left continuous, and

non decreasing, (ii) i(r), is bounded, left continuous, and non increasing, and (iii) g(r)ﬁ x(r), 0<r<1l For

example, u € E'given in (1) is represented by \U\r ),ulr))=(0.75 + 0.25r, 1.5 — 0.5r), 0 <r <1, which is similar
p g p y U

to [u]” given by (2).

Therefore we may replace (5) by an equivalent system

X (1) = Ft% 2,(x)) = Rt x, x) x(t,) = x,,
(t)z?(t’x’ﬂ’k(xk)) Gk(ta&;)l(tk):&’

which possesses a unique solution (X,;) which is a fuzzy function. That is for each t, the pair [X(t; r), i(t; I’)] isa

(6)

-~

| >

fuzzy number, where Z(t; r), ;(t; r) are respectively the solutions of the parametric form given by

("

forr €0, 1].
4. PROPERTIES OF HAAR WAVELET AND STHW TECHNIQUE
4.1 HAAR WAVELET SERIES

The orthogonal set of Haar wavelets hi (t) is a group of square waves with magnitude of +1in some intervals and

zeros elsewhere. In general, hn(t): h1(2jt—k), Wheren=2)+k, j>0,0<k< 21, n, J, ke Z.Any

function y(t), which is square integrable in the interval [0, 1) can be expanded in a Haar series with an infinite
number of terms

y(t) :iiocihi (t), Where i =2/ +k ©®)
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1
where the Haar coefficients j >0, 0<k <2/,te[01), ¢, = ijy(t)hi (t)dt are determined such that the
0

1 m—1 2

following integral square error ¢ is minimized & = J‘{y(t)— Z:Cihi (t)} dt, Where m=21, j e {0}UN
) _
|

27 i=1=24k,j>0,0<k <2!
NEA

Eq. (8) contains an infinite number of terms for a smooth y (t). If y (t) is a piecewise constant or may be

approximated as a piecewise constant, then the sum in Eq. (8) will be terminated after m terms, that is

y(t) ~ r_nZCi |f‘li (t) =C-(rm)h(m) (t), t € [0!1)

1
Furthermore jhi (tOh,t)dt =275, = {
0

}, usually, the series expansion

C(m)(t) = [Cocl"'cm—l]T )

h, (t)=[h, (t),hy (t)..........h, ,@)]

where “T” indicates transposition, the subscript m in the parentheses denotes their dimensions, C(Tm)h(m) (9]

denotes the truncated sum. Since the differentiation of Haar wavelets results in generalized functions, which in any
case should be avoided, the integration of Haar wavelets are preferred.

Integration of Haar Wavelets should be expandable in Haar series Ih (r)dzr = ZC . (t) If we truncate to
i=0

m = 2" terms and use the above vector notation, then integration is performed by matrix vector multiplication and
expandable formula into Haar series with Haar coefficient matrix defined by Hsiao [5].

jh )7 % E N (1), t€[0,1)

where the m-square matrix E is called the operational matrix of integration which satisfies the following recursive
equations

E(mxm) = 1 C)]
(_jH_r:ILW m 0 m m
2m ) 13+%) 7°%)
1 -1
o4 1
Eo) = % 41 and Ea) >
— 0
4
i+1
The Hn = [, (6), 0y (60, (%) Py (%, 1)] <x <=
m
4 1
H(mxm) = (mxm)dla(r)
T
r=11224,44,.. 200 D m>2
2 2 2 2
n
Proof of equation (9) is found in [5]. Since H (mxm) and H(l )contain many zeros. Let us define
h(m)( ) (m)(t) zM (mxm) (t) and M (1x1) (t) h (t) satisfying M (mxm) (t)C mxm)h(m)(t) and C(lxl) =Cp.
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4.2 SINGLE TERM HAAR WAVELET SERIES TECHNIQUE
With the STHWS approach, in the first interval, the given function is expanded as STHWS in the normalized

1
interval 7 € [0,1), which corresponds to 7 € {O,—] by definingz =mt, m being any integer. In STHWS, the
m

)

N

1 ’ .
matrix becomes E :E. Let X(T) and X(T) be expanded by STHWS in the first interval as X(r) :v(l)ho(

X(r):x(l)h0 (z) and in the n" interval as, X(T) :v(")ho (T) X(z’):x(")h0 (T) Integrating (9) with E =

N |~

1
we get X(l) =Ev(l)+x(0). Where X(0) is the initial condition. According to [7], we have

y :I x(z)dz=x(1)-x(0)

In general, for any interval n, n=1, 2.......

We obtain, x" :%v(”) + X(n —1) (10)

x(n)=v" +x(n-1) (11)

Equation (10) and (11) give the discrete time values of x ™ and x(n) x(n) for the n"interval. These values from
the basis for the estimating block pulse values and discrete values in the subsequent normalized time intervals.

5. NUMERICAL EXAMPLE

Consider the following hybrid fuzzy IVP, [6 — 7]
x'(t)=x(t)+mt)Ax(t, ) telt, t., | t, =k k= 0,1,2,3,..}

12
x(t;r)=[(0.75+0.25r )", (1.125-0.125r)¢' | 0 <r<1, 12

2(t(mod1)) if t(mod1)<0.5
here m(t):{z(l—t(modl)) if t(mod1)>0.5

/Ik(ﬂ):{ﬁ, if k=0

witkefl,2,..}

The hybrid fuzzy IVP (12) is equivalent to the following systems of fuzzy IVPs:
x5 (t)=x,(t), t €[0,1]

x(0;r)=[(0.75+0.25r)¢', (1.125-0.125r)'] 0 <r<1,

Xi,(t): X; (t)"' m(t)xi—l(t)’ te [ti ’ti+1]’ Xi (t): Xi—l(ti )’i =12,..

In (12) X(t)+ m(t)/1k X(tk) is continuous function of t, x and A, X(tk). Therefore by Example 6.1 of Kaleva [8],
for each kK =0,1,2,... the fuzzy IVP

X'(t)=x(t)+ mt)ax(t, ) telt te,) o=k, }

X(tk ) =X, »

has a unique solution [tk,tk+1]. To numerically solve the hybrid fuzzy IVP (12) we will apply the STHWS

technique for hybrid fuzzy differential equation with N = 2 to obtain yllz(r) approximating X(2.0; r) .The Exact

and Approximate solutions by Fourth order Runge-Kutta Method, Runge-Kutta Fehlberg method and STHWS are
compared at t = 2 (see Table 1 and Figure 1). Error in comparing Fourth Order Runge-Kutta method, Runge-Kutta
Fehlberg method and STHWS are shown in table 2, Figure 2 and Figure 3.
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Table 1: Discrete Solutions
Exact RK-Fourth Order RK-Fehlberge STHWS

' yl(ti;r) yz(ti;r) yl(ti;r) yz(ti;r) yl(ti;r) yz(ti;r) yl(ti;r) yz(ti;r)
0.1 | 7.49966 | 10.76564 | 7.49355 | 10.75688 | 7.49931 | 10.76514 | 7.49966 | 10.76564
0.2 | 7.74158 | 10.64446 | 7.73528 | 10.63601 | 7.74123 | 10.64419 | 7.74158 | 10.64446
0.3 | 7.98350 | 10.52371 | 7.97701 | 10.51515 | 7.98314 | 10.52323 | 7.98350 | 10.52371
0.4 | 8.22543 | 10.40275 | 8.21874 | 10.39428 | 8.22505 | 10.40227 | 8.22543 | 10.40275
0.5 | 8.46735 | 10.28179 | 8.46046 | 10.27342 | 8.46697 | 10.28132 | 8.46735 | 10.28179
0.6 | 8.70928 | 10.16082 | 8.70219 | 10.15256 | 8.70888 | 10.16036 | 8.70928 | 10.16082
0.7 | 8.95120 | 10.03986 | 8.94392 | 10.03169 | 8.95079 | 10.03940 | 8.95120 | 10.03986
0.8 | 9.19313 9.91890 9.18565 9.91083 9.19271 9.91845 9.19313 9.91890
0.9 | 9.43505 9.79794 9.42737 9.78997 9.43462 9.79749 9.43505 9.79794
1.0 | 9.67698 9.67698 9.66910 9.66910 9.67653 9.67653 9.67698 9.67698

Table 2: Error between exact and discrete solutions
RK-Fourth Order RK-Fehlberge STHWS

" yar) | ya(tar) | ovr) |oyasr) | ovtar) | va(r)
0.1 | 0.00611 0.00876 0.00035 0.00027 1E-07 1E-07
0.2 0.0063 0.00845 0.00035 0.00048 2E-07 2E-07
0.3 | 0.00649 0.00856 0.00036 0.00048 3E-07 3E-07
0.4 | 0.00669 0.00847 0.00038 0.00047 4E-07 4E-07
0.5 | 0.00689 0.00837 0.00038 0.00046 5E-07 5E-07
0.6 | 0.00709 0.00826 0.0004 0.00046 6E-07 6E-07
0.7 | 0.00728 0.00817 0.00041 0.00045 7E-07 7E-07
0.8 | 0.00748 0.00807 0.00042 0.00045 8E-07 8E-07
0.9 | 0.00768 0.00797 0.00043 0.00045 9E-07 9E-07
1.0 | 0.00788 0.00788 0.00045 0 1E-06 1E-06

f 0.009 7
0.008 1

' cooz M W |
g o007 M W
0.006 - b 068 |
0.005 | m RK-Fourth Order 0.005 - ® RK-Fourth Order
0.004 4 Ll W RK-Fehlberg 0.004 R W1 W RK-Fehlberg
0.003 uSTHWS 0.003 ] W STHWS
0.002 | oooz +HH
0.001 ooor TH W
0 -+ T T T T T T T T 1 L o e e e B e 2 |
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
Figure 1. Error estimation of yl(ti ; r) Figure 2. Error estimation of Yy, (ti; r)

From the graphical representation is given for the fuzzy hybrid differential equations shows that STHWS method
approximate solutions have less error compare to Fourth Order Runge-Kutta method and Runge-Kutta Fehlberg
method solutions [ ] in the all the stages.

6. CONCLUSIONS

In this paper, the single-term Haar wavelet series (STHWS) technique has been successfully employed to obtain the
approximate analytical solutions of the fuzzy hybrid differential equation. Compare to Fourth Order Runge-Kutta
method and Runge-Kutta Fehlberg method, STHW technique gives accurate results from the Table 1, Table 2. Also
it is clear that from Table 2, Figure 1 and Figure 2 the STHWS method introduced in Section 4 performs better than
Runge-Kutta method of Order Four and Runge-Kutta Fehlberg method.
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