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ABSTRACT 
This paper can be viewed as a generalization of Pawlak approximation space using general topological structure. Our 
approach depends on a general topology generated by binary relation. The introduced technique is useful because the 
concepts and the properties of the generated topology are applied on rough set theory and this open the way for more 
topological applications in rough context. Several properties and examples are provided. 
 
 
1. INTRODUCTION 
 
Since Z. Pawlak [9-11] introduced the concept of approximation space in 1982, many authors have been introduced 
several generalizations to Pawlak space in order to destroying the constraints of the equivalence relation (see: [1], [3-8], 
[12-22]). Our approach depends on the concept of after and fore set. Let the non empty set U be a finite set and R be a 
binary relation on U [2],then the after (resp. the fore) set of element x U∈  is the class { : }x R y U x R y= ∈  
( resp. { : })R x y U y R x= ∈ . The pair ( , )U R=A , where R is an equivalence relation, is called Pawlak 
approximation space [9] in briefly "PAS". If R be a binary general relation, then the pair ( , )U R=A  is called "a 
generalized approximation space" in briefly "GAS". 
 
2. GENERALIZATION OF PAS 
 
Definition: 2.1 Let ( , )U R=A  be a GAS and UX ⊆ . Then X is called "after composed" (resp. "after-c 
composed") set if X contains all after (resp. fore) sets for all elements of its i.e., 

, ( resp. ).x X x R X R x X∀ ∈ ⊆ ⊆  
 
The class of all after (resp. after-c) composed sets in A  is defined by the class 

*{ : , }( resp .{ : , })R RX U x X x R X X U x X R x Xτ τ= ⊆ ∀ ∈ ⊆ = ⊆ ∀ ∈ ⊆ . 
 
Remark: 2.1 In the GAS ( , )U R=A  if R is an equivalence relation, then the GAS becomes Pawlak approximation 

space. Moreover, the class Rτ  in this case is coinciding with the class of composed sets in PAS. Thus PAS can be 
considered as a special case of a GAS which given in Definition 2.1. 
 
Proposition: 2.1 Let ( , )U R=A  be a GAS. Then the class Rτ  (resp. *

Rτ ) in A  forms a topology on U. 
 
Proof: We shall prove that Rτ  is a topology on U and similarly for *

Rτ . 
 
Clearly U and φ  are after-composed sets, then RU τφ ∈, . 
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Let RBA τ∈, , and let ( )x A B∈  . Then  Ax∈  and Bx∈ , which implies that ARx ⊆  and BRx ⊆  . 

Thus x R A B⊆  , and then RBA τ∈ . 
 
Now, let ,i RA i Iτ∈ ∀ ∈ . Then 



Ii
iAx

∈

∈  imply that Ii ∈∃ 0  such that 
0i i

i I

x A A
∈

∈ ∈


, and hence 



Ii
ii AARx

∈

⊆⊆
0

, that is R
Ii

iA τ∈
∈


. 

 
Thus Rτ  is a topology on U. 
 
Theorem: 2.1 Let  ( , )U R=A  be a GAS. Then Rτ  is the complement topology of *

Rτ  and vice versa. 
 

Proof: We must prove that: For any RXUX τ∈⊆ ,  iff *
R

cX τ∈ .  
 
First, let  RX τ∈ . Then XRxXx ⊆∈∀ ,                                   (1) 
 

Now, let cXz∈ , then the fore set of  z  is given by: 
 
 { : }R z a U a R z= ∈  
 
Then there are two different cases are: 
 

Case: 1 If φ≠XzR  . Then Xb∈∃  and zRb∈  which implies that Xb∈∃  and zRb  such that cXz∈ . 

Thus Xb∈∃  and z b R∈  such that Xz∉  which is a contradiction to assumption (1). Thus the following case is 
true: 
 

Case: 2 If cXzR ⊆ , then *
R

cX τ∈ . 
 

By the same way we can prove that: If *
R

cX τ∈ , then RX τ∈ . 
 
Thus Rτ  is the complement topology of *

Rτ . 
 
Definition: 2.2 Let ( , )U R=A  be a GAS and .X U⊆  Then X is called "R-definable" (exact) set in A  if X and 

cX  are after composed set. Otherwise, X is called "R-undefinable" (rough) set.  
 
The lower (resp. the upper) approximation of any subset X U⊆  is given by 

*( ) { : }(resp. ( ) { : })R RR X G G X R X H X Hτ τ= ∈ ⊆ = ∈ ⊆  .  
 
The boundary set of X is given by:         ( )R X  

( ) ( ) ( )RB N X R X R X= − . 
The internal edge of X is given by: 

( ) ( )
R

E d X X R X= −  

The external edge of X is given by: 
( ) ( )RE d X R X X= − . 

 
 
 
 
 

)( XR 

( , )U R=A 

( )RE d X 

( )RB N X X 

( )
R

E d X 
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Remarks: 2.2 
(i) It is easy to notice that the lower ( )R X  (resp. the upper ( )R X ) approximation of a subset X in GAS 

( , )U R=A  is exactly the interior int ( )X  (resp. the closure ( )cl X ) of X in the topology Rτ . 

(ii) It is clear that ( ) ( ) ( )R RR
B N X E d X E d X=  . 

(iii) The best lower (resp. upper) approximation of any subset is given when the internal (resp. the external) edge of its 
tends to empty set i. e., if ( ) ( resp . ( ) )RR

E d X E d Xϕ ϕ= = . 

(iv) ( ) ( resp. ( ))R X R X  is the largest after (resp. smallest after-c) composed set contained in X (resp. contain X). 

(v) X is after (resp. after-c) composed set iff ( ) ( resp . ( ) )R X X R X X= = . 
 
Proposition: 2.2 Let ( , )U R=A  be a GAS and .X U⊆  Then: 

(i) X is exact set if and only if ( ) ( )R X R X X= = . 

(ii) X is rough set if and only if ( ) ( )R X R X X≠ ≠ . 
 
Proof: Obvious. 
 
Corollary: 2.1 Let ( , )U R=A  be a GAS and UX ⊆ . Then: 

(i) X is exact set if and only if ( )RB N X ϕ= . 

(ii) X is rough set if and only if ( )RB N X ϕ≠ . 
 
3. PROPERTIES OF APPROXIMATIONS 
 
Proposition: 3.1 Let ( , )U R=A  be a GAS and ,X Y U⊆ . Then: 

(i)   ( ) ( )R X X R X⊆ ⊆ . 

(ii)  ( ) ( )R U R U U= =  and ( ) ( )R Rϕ ϕ ϕ= = . 

(iii) If YX ⊆ , then ( ) ( )R X R Y⊆  and ( ) ( )R X R Y⊆ . 
 
Proof: 
(i) Obvious. 
(ii) Obvious, since U and φ  are exact sets. 

(iii) Let YX ⊆  and ( )x R X∈ , then there exist RG τ∈  such that XGx ⊆∈ . Hence x G Y∈ ⊆  such that 

RG τ∈  and then ( )x R Y∈ , which implies that ( ) ( )R X R Y⊆ .  

        Similarly ( ) ( )R X R Y⊆ . 
 
Proposition: 3.2 Let ( , )U R=A  be a GAS and X U⊆ . Then: 

(i)    ( ) ( )R X R X− = −  and ( ) ( )R X R X− = − , where X−  is the complement of X. 

(ii)  ( ( )) ( )R R X R X=  and ( ( )) ( )R R X R X= . 

(iii) ( ( )) ( ( ))R R X R R X⊆  and ( ( )) ( )R R X R X⊆ . 
 
Proof: 
(i) By Definition 2.2 we have: ( ) { : ( )},RR X G G Xτ− = ∈ ⊆ − and since RG τ∈ , then *

RU G τ− ∈ . Thus 

( ) {( ( )) : ( ( )) ( )}RR X U U G U U G U Xτ− = − − ∈ − − ⊆ −  

       *{( ) : ( )}RU U G X U Gτ= − − ∈ ⊆ −  

       ( ) ( )U R X R X= − = − . 

        Similarly ( ) ( )R X R X− = − . 
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(ii) Since ( )R X  is after composed set, then ( ( )) ( )R R X R X= .  

         Similarly ( ( )) ( )R R X R X= . 

(iii) By Proposition 3.1, ( ) ( )R X X R X⊆ ⊆ X U∀ ⊆ , then  

       ( ( )) ( ) ( ( ))R R X R X R R X⊆ ⊆ , and 

       ( ( )) ( ) ( ( ))R R X R X R R X⊆ ⊆ . 
 
Proposition: 3.3 Let ( , )U R=A  be a GAS and UYX ⊆, . Then: 

(i)   ( ) ( ) ( )R X R Y R X Y=  . 

(ii)  ( ) ( ) ( )R X R Y R X Y=  . 

(iii) ( ) ( ) ( )R X R Y R X Y⊆  . 

(iv) ( ) ( ) ( )R X R Y R X Y⊇  . 
 
Proof: 

(i) Since XYX ⊆  and YYX ⊆ , then 
( ) ( )R X Y R X⊆  and ( ) ( )R X Y R Y⊆ , which implies that 

 ( ) ( ) ( )R X Y R X R Y⊆                                                                (1) 
 
Now, since ( ) ( ) RR X and R Y τ∈ , then ( ) ( ) RR X R Y τ∈ , and hence ( ) ( )R X R Y  is an after      

composed set contained in YX  .Thus  
( ) ( ) ( )R X R Y R X Y⊆                                                                (2) 

(1), (2) implies that ( ) ( ) ( )R X R Y R X Y=  . 
(ii) By the same way as in (i). 
(iii) Since X X Y⊆  and YXY ⊆ , then ( ) ( )R X R X Y⊆   and             

        ( ) ( )R Y R X Y⊆  .Thus ( ) ( ) ( )R X R Y R X Y⊆  . 
(iv) By the same way as in (iii). 

 
Proposition: 3.4 Let ( , )U R=A  be a GAS and UYX ⊆, . Then the approximations satisfies the following 
properties: 
(i) ( ( ) ( )) ( ) ( )R X R Y R X R Y− = − −  . 

(ii) ( ( ) ( ) ( ) ( )R X R Y R X R Y− = − −  . 

(iii) ( ( ) ( )) ( ) ( )R X R Y R X R Y− = − −  . 

(iv) ( ( ) ( )) ( ) ( )R X R Y R X R Y− = − −  . 

(v) ( ( ) ( )) ( ) ( )R X R Y R X R Y− = − −  . 

(vi) ( ( ) ( )) ( ) ( )R X R Y R X R Y− = − −  . 

(vii) ( ( ) ( )) ( ) ( )R X R Y R X R Y− = − −  . 

(viii) ( ( ) ( )) ( ) ( )R X R Y R X R Y− = − −  . 
 
Proof: By using the properties of the approximations, the proof is obvious. 
 
Proposition: 3.5 Let ( , )U R=A  be a GAS and X U⊆ . Then: 

(i) ( ) ( )R X R X U− = . 

(ii) ( ) ( )R X R X U− = . 

(iii) ( ) ( )R X R X U− = . 

(iv) ( ) ( ) ( )RR X R X B N X− = − . 

(v) ( ) ( ) ( )RR X R X B N X− = . 
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(vi) ( ) ( )R X R X ϕ− = . 

(vii) ( ) ( )R X R X ϕ− =  . 

(viii) ( ) ( )R X R X ϕ− = . 
 
Proof: By using the properties of the approximations, the proof is obvious. 
 
Remark: 3.1 The above propositions can be considered as a one of the differences between our generalization and the 
others generalizations such as Yao space [18, 19], supra approximation space [3] and ([1], [4-8], [12-22]).  
 
Although they used general binary relation but they added some conditions to satisfy the properties of Pawlak space.  
 
Definition: 3.1 Let ( , )U R=A  be a GAS. Then the subset X U⊆  is said to be: 

(i) Totally-definable or "R-definable" (exact) set if ( ) ( )X R X R X= =  (i.e., ( ) )RB N X φ= . 

(ii) Internally-definable set if ( )X R X= , such that ( )
R

E d X =φ . 

(iii) Externally-definable set if ( )X R X= , such that ( )RE d X = φ . 

(iv) Undefinable or "R-undefinable" (rough) set if ( ) ( )X R X R X≠ ≠  (i.e., ( )RB N X ϕ≠ ). 
 
Remark: 3.2 In the above definition ( )RB N X ϕ≠  in cases (ii), (iii). 
 
Lemma: 3.1 Let ( , )U R=A  be a GAS and .X U⊆  Then: 
(i) X is internally definable set if and only if it is after composed set. 
(ii) X is externally definable set if and only if it is after-c composed set. 
 
Proposition: 3.6 Let ( , )U R=A  be a GAS and .X U⊆  Then: 
(i) X is exact set if and only if X is internally and externally definable set. 
(ii) X is rough set if and only if X is neither internally nor externally definable set. 
 
Proof: By Lemma 3.1, the proof is obvious. 
 
Remark: 3.3 From the above proposition and lemma we have: 
(i) X is exact iff it is after and after-c composed set. 
(ii) X is rough iff it is neither after composed nor after-c composed set. 
 
By considering Rτ , of a GAS ( , )U R=A , forms a topology on U, then we can reformulate Definition 3.1 by a 
topological view as follow: 
 
Definition: 3.2 Let ( , )U R=A  be a GAS with a topology Rτ  on U. Then for every UX ⊆ : 

(i) X is said to be internally (resp. externally, totally) definable set if X is open (resp. closed, cl open) set in Rτ . 

(ii) X is said to be R-undefinable (rough) set if X neither open nor closed set in Rτ . 
 
Remark: 3.4 According to Definition 3.2 we have seen how the topology represents the magic box for definability of 
sets. Thus the collection of open and closed sets represents the golden tools to measure exactness or the roughness of 
sets. 
 
4. DIFFERENCES BETWEEN ROUGH SET THEORY AND ORDINARY SET THEORY 
 
In this section we will give the basic deviations between rough set theory "RST" and ordinary set theory "OST”. The 
space in "RST" represents a space equipped with relation, this relation represents the basic and necessary concept to 
define the rough set.  
 
We will give the deviation to four concepts "membership relation, equality, inclusion and power set". 
Definition: 4.1 Let ( , )U R=A  be a GAS and UX ⊆ . Then we say that: 

(i) x is "surely" belongs to X, written Xx∈ , if ( )x R X∈ . 

(ii) x is "possibly" belongs to X, written Xx ∈ , if ( )x R X∈ . 
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These two membership relations ∈ and ∈  are called "strong" and "weak" membership relations respectively and it is 
clear that: 
 
If x X∈  implies to Xx∈  and if Xx∈  implies to Xx ∈ . 
 
The converse is not true in general as the following example illustrated: 
 
Example: 4.1 Consider },,,{ dcbaU =  and R is a binary relation on U such that: 

},,{},{},{ dcbRcbRbaRa ===  and }{aRd = , then 

{ , , { }, { }, { , }, { , }, { , , }}R U a b a b a d a b dτ φ= , and 
* { , , { }, { , }, { , }, { , , }, { , , }}R U c b c c d a c d b c dτ φ= . 

 
Let },{ caX = , then ( ) { }R X a=  and ( ) { , , }R X a c d= . It is clear that Xc∈  but ( )c R X∉  i.e., non 

Xc∈  and also ( )d R X∈  i.e., Xd ∈  but Xd ∉ . 
 
Proposition: 4.1 Let ( , )U R=A  be a GAS and UYX ⊆, . Then by using the properties of approximations we 
can prove the following properties: 
(i) If YX ⊆ , then ( Xx∈  implies to Yx∈  and Xx∈  implies to Yx∈ ). 

(ii) ( )x X Y∈   if and only if Xx ∈  or Yx ∈ . 
(iii) ( )x X Y∈   if and only if Xx ∈  and Yx ∈ . 

(iv) If Xx∈  or Yx∈ , then ( )x X Y∈  . 

(v) If ( )x X Y∈  , then Xx∈  and Yx∈ . 

(vi) ( )x X∈ −  if and only if non Xx ∈ . 

(vii) ( )x X∈ −  if and only if non Xx∈ . 
 
Remarks: 4.1 
(i) In the case of R is an equality relation, all these memberships relations ∈ and∈ are the same and coincides with 

ordinary membership relation ∈  as in "OST". 
(ii) We can redefine the approximations by using ∈ and ∈  as follow:  
 
For any UX ⊆ , ( ) { : }R X x U x X= ∈ ∈  and ( ) { : }R X x U x X= ∈ ∈ . 
 
Definition: 4.2 Let ( , )U R=A  be a GAS. Then the two subsets UYX ⊆,  are called: 

(i) Roughly bottom-equal in A , written YX ~ , if ( ) ( )R X R Y= . 

(ii) Roughly top-equal in A , written YX −~ , if ( ) ( )R X R Y= . 

(iii) Roughly equal in A , written YX ≈ , if YX ~  and YX −~ . 
 
Definition: 4.3 Let ( , )U R=A  be a GAS. Then the subset UX ⊆  is said to be: 
(i) Dense in A  if UX −~ . 

(ii) Co-dense in A  if φ~X . 
(iii) Dispersed in A  if UX −~  and φ~X . 
 
Remark: 4.2 Two different sets which are not equal in "OST", can be equal (approximately) in "RST" as the following 
example illustrated: 
 
Example: 4.2 Consider },,,,{ edcbaU =  and R be a binary relation on U where 

{ }, { , }, { , }, { , }a R a b R c d c R e a d R d a= = = =  and }{eRe = . Then  

{ , , { }, { }, { , }, { , }, { , , }, { , , }, { , , , }}R U a e a d a e a c e a d e a c d eτ φ= , 
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and * { , , { }, { , }, { , }, { , , }, { , , }, { , , , },R U b b c b d b c d b c e a b c dτ φ= }},,,{ edcb . 
 
Let },,{},,,{},,,{ 211 dcbXdbaYdcaX ===  and },,,{2 edbaY = .  
 
Then 1 1( ) { , } ( )R X a d R Y= =  i.e., 11 ~ YX  and 1 1( ) { , , , } ( )R X a b c d R Y= =  i.e., 1 1.X Y−



 Thus 

11 YX ≈  although 11 YX ≠ . 
 
Also 2( )R X ϕ=  and 2( )R Y U= , then φ~2X  and UY −~2  that is 2Y  is dense and 2X  is co-dense in A . 
 
Proposition: 4.2 Let ( , )U R=A  be a GAS and UYXYX ⊆′′,,, . Then:  

(i) If YX −~ , then ( )X Y X Y− −

 

. 
(ii) If YX ~ , then ( ) ~ ~X Y X Y . 

(iii) If XX ′−~  and YY ′−~ , then ( ) ( )X Y X Y′ ′− 



. 

(iv) If XX ′~  and YY ′~ , then ( ) ~ ( )X Y X Y′ ′
  . 

 
Proof: 
(i) Let YX −~ , then ( ) ( )R X R Y= . But   ( ) ( ) ( )R X Y R X R Y=  , 

         then ( ) ( ) ( ) ( )R X Y R X R X R X= =   

         and    ( ) ( ) ( ) ( )R X Y R Y R Y R Y= =  .Hence ( )X Y X Y− −

 

. 
(ii) By similar way as in (i). 
(iii) Let XX ′−~  and YY ′−~ , then ( ) ( )R X R X ′=  and ( ) ( )R Y R Y ′= . Thus 

( ) ( ) ( ) ( )R X R Y R X R Y′ ′=  , 

         which implies that ( ) ( )R X Y R X Y′ ′=  . Thus ( ) ( )X Y X Y′ ′− 



. 
(iv) By similar way as in (iii). 
 
Proposition: 4.3 Let ( , )U R=A  be a GAS and .X U⊆  Then: 
(i) X is dense set if and only if ( )X−  is co-dense. 
(ii) X is dispersed set if and only if ( )X−  is dispersed. 
(iii) Any superset of dense set is also dense. 
(iv) Any subset of co-dense set is also co-dense. 
 
Proof: 
(i) X is dense in A  iff UX −~  iff ( ) ( )R X R U= . But ( ) ( )R X R X= − − , 

         Hence X is dense iff ( ) ( ) ( )R X R U R ϕ− − = − − = −  iff ( ) ( )R X R φ− =  iff )( X−  is co-dense. 
(ii) X is dispersed in A  iff X is dense and co-dense 
         iff ( )X−  is co-dense and dense iff ( )X−  is dispersed  
(iii) Let Y is a superset of X and X is dense, then YX ⊆  and UX −~ . 

         Hence ( ) ( )R X R Y⊆  and ( ) ( )R X R U U= = , 

         which means that )(YRU ⊆ . 

         But ( )R Y U⊆ , then ( ) ( )R Y U R U= = , that is UY −~  and then Y is dense set. 
(iv) By similar way as in (iii). 
 
Proposition: 4.4 Let ( , )U R=A  be a GAS, and then the lower (resp. the upper) approximation of any subset 

UX ⊆  can be defined by: ( )R X  (resp. ( )R X ) is the intersection (resp. the union) of all sets Y such that 
YX ~  (resp. YX −~ ). 
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Proof: We prove the proposition in the case of ( )R X  and the case of ( )R X  by similar way: 
 
First, let UY ⊆  such that YX ~ , then ( ) ( )R X R Y= .  
 
But ( ) ,R Y Y Y U⊆ ∀ ⊆ , hence ( ) { : ~ }R X Y U X Y⊆ ⊆                                               (1) 
 
Now, since ( ( )) ( )R R X R X= , then YXR ~)( . Thus 

{ : ~ } ( )Y U X Y R X⊆ ⊆                                                   (2) 
 
By (1) and (2);  ( ) { : ~ }R X Y U X Y= ⊆  
 
Proposition: 4.5 Let ( , )U R=A  be a GAS and UYX ⊆, . Then: 

(i)    ~X Y  if and only if ( ) ~ ( )X Y− − . 
(ii)   If φ~X  or φ~Y , then ( ) ~X Y ϕ . 
(iii)  If UX −~  or UY −~ , then ( )X Y U−



. 
 
Proof: 
(i) Obvious. 
(ii) Let φ~X  or φ~Y , then φφ == )()( RXR  or φφ == )()( RYR .  

        Then ( ) ( ) ( ) ( )R X Y R X R Y Rϕ ϕ= = =  , that is ( ) ~X Y φ . 
(iii) By similar way as in (ii). 
 
Remark: 4.3 The rough equalities ~, ~ and ≈  are equivalence relations on the power set )(UP  in a 

GAS ( , )U R=A . 
 
Remarks: 4.4 
(i) If R in a GAS ( , )U R=A  is an equality relation, then all rough equalities of sets are coincides with the 

classical set theoretical equality of sets in "OST". 
(ii) Rough equality of sets does not imply the equality in general which illustrated by Example 4.2. 
(iii) According to Remark 4.3, any GAS ( , )U R=A  with a binary general relation generate the following three 

different Pawlak approximation spaces: 
      * *( ( ), ~ ), ( ( ), ~ )P U P U= =A A  and * ( ( ), )P U= ≈A  which are called "the lower, the upper and the 

rough" approximation spaces of a GAS ( , )U R=A  respectively. 
 Moreover, these spaces form three topologies on ( )P U  which are quasi-discrete topologies and they are given 

by
* *( ( ), ( ))RT P U τ=A A , 

* *( ( ), ( ))RT P U τ=A A  and
* *( ( ), ( ))RT P U τ=A A . 

 
Definition: 4.4 Let ( , )U R=A  be a GAS and UYX ⊆, . We say that: 

(i) X is "roughly bottom-included" in Y, written X Y⊂


, if ( ) ( )R X R Y⊆ . 

(ii) X is "roughly top-included" in Y, written X Y⊂ , if ( ) ( )R X R Y⊆ . 
(iii) X is "roughly included" in Y, written X Y⊂



, if X Y⊂ and X Y⊂


 .  
         We call X in the above cases (i), (ii) and (iii) by the following notations: X is "rough lower, rough upper and 

rough" subset in Y respectively. 
 
The rough inclusion of sets does not imply the inclusion of sets as the following example illustrated: 
 
Example: 4.3 Consider { , , , }U a b c d=  and R is a binary relation on U, where: 

},{},{},{ cbRcbRbaRa ===  and }{aRd = . Then  

{ , , { }, { }, { , }, { , }, { , }, { , , }, { , , }}R U a b a b a d b c a b c a b dτ φ=  and 
* { , , { }, { }, { , }, { , }, { , }, { , , }, { , , }}R U c d a d b c c d a c d b c dτ φ=  
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Let },{ cbX =  and },,{ dbaY = , clearly YX ⊆/  and we have 

( ) { }, ( ) { , , }, ( ) { , }R X b R Y a b d R X b c= = =  and UYR =)( . Then X Y⊂


 and X Y⊂  which 

implies that X Y⊂


  although YX ⊆/ . 
 
Proposition: 4.6 Let ( , )U R=A  be a GAS and UYX ⊆, . Then 

(i) If YX ⊆ , then ,X Y X Y⊂ ⊂


 and X Y⊂


. 
(ii) X Y⊂



 and Y X⊂


 if and only if YX ~ . 
(iii) X Y⊂  and Y X⊂  if and only if YX −~ . 
(iv) X Y⊂



 and Y X⊂


 if and only if YX ≈ . 
 
Proof: 
(i) Obvious. 
(ii) X Y⊂



 and Y X⊂


 iff ( ) ( )R X R Y⊆  and ( ) ( )R Y R X⊆  iff ( ) ( )R X R Y=  iff YX ~ . 
(iii) and (iv) by similar way as in (ii). 
 
Proposition: 4.7 Let ( , )U R=A  be a GAS and UYXYX ⊆′′,,, . Then: 

(i) X Y⊂


 if and only if ( ) ~X Y X . 
(ii) X Y⊂  if and only if ( )X Y Y−



. 
(iii) ( ) ( )X Y X X Y⊂ ⊂ 



. 

(iv) If XXYX ′⊆ ~,  and YY ′~ , then X Y′ ′⊂


. 

(v) If XXYX ′−⊆ ~,  and YY ′−~ , then X Y′ ′⊂ . 

(vi) If XXYX ′≈⊆ ,  and YY ′≈ , then X Y′ ′⊂


. 

(vii) If X X′ ⊂  and Y Y′ ⊂ , then ( ) ( )X Y X Y′ ′ ⊂  . 
(viii) If X X′ ⊂



 and Y Y′ ⊂


, then ( ) ( )X Y X Y′ ′ ⊂ 



. 
 
Proof: 
(i) X Y⊂



 iff ( ) ( )R X R Y⊆  iff ( ) ( ) ( )R X R Y R X=  iff ( ) ( )R X Y R X=  iff ( ) ~X Y X . 
(ii) By similar way as in (i). 
(iii) Since ( ) ( ) ( )R X Y R X R Y=   and ( ) ( ) ( )R X Y R X R Y=  . Then ( ) ( )R X Y R X⊆  and 

( ) ( )R X R X Y⊆  , and hence ( ) ( )X Y X X Y⊂ ⊂ 



. 

(iv) Let XXYX ′⊆ ~,  and YY ′~ , then ( ) ( ), ( ) ( )R X R Y R X R X ′⊆ =  and ( ) ( )R Y R Y ′= . Thus 

( ) ( )R X R Y ′⊆  and then X Y′ ′⊂


. 
(v) and (vi) by similar way as in (iv). 
(vi) Let X X′ ⊂  and Y Y′ ⊂ , then ( ) ( )R X R X′ ⊆  and ( ) ( )R Y R Y′ ⊆ . Hence 

( ) ( ) ( ) ( )R X R Y R X R Y′ ′ ⊆  , and then 

       ( ) ( )R X Y R X Y′ ′ ⊆  . That is ( ) ( )X Y X Y′ ′ ⊂  . 
(viii) By similar way as in (vii). 
 
Proposition: 4.8 Let ( , )U R=A  be a GAS and UZYX ⊆,, . Then 

(i) If X Y⊂


 and ZX ~ , then Z Y⊂


. 
(ii) If X Y⊂  and ZX −~ , then Z Y⊂ . 
(iii) If X Y⊂



 and ZX ≈ , then Z Y⊂


. 
 
Proof: Obvious. 
 
Remark: 4.5 The rough inclusions ,⊂ ⊂



 and ⊂


 represent ordering relations on ( )P U  in the GAS ( , )U R=A . 
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Definition: 4.5 Let ( , )U R=A  be a GAS and UX ⊆ . Then the family of all lower (resp. upper, rough) subsets 

of X in A , denoted by ( )P XA  (resp. ( ), ( ))P X P XA A , is given by ( ) { : }P X Y U Y X= ⊆ ⊂


A  (resp. 

( ) { : }P X Y U Y X= ⊆ ⊂A , ( ) { : })P X Y U Y X= ⊆ ⊂


A . 
 
Example: 4.4 Consider the GAS in Example 4.3 and let },{ caX = . Then ( ) { }R X a=  and 

( ) { , , }R X a c d= , and hence }}{},{,,{)( caXXP φ= , 

( ) { , , { },{ },{ },{ , }{ , , }}P X X a c d c d a c dφ=A , 

( ) { , ,{ },{ },{ },{ , },{ , },{ , , }}P X X a c d a d c d a c dφ=A  and 

( ) { , ,{ },{ },{ },{ , },{ , , }}}P X X a c d c d a c dφ=A . 
 
Clearly ( ) ( ) ( )P X P X P X= ∩A A A . 
 
Remark: 4.6 The concept of power set )( XP  in "OST" differs from the concept of rough power set in "RST", for 

instance, in Example 4.4, it is clear that { },{ , },{ , , } ( )d c d a c d P X∈ A , but { },{ , },{ , , } ( )d c d a c d P X∈/ . 
 
The relation between ordinary power set and rough power set will give in the following proposition. 
 
Proposition: 4.9 Let ( , )U R=A  be a GAS and UX ⊆ . Then ( ) ( )P X P X⊆ A , ( ) ( )P X P X⊆ A  and 

( ) ( )P X P X⊆ A . 
 
Proof: Let ( )Y P X∈ , then XY ⊆  and hence ( ) ( )R Y R X⊆  and ( ) ( )R Y R X⊆ . Thus Y X⊂ , 

Y X⊂ and ,Y X⊂


 which implies that ( ), ( )Y P X Y P X∈ ∈A A  and ( )Y P X∈ A . Thus ( ) ( )P X P X⊆ A , 

( ) ( )P X P X⊆ A  and ( ) ( )P X P X⊆ A . 
 
Proposition: 4.10 Let ( , )U R=A  be a GAS and , ,X Y U⊆  Then: 

(i) If X Y⊂


 then ( ) ( )P X P Y⊆A A . 

(ii) If X Y⊂  then ( ) ( )P X P Y⊆A A . 

(iii) If X Y⊂


 then ( ) ( )P X P Y⊆A A . 

(iv) YX ~  if and only if ( ) ( )P X P Y=A A . 

(v) YX −~  if and only if ( ) ( )P X P Y=A A . 

(vi) YX ≈  if and only if ( ) ( )P X P Y=A A . 
 
Proof: 
(i) Let X Y⊂



, then ( ) ( )R X R Y⊆                                                 (1) 

        Now let ( )Z P X∈ A , then Z X⊂


,that is ( ) ( )R Z R X⊆ .Thus by (1), ( ) ( )R Z R Y⊆  and then Z Y⊂


, 

hence ( )Z P Y∈ A  and then ( ) ( )P X P Y⊆A A . 
 
(ii) and (iii) by the same way as in (i). 
(iv) YX ~  iff X Y⊂



 and Y X⊂


 iff ( ) ( )P X P Y⊆A A  and ( ) ( )P Y P X⊆A A  iff   ( ) ( )P X P Y=A A . 
(iv) and (vi) by the same way as in (iv). 
 
Proposition: 4.11 Let ( , )U R=A  be a GAS and ,X Y U⊆ . Then: 

(i) ( ), ( )X P X X P X∈ ∈A A  and ( )X P X∈ A . 

(ii) If YX ⊆ , then ( ) ( )P X P Y⊆A A , ( ) ( )P X P Y⊆A A  and ( ) ( )P X P Y⊆A A . 
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Proof: 
(i) Since ,⊂ ⊂



 and ⊂


 are ordering relations. Then 
       ,X X X X⊂ ⊂



 and X X⊂


, and hence 

       ( )X P X∈ A , ( )X P X∈ A  and ( )X P X∈ A . 

(ii) Let YX ⊆ , then X Y⊂


, X Y⊂ and X Y⊂


. Hence 

       ( ) ( ), ( ) ( )P X P Y P X P Y⊆ ⊆A A A A  and ( ) ( )P X P Y⊆A A . 
 

5. CONCLUSION  
 
Although many authors have been introduced sorts to generalize Pawlak approximation space, but most of them could 
not applied and satisfied the all properties of Pawlak approximations (see: [1], [3-8], [12-22]). In our approach we did 
not added any conditions and we initiated a topological structure based on a binary relation to generalize Pawlak space 
which open the way to more topological applications in rough set context and help in formalizing many applications 
from real-life data. 
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