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ABSTRACT

This paper can be viewed as a generalization of Pawlak approximation space using general topological structure. Our
approach depends on a general topology generated by binary relation. The introduced technique is useful because the
concepts and the properties of the generated topology are applied on rough set theory and this open the way for more
topological applications in rough context. Several properties and examples are provided.

1. INTRODUCTION

Since Z. Pawlak [9-11] introduced the concept of approximation space in 1982, many authors have been introduced
several generalizations to Pawlak space in order to destroying the constraints of the equivalence relation (see: [1], [3-8],
[12-22]). Our approach depends on the concept of after and fore set. Let the non empty set U be a finite set and R be a

binary relation on U [2],then the after (resp. the fore) set of element X €U s the class X R ={y €U : xRy}
(resp. Rx={yeU : yRx}). The pair.er=(U, R), where R is an equivalence relation, is called Pawlak

approximation space [9] in briefly "PAS". If R be a binary general relation, then the pair .~ = (U, R) is called "a
generalized approximation space™ in briefly "GAS".

2. GENERALIZATION OF PAS

Definition: 2.1 Let o#=(U, R) be a GAS and X — U . Then X is called “after composed" (resp. “after-c
composed”) set if X contains all after (resp. fore) sets for all elements of its e,
V xe X, xRc X (resp. Rxc X).

The class of all after (resp. after-c) composed sets in .o is defined by the class
. ={X cU : VxeX, xR X}(resp rp ={X cU:V xe X, Rxc X}).

Remark: 2.1 In the GAS .o = (U, R) if R is an equivalence relation, then the GAS becomes Pawlak approximation

space. Moreover, the class 7 in this case is coinciding with the class of composed sets in PAS. Thus PAS can be
considered as a special case of a GAS which given in Definition 2.1.

Proposition: 2.1 Let .o~ = (U, R) be a GAS. Then the class 7 (resp. T; ) in o forms a topology on U.
Proof: We shall prove that 7 is a topology on U and similarly for r; :

Clearly U and ¢ are after-composed sets, then U, ¢ € 7.
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Let A, Berg,andlet xe (A(1B). Then X< A and X € B, which implies that XR = A and XRc B .
Thus X R cANB ,andthen A(1B e 7y.

Now, letA; €7z, V i €l . Then XeU A imply that Jig €1 such that X € A, eU A, , and hence

1 ’
iEI iel

XRc A, gUAI ,thatisUAi €TR.
il il

Thus 7 is atopology on U.

Theorem: 2.1 Let .o = (U, R) beaGAS. Then 7, is the complement topology of 7, and vice versa.

Proof: We must prove that: Forany X c U, X ey iff X ¢ e TE.

First let X €7z.Then V Xe X, XRc X (1)

Now, let Z € X ¢ , then the fore set of z is given by:
Rz={aeU : aRz}

Then there are two different cases are:

Case: 11fRZ(1 X # ¢. Then 3b e X and b € Rz which implies that 3b € X and bR Z suchthatz € X ©.

Thus 3b e X and z eb R suchthat Z ¢ X which is a contradiction to assumption (1). Thus the following case is
true:

Case: 21fRZ < X ©, then X ® € 75.

By the same way we can prove that: If X ¢ € Tp then X e 7g.

Thus 7 is the complement topology of r; .

Definition: 2.2 Let .= (U, R) be a GAS and X —U. Then X is called "R-definable" (exact) set in .o if X and

X © are after composed set. Otherwise, X is called "R-undefinable” (rough) set.

The lower (resp. the upper) approximation of any subset X U is given by
R(X)=U{Ger,:Gc X}(resp. R(X)=N{H ery: X cH}).

«=U,R)
The boundary set of X is given by: R(X)
BN, (X)=R(X)-R(X).
The internal edge of X is given by:
Ed, (X)=X-R(X)
The external edge of X is given by:
Ed, (X)=R(X)-X.
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Remarks: 2.2
(i) It is easy to notice that the lower R(X) (resp. the upper R (X)) approximation of a subset X in GAS

o= (U, R) is exactly the interior int(X) (resp. the closure cl (X)) of X in the topology 7 .
(i) Itisclear that BN, (X)=Ed_(X)UEd,(X).
(iii) The best lower (resp. upper) approximation of any subset is given when the internal (resp. the external) edge of its
tends to empty set i. e., if E_dR (X)=¢q(resp ER (X)=9).
(v) R(X)(resp. R(X)) is the largest after (resp. smallest after-c) composed set contained in X (resp. contain X).
(v) Xis after (resp. after-c) composed set iff R (X) = X (resp R(X)= X).

Proposition: 2.2 Let .«v = (U, R) bea GASand X —U. Then:
(i) XisexactsetifandonlyifR(X)=R(X)=X..
(ii) Xisroughsetifandonly if R(X) = R(X)#= X .

Proof: Obvious.

Corollary: 2.1 Let .w = (U, R) beaGASand X < U . Then:
(i) Xisexactsetifandonlyif BN, (X)=¢.
(i) Xisrough setifand only if BN, (X) = ¢.

3. PROPERTIES OF APPROXIMATIONS

Proposition: 3.1 Let & =(U, R) beaGASandX .Y < U . Then:
) R(X)c X cR(X).

(i) RU)=RU)=U andR(p) =R (p)=¢.

(i) If X <Y, then R(X) < R(Y) andR(X) < R(Y).

Proof:

(i) Obvious.
(i) Obvious, since U and ¢ are exact sets.

(iiiy Let X <Y andxe R(X)), then there exist G € 7, such thatX € G < X . Hence X eG <Y such that
G €1, andthen X € R(Y), which implies that R (X) = R(Y).
Similarly R (X) c R(Y).

Proposition: 3.2 Let .= (U, R) beaGASand X U . Then:
() R(=X)=-R(X) and R(=X)=—=R(X), where — X is the complement of X.
(i) R(R(X))=R(X) andR(R(X))=R(X).
(i) R(R(X)) € R(R(X)) and R (R (X)) = R(X).
Proof:
(i) By Definition 2.2 we have: R(-=X)=U{G ez, : G =(-X)},and sinceG ez, thenU —G €z, . Thus
REX)=U{U-U-G))er,: U-U-G))cU-X)}
=U-N{U-G)er,: XcU-G)}
=U-R(X)=-R(X).
Similarly R (-X) =-R (X).
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(i) Since R(X) is after composed set, then R (R (X)) =R (X).
similarly R(R(X))=R(X).

(iii) By Proposition 3.1, R(X) < X < R(X) VX cU , then
R(R(X)) cR(X) = R(R(X)),and
R(R(X)) = R(X)cR(R(X)).

Proposition: 3.3 Let .o#=(U, R) beaGASand X,Y < U . Then:
0 R(X)NR(Y)=R(XNY).
i) R(X)UR(Y)=R(XUY).
(i) R(XYUR(Y) = R(XUY).
) R(X)NR(Y) 2R(XNY).

Proof:
(i) Since XY < X and XY <Y, then
R(XNY)cR(X) and R(XNY) < R(Y), which implies that
R(XNY) < R(X)NR(Y) @)

Now, since R(X) and R(Y) ez, then R(X)(NR(Y) e 75, and hence R(X)R(Y) is an after
composed set contained in X (1Y .Thus
R(X)NR(Y)=R(XNY) 2
(1), (2) impliesthat R(X)NR(Y)=R(X NY).
(if) By the same way as in (i).
(iiiy Since X <X UY andY < X UY ,then R(X) < R(X UY) and
R(Y) = R(XUY) Thus R(X)UR(Y) = R(XUY).
(iv) By the same way as in (iii).

Proposition: 3.4 Let .= (U, R) be a GAS and X,Y U . Then the approximations satisfies the following
properties:

0 —RXURY)=REX)NR(-Y).
(i) —(RX)UR(Y)=R(E=X)NR(-Y).
(i) —(R(XH)URY)=R(E=X)NR(-Y).
iv) —“(ROX)UR(Y))=R(=X)NR(-Y).
v) —(R(X)NR(Y)=RE=X)UR(-Y).
wvi) —=(R(X)NR(Y))=R(=X)UR(-Y).
i) —(R(X)NRY))=R(=X)UR(-Y).
(viii) (R (X)NR(Y)) =R(-X)UR(-Y).

Proof: By using the properties of the approximations, the proof is obvious.

Proposition: 3.5 Let .ov= (U, R) beaGASandX <U . Then:
() R(X)UR(-X)=U.

(i) R(X)UR(-X)=U.

(i) R(X)UR(-X)=U.

(iv) R(X)UR(=X)=-BN(X).

v) R(X)NR(=X)=BNy(X).
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vi) R(X)NR(=X)=¢.
i) R(X)NR(-X)=¢.
(ii) R(X)NR(=X) =¢.

Proof: By using the properties of the approximations, the proof is obvious.

Remark: 3.1 The above propositions can be considered as a one of the differences between our generalization and the
others generalizations such as Yao space [18, 19], supra approximation space [3] and ([1], [4-8], [12-22]).

Although they used general binary relation but they added some conditions to satisfy the properties of Pawlak space.

Definition: 3.1 Let .&v = (U, R) be a GAS. Then the subset X U is said to be:
(i) Totally-definable or "R-definable” (exact) setif X =R (X)=R(X) (e, BN, (X)=4¢).
(i) Internally-definable set if X = R (X), such that E_dR (X)=9.

(i) Externally-definable setif X =R (X),suchthat Ed, (X)=¢.
(iv) Undefinable or "R-undefinable" (rough) setif X # R(X)# R (X) (ie., BN, (X) # @).

Remark: 3.2 In the above definition B N (X)) # ¢ in cases (ii), (iii).

Lemma: 3.1 Let &= (U, R) beaGASand X cU. Then:

(i) Xisinternally definable set if and only if it is after composed set.
(if) Xis externally definable set if and only if it is after-c composed set.

Proposition: 3.6 Let .«v = (U, R) bea GASand X —U. Then:

(i) Xisexactsetif and only if X is internally and externally definable set.
(i) Xisrough set if and only if X is neither internally nor externally definable set.

Proof: By Lemma 3.1, the proof is obvious.

Remark: 3.3 From the above proposition and lemma we have:
(i) Xis exactiff it is after and after-c composed set.
(if)  Xis rough iff it is neither after composed nor after-c composed set.

By considering 7 , of a GAS &/ = (U, R), forms a topology on U, then we can reformulate Definition 3.1 by a
topological view as follow:

Definition: 3.2 Let .o = (U, R) be a GAS with a topology T on U. Then for every XcU:
(i)  Xis said to be internally (resp. externally, totally) definable set if X is open (resp. closed, cl open) setin 7y .

(ii) Xis said to be R-undefinable (rough) set if X neither open nor closed set in 7 .

Remark: 3.4 According to Definition 3.2 we have seen how the topology represents the magic box for definability of
sets. Thus the collection of open and closed sets represents the golden tools to measure exactness or the roughness of
sets.

4. DIFFERENCES BETWEEN ROUGH SET THEORY AND ORDINARY SET THEORY

In this section we will give the basic deviations between rough set theory "RST" and ordinary set theory "OST”. The
space in "RST" represents a space equipped with relation, this relation represents the basic and necessary concept to
define the rough set.

We will give the deviation to four concepts "membership relation, equality, inclusion and power set".

Definition: 4.1 Let .o# = (U, R) beaGASand X < U . Then we say that:

(i) xis "surely" belongs to X, written X€ X ,if X € R(X).

(i) xis "possibly" belongs to X, written X € X ,if X R(X).
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These two membership relations € and € are called "strong” and "weak" membership relations respectively and it is
clear that:

If X eX impliesto X € X andif X€ X impliestoX € X .
The converse is not true in general as the following example illustrated:

Example: 4.1 Consider U ={a, b, ¢, d } and R is a binary relation on U such that:
aR={a},bR={b}, cR={b,c,d} andd R={a}, then

. ={U, ¢, {a},{b},{a,b} {a,d}, {a, b, d}}, and

7. ={U, ¢, {c},{b,c},{c,d} {a,c,d} {b,c,d}}.

Let X ={a, c}, then R(X)={a} andR(X)={a, c,d}. It is clear that Ce X but c& R(X) ie. non
ce X andalso d e R(X) ie, d € X butd e X.

Proposition: 4.1 Let .v = (U, R) beaGASand X,Y < U . Then by using the properties of approximations we
can prove the following properties:

(i) X Y, then(XeX impliesto X€Y and X' € X impliesstoX €Y ).

i) xe(XUY)ifandonlyif X € X orXx €Y.

(iii) x€(XNY) ifandonlyif X € X andX €Y .

(iv) If Xe X orxeY ,thenxe(XUY).

(v) 1fxe(XNY),then Xe X andXeY .

(vi) Xe(=X) ifandonlyifnonX € X .

(vii) X € (=X) ifandonly ifnonXe X .

Remarks: 4.1

(i) In the case of R is an equality relation, all these memberships relations € and € are the same and coincides with
ordinary membership relation € as in "OST".

(ii) We can redefine the approximations by using € and € as follow:

Forany X cU, R(X)={xeU: xeX}andR(X)={xeU: xeX}.

Definition: 4.2 Let v = (U, R) be a GAS. Then the two subsets X, Y < U are called:
(i) Roughly bottom-gqual in.o7 , written X =Y ,ifR(X)=R(Y).

(ii) Roughly top-equal in . , written X =Y ,if R (X) =R (Y).

(iii) Roughly equal in.ez , written X =Y ,if X =Y and X =Y .

Definition: 4.3 Let .~ = (U, R) be a GAS. Then the subset X < U is said to be:
(i) Densein o if X =U.

(i) Co-densein o if X = ¢.

(iii) Dispersed in o if X =U and X = ¢.

Remark: 4.2 Two different sets which are not equal in "OST", can be equal (approximately) in "RST" as the following
example illustrated:

Example: 4.2 Consider U ={a, b, C, d, e} and R be a binary relation on U where
aR ={a},bR={c,d},cR={e,a},dR ={d,a}andeR ={e}. Then
. ={U, ¢, {a}. {e},{a,d} {a,e} {ac,e} {a,d,e} {ac,d,e}},
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andz, ={U , ¢, {b},{b,c} {b,d},{b,c,d}, {b,c.e} {ab,c,d} {b,c, d e}}
Let X, ={a,c,d}, Y, ={a, b, d}, X, ={b,c,d}andY, ={a, b, d, e}.

Then R(X,)={a, d}=R(Y,) ie,X;=Y; and R(X,)={a b, c,d}=R(Y,) ie, X,=Y,. Thus
X; =Y although X; #Y].

Also R(X,)=¢ andR(Y,)=U ,then X, = ¢ and Y, =U thatis Y, isdenseand X, is co-dense in.o/ .

Proposition: 4.2 Let .o»v= (U, R) beaGASand X, Y, X', Y' < U . Then:
(@) 1 XZ=Y then (XUY)=X=Y.

i) 1f X =Y then (XNY)=X=Y.

i) f X=X"and Y =Y’ then (X UY)= (X'UY").

iv) f X=X"andY =Y’ then (XNY)=(X'NY").

Proof:
(i) Let X =Y then R(X)=R(Y).But R(XUY)=R(X)UR(Y),
then R(X UY)=R(X)UR(X)=R(X)
and R(XUY)=R(Y)UR(Y)=R(Y).Hence (XUY)=X =Y.
(i) By similar way as in (i).
(i) Let X =X " andY =Y’ then R(X)=R(X") and R(Y)=R(Y’). Thus
R(X)UR(Y)=R(X"YUR(Y"),
which implies that R (X UY) = R(X'UY"). Thus (X UY)=(X'UY").
(iv) By similar way as in (iii).

Proposition: 4.3 Let &= (U, R) beaGASand X —U. Then:
(i) Xisdense set if and only if (—X) is co-dense.
(i) X is dispersed set if and only if (—X) is dispersed.

(iii) Any superset of dense set is also dense.
(iv) Any subset of co-dense set is also co-dense.

Proof:
(i) Xisdensein & iff X =U iff R(X)=R(U).ButR(X)=-R(=X),
Hence X is dense iff —R(=X)=-R(-U)=-R(p) iff R (=X )=R (@) iff (— X) is co-dense.
(i) Xis dispersed in o iff X is dense and co-dense
iff (—X) is co-dense and dense iff (—X) is dispersed
(iii) LetY is a superset of X and X is dense, then X <Y and X =U .
Hence R(X) < R(Y) andR(X)=RU)=U,
which means thatU < R (Y))..

ButR(Y)cU ,thenR(Y)=U =R (U), thatis Y =U and then Y is dense set.
(iv) By similar way as in (iii).

Proposition: 4.4 Let .o = (U, R) be a GAS, and then the lower (resp. the upper) approximation of any subset

X cU can be defined by: R(X) (resp. R(X)) is the intersection (resp. the union) of all sets Y such that
X =Y (resp. X =Y).
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Proof: We prove the proposition in the case of R (X) and the case of R (X) by similar way:
First,let Y — U suchthat X =Y ,then R(X) =R (Y).
ButR(Y)<Y, VY cU ,hence R(X)c({YcU: X=Y} D

Now, since R(R(X))=R(X),thenR(X ) =Y . Thus
{Y cU : X=Y}cR(X) )

By (1)and (2); R(X)={Y cU:X =Y}

Proposition: 45 Let o =(U, R) beaGASand X, Y < U . Then:
(i) X =Y ifandonlyif(—X)=(-Y).

i)y F X =@ oY =g, then(XNY)=¢p.

(i) 1If X=U orY =U ,then(XUY)=U.

Proof:
(i) Obvious.

(i) Let X =g orY =g, then R(X)=R(#)=¢ or R(Y)=R(¢)=9.
ThenR(X NY)=R(X)NR(Y) =@ =R(p) thatis(X 1Y)~ ¢.
(iii) By similar way as in (ii).

Remark: 4.3 The rough equalities =, ~and ~ are equivalence relations on the power set P(U) in a
GAS.=(U,R).

Remarks: 4.4
(i) IfRinaGAS . =(U, R) is an equality relation, then all rough equalities of sets are coincides with the
classical set theoretical equality of sets in "OST".
(i) Rough equality of sets does not imply the equality in general which illustrated by Example 4.2.
(iii) According to Remark 4.3, any GAS .= (U, R) with a binary general relation generate the following three
different Pawlak approximation spaces:
. =(PU), =), £=(PU), =) and £ =(P(U), ) which are called "the lower, the upper and the

rough” approximation spaces of a GAS .o~ = (U, R) respectively.
Moreover, these spaces form three topologies on P (U) which are quasi-discrete topologies and they are given

byT,. =(PU), 75 (.)) . Tz =(PU), 75 (22)) and T =(PU), 7 (4)) .

Definition: 4.4 Let .&#=(U, R) beaGASand X, Y < U . We say that:
(i)  Xis "roughly bottom-included" in Y, writen X Y ,ifR(X)< R(Y).
(i) X is "roughly top-included” in Y, written X &Y | if R(X) < R(Y).
(iiiy Xis "roughly included" in Y, writen X CY ,ifX &Y and X cY

We call X in the above cases (i), (ii) and (iii) by the following notations: X is "rough lower, rough upper and
rough" subset in Y respectively.

The rough inclusion of sets does not imply the inclusion of sets as the following example illustrated:

Example: 4.3 Consider U ={a, b, ¢, d } and R is a binary relation on U, where:
aR={a},bR={b},cR={b,c}and dR={a}. Then

. ={U, ¢, {a},{b}. {a,b} {a,d}, {b,c}, {a,b,c} {ab,d}} and
={U.4,{c}.{d}.{a,d },{b,c}.{c,d},{a,c,d}, {b,c,d}}
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Let X ={b,c}andY ={a, b, d} clearly X Y and we have
R(X)={b},R(Y )={a,b,d},R(X )={b,c}and R(Y)=U.Then X <Y and X &Y which
impliesthat X &Y  although X ¢ Y .

Proposition: 4.6 Let .o#=(U, R) beaGASand X,Y < U . Then
@ XY, thenX cY,X &Y and X &Y .

i) X <Y andY <X ifandonlyif X =Y .

(iii) X &Y andY &X ifandonlyif X =Y .

(ivy X &Y andY &X ifandonlyif X =Y .

Proof:

(i) Obvious.

i) X <Y andY <X iff R(X)cR(Y) and R(Y)c R(X) iff R(X)=R(Y) iff X =Y.
(iii) and (iv) by similar way as in (ii).

Proposition: 4.7 Let .z =(U, R) beaGASand X, Y, X', Y U . Then:
(i) X cY ifandonlyif (XY)=X.

iy X &Y ifandonlyif (X UY)=Y.

i)y (XNY)c X &(XUy).

vy XY, X=X"andY =Y’ then X 'CY '

v) 1EXcY, X=X"andY =Y’ then X 'EY .

viy XY, X~X"andY =Y  then X'CY ',

(vii)y 1FX'EX andY 'EY ,then (X'UY) S (XUY).

(viiiy IfX'cX andY 'Y ,then (X'NY ) (XNY).

Proof:

i) X Y iff R(X)cR(Y) iff RGX)NR(Y)=R(X) iff R(XNY)=R(X) iff (XNY)=X.

(if) By similar way as in (i).

(i) Since R(XNY)=R(X)NR(Y) and R(XUY)=R(X)UR(Y).Then R(XY)< R(X) and
R(X)< R(XUY),andhence (X NY) < X &(X UY).

(iv) Let XY, X=X"and Y =Y', then R(X)<R(Y), R(X)=R(X") and R(Y)=R(Y'). Thus
R(X)cR(Y') andthen X 'Y ".

(v) and (vi) by similar way as in (iv).

(vi) Let X'&X andY '&Y ,then R(X')< R(X) and R(Y") < R(Y). Hence
R(XYURY")Y<R(X)UR(Y),and then
R(X'UY)c R(XUY).Thatis (X'UY") & (X UY).

(viii) By similar way as in (vii).

Proposition: 4.8 Let o =(U, R) beaGASand X,Y,Z cU . Then

(@i X Y and X =Z then Z CY .

(i) FX &Y and X =Z ,then Z &Y .

(i) If X &Y and X = Z ,then Z CY .

Proof: Obvious.

Remark: 4.5 The rough inclusions <, & and < represent ordering relations on P (U ) inthe GAS o =(U, R).
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Definition: 4.5 Let o =(U, R) bea GASand X < U . Then the family of all lower (resp. upper, rough) subsets
of X in ./, denoted by P_ (X) (resp. P, (X), P, (X)), is given by P (X)={Y cU:Y < X} (resp.
P.(X)={YcU:Y&X}, PM(X):{Y cu:Yc X}).

Example: 4.4 Consider the GAS in Example 43 and let X ={a,c}. Then R(X)={a} and
R(X)={a, c,d},andhence P(X)={X, ¢, {a}, {c}}

P,(X)={X, ¢, {a}{c}{d}.{c.dHa,c.d}},

P, (X)={X, ¢{a}{}{d}.{a.d}.{c.d}.{a c,d}} and

P, (X)={X, ¢.{a} {c}.{d}.{c.d}{a c, d}}}.

ClearlyP_ (X )=P_ (X )nP_(X).

Remark: 4.6 The concept of power set P ( X ) in "OST" differs from the concept of rough power set in "RST", for
instance, in Example 4.4, it is clear that {d },{c,d},{a,c,d}eP_(X ), but {d},{c.d}.{a,c,d }¢P(X).

The relation between ordinary power set and rough power set will give in the following proposition.

Proposition: 4.9 Let .=w=(U,R) be a GAS and X cU. Then P(X)cP, (X), P(X)cP,(X) and
P(X)c P, (X).

Proof: Let Y e P(X), then Y = X and hence R(Y)cR(X) and R(Y)cR(X). Thus Y < X,
Y &X and Y € X, which impliesthat Y € P (X),Y € P, (X) and Y € P_ (X).Thus P(X)c P, (X),
P(X)c P, (X)and P(X)c P, (X).

Proposition: 4.10 Let o= (U, R) beaGASand X,Y cU, Then:

(i) 1fX <Y then P (X)c P, (Y).

iy 1fX &Y then P_(X)<P_(Y).

(iiy 1f X Y then P (X)cP_(Y).

vy X =Y ifandonlyif P, (X)=P_(Y).

(v) X =Y ifandonlyif P, (X)=P_(Y).

vi) X =Y ifandonlyif P, (X)=P_(Y).

Proof:

() LetX Y then R(X)< R(Y) ()
Now let Z € P, (X),then Z < X thatis R(Z) < R(X) .Thusby (1), R(Z) = R(Y) andthen Z Y,
hence Z e P_(Y) andthen P, (X) <= P, (Y).

(if) and (iii) by the same way as in (i).
(ivy X =Y iff X <Y andY <X iff P, (X)< P, (Y)and P, (Y)c P, (X)iff P, (X)=P_(Y).

(iv) and (vi) by the same way as in (iv).

Proposition: 4.11 Let & =(U, R) beaGASand X .Y U . Then:
i) XeP,(X), XeP,(X)and XeP,(X).
(i) 1f XY then P (X)cP, (Y), P,(X)cP,(Y)and P, (X)<= P, (Y).
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Proof:
(i) Since ¢, € and C are ordering relations. Then

X cX,X &X and X X ,and hence

XeP,(X), XeP,(X)and X eP,_(X).
(i) Let X Y, then X <Y , X &Y and X CY . Hence

P, (X)cP,(Y), P, (X)cP,(Y)ad P, (X)=P_(Y).
5. CONCLUSION
Although many authors have been introduced sorts to generalize Pawlak approximation space, but most of them could
not applied and satisfied the all properties of Pawlak approximations (see: [1], [3-8], [12-22]). In our approach we did
not added any conditions and we initiated a topological structure based on a binary relation to generalize Pawlak space
which open the way to more topological applications in rough set context and help in formalizing many applications
from real-life data.
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