International Journal of Mathematical Archive-4(11), 2013, 134-146
@IMA Available online through www.ijma.info ISSN 2229 - 5046

USING TAYLOR EXPANSION TO PARTIAL FRACTIONS DECOMPOSITION

Mircea Ion Cirnu*
Polytechnic University of Bucharest, Romania.

(Received on: 26-09-13; Revised & Accepted on: 11-11-13)

ABSTRACT

The automatic Taylor development, based on discrete convolution and deconvolution, is used to partial fractions
decomposition.
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1. INTRODUCTION

Using the automatic Taylor expansion, we give some new numerical methods to partial fractions decomposition of
rational functions. Firstly, we consider the Taylor differential transform that associates to a function the sequence of
coefficients of its Taylor series or only a finite number of them. The Taylor transform of a product, respective quotient
of functions is computed by discrete convolution, respective deconvolution, of the corresponding sequences of
coefficients. This eliminates the algebraic calculation and the Taylor development becomes automatic.

As is well known, partial fractions decomposition of rational functions applied to the integration of these functions.
Also it is used to determine the inverse Laplace transforms of such functions and thus to physical system theory. So far,
there are numerous attempts to find a simple numerical method for this decomposition. In the paper [7] are presented
nine such different methods. Using the automatic Taylor expansion, we give a new method for partial fractions
decomposition of rational functions. It extend so called “particular values method”. These particular values, used to
obtain the numerators of the decomposition, are even the poles of the rational function. When the poles are complex
numbers, must work in complex, but there are cases in which it is possible to work only with real numbers. See
Example 8.3 below. Our method of partial fractions decomposition is simpler than the already known methods, covers
all cases and can be applied even to difficult examples. We give two theorems, one for a single pole of arbitrary
multiplicity and the second, for a pair of poles of the same multiplicity. The second theorem can be used in the case of
two complex or irrational conjugate poles of the same multiplicity. In the latest example 8.6, we do the partial fractions
decomposition by both theorems. Based on the convenient decomposition, we compute the indefinite integral and the
inverse Laplace transform of the considered function in that example.

Other applications of the discrete convolution and deconvolution were given by the Author in the works [1]-[5].

2. TAYLOR DIFFERENTIAL TRANSFORM
We call Taylor differential transform of an indefinite differentiable function f (X) , the sequence of functions

1
T(f (X)) = (m f (“)(X): n= 0,1,2..} and Taylor transform in a point X = X, the sequence of numbers

T, (f(x))=(c,), where ¢, = % f (”)(XO ), n=0.,.... For anatural number M , we also will denote

Tm(f(x))z[%f(”)(x):nzo,l,...,mj, T (f(x)=(c,:n=01...,m) and

P (f(x)=P(c,)= Zmlcn (x—x,)" , the Taylor polynomial of degree m.

Xo
n=0
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If we denote ab = (a,b, ) the usual product of two sequences a =(a, ) and b=(b,), the derivatives of the
function f(X) are given by the formula f(”)(x)= (N)T(f(x)) and there values in the point X = X, by the

formula f ™ (x,)=(n!) T, (f(x)).

3. EXAMPLES OF TAYLOR TRANSFORMS
Some examples of Taylor transforms in an arbitrary point and in origin, are:T(a): (a,0,0,...), where a is a
constant function.

1 1 1 (-
T(I =|Inx,—,— , — . I 0.
(Inx) (nx X 2x%2'3x3 4x* nx" j or x>

. . 1. 1 1 .
T(sin x) = | sin x,€0s X,—=in X,——COS X,—Sin X, ... |,
2 3! 41

. 1 1 . 1
T(cosx)= (cos X,—SiN X,—— C0S X, —Sin X, — C0S x] .
2 3! 41
Particularly, Ty (a) = (2,0,0,...), T,(x) = (01,0,0,....), T, (x?)=(0,010.0,...),

T,(x")=(0....0,100,...) To(e):(ﬂ%%%]

3l
Remark: These formulas was given in the author book [1], pg. 84. However, unfortunately, in [1] the two formulas for

T(Ej and T (In x) contain mistakes.
X

: 11 1.1
T,(sinx)= (0,1,0,—— Oﬁj T,(cos x) = (1,0,—5,0,5,...}

4. OPERATIONS WITH SEQUENCES

We consider (see [1] and [6]) the Cauchy product or (truncated or short, linear discrete) convolution
n

c=(c,)=a*b= @k:o a.b, , | of the sequences a=(a,)and b=(b,).

The convolution can be computed by the multiplication algorithm

a'0 a1 aZ
by by b,
ayh, a,h, a,h,
a0 bl albl
aO b2

Co = a,b, c, =a,b, +a,b, c, =a,b, +ab, +a,b,

© 2013, IJMA. All Rights Reserved 135



Mircea lon Cirnu*/ Using Taylor Expansion To Partial Fractions Decomposition/ IIMA- 4(11), Nov.-2013.

For M natural numbers one denotes a"™ =a*a*---*a.
%f—J

m

If the sequences a = (an) with 8, #0 and C= (Cn) are given, then the sequence b = (bn) such that c=a*Db

can be determined by the deconvolution formula (see [1] and [6])

~lege, - X b, n =12,
b:c/a:a— CorCn— D @by iN=12,...).

0

The deconvolution can be computed by the division algorithm

/ ¢,—ab, --- c,—ab, -
c,—ab, -~ ab -/

On the base of the usual (long) convolution and deconvolution, which are used to compute the product and the quotient
(with rest) of two polynomials, introduced in MATLAB by the instructions CONV and deconv,, it is possible also to
consider the truncated convolution and deconvolution by the instructions tconv and tdeconv, in

the following manner:
function res = tdeconv(a,b)

[1,c] = size(a);
res = zeros(l, c);

function res = tconv(a,b) for i=1:c
| = size(a); [q r]=deconv(a,b(L1:c—i+1));
temp = conv(a,b); res(i) = q;
res =temp(L,1:1(2)); if (i<c)
end a=r(2:c—i+1);
end
end
end

In the examples of partial fractions decomposition given below, we present several algorithms of convolution and

deconvolution, the others being omitted.

5. TAYLOR TRANSFORMS OF PRODUCTS AND QUOTIENS OF FUNCTIONS

If a function f (X) contains products and quotients of other functions, then to determine its Taylor transform we can
use the discrete convolution and deconvolution, as can see from the following theorem and its consequence.

Theorem 1: If f(X) and g(x) are indefinite differentiable functions, then
T(f (x)a(x)) =T(f (x))=T(g(x)).

Proof: Using Leibniz formula for derivatives of a product of functions,

T(10900) = A 000)” J= E 7] 008" 00)

(S 1 0 = 1000 o 2
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Corollary: If f(X) and g(x);«t 0 are indefinite differentiable functions, then

T(F(x)/g(x)=T(f(x))/T(g(x)). @
Proof: From theorem, T(f(x))=T((f(x)/g(x))g(x))=T(f(x)/g(x))*T(g(x)), and therefore it results the

above formula.

Remarks: 1) Obviously, the formulas from above Theorem and its Corollary, are also true for Taylor transformation

T, Concentrated in a point X = X, .
0

2) If we want to calculate only derivatives up to order m, then are used the Taylor transformsTm(f (X)) and

T" (g (X)) sequences of the same finite length m +1.

6. PARTIAL FRACTIONS DEVELOPMENT

We will use the automatic Taylor development, based on discrete convolution and deconvolution, to get a numerical
automatic method for partial fractions development of the rational functions. It is based on the following two theorems.

Theorem: 2 If f(X) is a function of the form

=5 A L ax)=SA(x-a) —1 +qx
f(x) é(x_a)m_k 9(x)=2 Al )(X_a)m 9(x). ©

where m # 0O is a natural number, a and Ak ,for k=0,1,...,m—1, are complex numbers and g(x) is a function

with derivative of m —1 order in @, then the coefficients A, can be computed by the relation

d k
A __nm—[(x a)" f (x)|=c, k=04,...,.m~1, @
hence the numbers A, are the coefficients C, of the Taylor development of the function (X - a)m f (X) in the point

X =a, namely :z_:Ak (x—a)< =Pt ((X —a)" f (X))

Proof: In conformity with (3), we have
n

loear sl 2im O 5, feea) (-2 gl

n!x-a dx"

C =
" nlxoadx

For n =0 results ¢, = A,. For 1<n<m-1, itresults

:—IlmZAkkk 1)---(k—n+1)(x-a)" —ImZ(j (m=j+1)(x-a)"’ Xn_j-g(x):'%-

nlx-a nlx-a

Remark: As is well known, if f(x) is a rational function, its nominator has degree less than the denominator and a
is a pole of multiplicity m of f (X) , then the function has the form (3), therefore the Theorem 2 work.

Corollary: If f(x) is a rational function with degree of the numerator smaller than the denominator, having the
distinct poles Xy, ..., X, of multiplicities m;,...,m, then f(x) has the partial fractions development

g VR 1
—J_Z;ij [(X XJ) f(X)]W 5)

where P [(X - X )f (X)] denotes, for j =1,..., p, the Taylor polynomial of degree m; —1 in the point X = X;

Xj
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Theorem: 3 If f (X) is a function of the form
& A X+ B,

fx)=2, PP 9(x). ©®)

where m = 0 is a natural number, a, b, A, and B, , for k =0,1,...,m—1, are complex numbers and g(x) isa

function with derivative of m —1 order in @, then the coefficients A, and B, can be computed recursively by the
relations

c, = Aa+By, ()
¢, =(Aa+B,Ja-b)+A,, ®)
¢, =(Aa+B, a-b)’+Aa+B,+A(a-b), ©)

=(A,a+B,Ja-b)’ +2(A,a+B,)a-b)+A(a-b)* +A, (10)

c,=(Aa+B, Ya-b)" +(n-1)A _,a+B  )a-b)"*+A (a-b)"" +

+§k(k_lz'n"_(?;!_n+l)(&a+Bk)(a—b)%_“+ 2 k(k-1)---(2k —n+2)

k=0
kD
2

4<n<m-1,ifm=>=5 (11)
where (¢, :k=01,...,m-1)= Tam’l((x —a)"(x—b)" f(X)) are the coefficients of the Taylor polynomial of
degree m —1 of the function (X — a)m (X — b)m f (X) in the point X =a.

Proof: In conformity with (6), we have
n

-2y (eb)" 1 ()]
o Al o) s e c-b (o)

k

1. d
=—lim
n!x-a dx

c

n

n! xea dx"

For n =0, itresults (7). For 1<n <m-—1, it results

6= HimS 3 (k-1 (- 1 (x-a) T S (e x|

k=0 j=k

n

+%|Ximjz(rj‘jm(m_1)...(m—j+1)(x—a)m_j
_1 i [Ejkmmsnnkk [(Akx+ Bk)(x—b)sz(A]a+ B,)(a—b)"

=1 . gnx gt
B (B S b s -I0A, S (o) |

from which results the formulas (8)-(11).

Particular cases: From (11), if m > 5, it results the formulas

c, =(A,a+B,Na-b)’ +3(Aa+B,)a-b)’ + A(a-b)’ + A,a+B, + 2A,(a-b), (12)
¢, =(Aa+B;)(a-b) +4(Aa+B,)(a-b)’ +A,(a-b)' +3(Aa+B,)(a-b) +3A(a-b) + A, (13)
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Remark: As is well known, if f (X) is a rational function, its nominator has degree less than the denominator, the last
being a polynomial with real coefficients and a is a complex pole of multiplicity m of f (X), then the function has

the form (6) with b = & the complex conjugate of a, therefore the Theorem 3 work. See Example 8.5. Same situation
when the denominator has rational numbers as coefficients and a is an irrational pole of the function of multiplicity

M . Then b is the irrational conjugate of @ and the Theorem 3 also work. See Example 8.6.

8. EXAMPLES OF PARTIAL FRACTIONS DEVELOPMENT

X

|
x+1)" (x=1)"(x=2)" [ (x=1)"(x=2)" J(x+1)’
[ SR ERARENE
x+1)° (x=1)" | (x+2)* (x=1)° J(x=2)
( J 1 +P{ (1L1,0) 1
(-2 ( 1°J(x+1° 7 {(22,0)7%(-11,0)" J(x-1)’
{ 21000) J 1 :Pl( (-12) ] 1
3,1,0,0,0)%%(1,1,0,0,0)° J(x-2)° | (1944,-6156) ) (x+1)’
110 1 . 2,1,0,0,0 1
[ ~4,16, 21} x-1)° +P2[(9(,33,46,30,)9)]()(_2)5
1 ,( 1 559) 1
1( 1944’ 11664J(x+1)2+ 1[ 44 E)W

1(2 19 13 593 2689] 1 { 1 13 )}
(

= - 1
; x-2)° | 1944 1166 "

8.1. f(x)

9' 279" 243’ 729

(x+1)2

1 5 59 2 1 2 19 13 2 593 3
2 2+ Y (x-1 L2 xm2) 42 (x—2) =2 (x =2
{ 1 4(x )+16(x ) } - +{9 22(x )+ s (x ) 243(x )

(x-1)

2689(X_2)4} 1 1 13 1 5
729 (x—2)"  1944(x+1)° 11664(x+1) 4(x-1)" 4(x-1)’
59 2 19 13 503 2689

T16(x—1) o(x—2F 27(x—2)'  o(x—2f 243(x—2) 729(x—2)

For the Taylor polynomial of four degree in X = 2 have been performed the convolutions

110 0O 31000 1 3 3 1 0
11000 31000 9 6 1 0 0
110 0O 9 3 0 0 O 9 27 27 9 0
1100 3100 6 18 18 6
1 3 3
121 00 9 6 1 0 O
110 0 O 9 33 46 30 9
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From which it results

(1,1,0,0,0)° =(1,3,31,0), (3,1,0,0,0)* =(9,6,1,0,0)
and

(31,0,0,0) *(1,1,0,0,0) =(9,33,46,30,9)

and the deconvolution

2 1 0 0 0 \ 9 33 46 30 9
>, 2 %2 20, 2 _19 13 593 2689
3 9 3 9 27 9 243 729
; B %2 2o,
3 9 3
_19 209 874 190
3 9 27 9
NI
_593 142
27 3
593 6523
27 81
/ 2689
81
2689
81
/
Hence
(21,0,0,0) (2 _1913 58 2689]
(31,0,0,0)%%(1,1,0,0,00° \9" 27" 9" 243" 729
15625 2. ¢ 5, A X+B,
8.2. f(x)= -+ . We have
(x—2)(x? +1) JZO (x- 2 g(x 2 1)
(6,5.8,)=T7 156256 15625(1?6 0) (15625,0,0) _ (1-4812.24),
(x2 +1) (541)°  (15625,75000,168750)
(CorGs) =T 15625 15625§1000OO) (156250,0,0,0,0)
Tl (x=2)° ) (<2+0,1,0,0,0,0)° (—2+11i,9-12i,—6+3i,1,0,0)

= (- 250 —1375i,525 —1800i,1140 —1230i,1170 — 440i,834 + 87i,442.68 + 282.24i).

Hence C, = Ayi + B, = -250-1375i, A, — 1375, B, =250,
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¢, = 2i(Aji + B,)—1375 = 525-1800i, A, =950, B, = -900,
¢, = —4(A,i + B,)—1900i — 950i — 900 = 1140 -1230i, A, =405, B, =510,
= —8i(Aji + B,)+1620 + 4i(— 405i —510)— 950 = 1170 — 440i , A, = —140,
B, =200, ¢, =16(A,i + B, )+1132i +12(140i + 200) - 405i —510 —1620i = =834 +87i,
A, =43,
B, =66, c; =32i( Aji+B;)—688—32i(—43i —66) +2112i +840—1200i +1680 — 405
=442.68 +282,24i,

A =-12.24, B, =-19.68.

1 4.8 12.24 1375x+250 950x +900
Therefore, f (X) = 5 5>+
(x-2)" (x-2)" x-2 (x +1) (x +1)
405X +510 14OX +200 43x+66 12 24x+19.68
(x +1) (x +1) (x +1) x* +1

83 f() XP+ X+ X +3x%2 +x+4

(x +1) (x +3)

1 4
Solution: 1 (complex) We will obtain f (X) = ZJ— + Z Ax+B \We have
o0 (x2 + 3)1 k=0 (X +l)

. = L XXX+ 3 + x+ 4 (—32+7'\/§’37+60i\/§)
(6.6) Ts =

(¢ +1) (-2.2i¥3)"

LT )L o -100R),

Hence

.~ = 7. -~ 1 =
C,=Ajiv3+B,=1-—iv3, Ay =——, B, =1,
o = A3+ By =1- V3, A = - B,

_ _ 68 1oo 25 25
=2i iv3+B = , B, =—.
“ \/_(A“/_ ) 2 32 W3 A= 64’ ' 16
(C c )—T4 X exP e x34+3x2+x+4 B (i,3+12i,18—7i,—9—20i,—15+5i)
0114y i (X2+3)2 (2,2i,1,0,0)*2
_(i,3+12i,18—7i,—9—20i,—15+5i)_(l 5,420 17, 21 L 211, gj
(4,8i,0,4i,1) 24 " T 4 16
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: i 1 1 5 . 1 3
C,=A1+B,=—, A, =—, B, = = i+B,)+==—+3i, A=-=,B, =—;
0 AO 0 4 4 0 (Al ) 4 4 Al 2 1 2
: i 3 21 17, 11 9
C, =—4Aji+B,)-i-——+-="-""i A= B,=—;
2 = ~HAi+By) 2 2 2 4% 16 ° 4
1% 9) 11 1 21 17
s =—8i(Ai+B;)+4i|l ——-—|-—-= =——-26i, Ay =——, B =—;
(Adi+B,) (16 4) 4 2 2 A 8
16(Ai+B,)-12 -2 A7), 9 10 9 I —E —335',A4=§,. R
8) 2 16 4 4 4 16 64 16
Therefore
f(x)=— X 3-x 11x-36 34-9x  25(x—4) L, 32-Tx +25(x—4)

A +1] 2 +1) 16 1) 160 +1) 64+ aa(xteaf 6407 +3)

Solution: 2 (real) f (x) = f,(t)+ xf,(t), where t = x* and

t*+3t+4
_p t+3t+4| 1 L pt t*+3t+4 1
I W R N (R A [ (T §
Cos[(06-310)) 1, ((-3230)) 1
s (2,1,0,0,0)*2J(t+1)5 ' '3[(— 21)° J(t+3)2
o (O,6,—3,1,0)J 1, 1[(—32,30)J 1
C 7 (4420,0) Jt+1) | (-32.80) J(t+3)
(a3 917 25) 1 . 25)) 1
) P‘l(o’? 48’ _Ej T [(1’_En(t+3)z
3 9 17 25 4 1 25 1
:{E(m)_z(m) Ay - }(t+1)5+[1—ﬁ(t+3)}(t+3)2
3 9 17 25 1 25

2t+1) alt+1) 8+l 16(t+1) (t+3) 16(+3)

£ ()= tstrt+1 ZP“l[tZJerlJ 1 +P13[t2+t+51j 1 2
(t+1)"(t+3) (t+3)" J(t+1) (t+1)" J(t+3)
_pt (1,—1,1,0,0)} 1 +P1[(7,—5)]( 1

(21,0,0,00% J(t+1) 7 (-2,1)° J(t+3)’

J(1-1200)) 1 L (7-5) ) 1
~M1(4.2100) ](t+1) " P{(—sz,zao)] (t+3)

iy

=

SSTERENE A

M4 2'16" 16’64 (t+1) 32’ 64 (t+3)
1 1 11 9 1

=| S-S (t+ )+ (D) - (t+1) —tl

[4 2( )+ 16(+) 16( i }
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7 25 1 1 1 11 9
_|:_+_(t+ ):l 2~ 5 T 3 2
32 64 (t+3)  a(t+1) 2(t+1)" 1 (t61) 1 (t61)
P - S
64(t+1) 32(t+3)° 64(t+3)

It results that f (X) has the same form as that obtained in the previous solution.

84, F(x)= x® —=5x° +10x* —9x® +5x% —3x + 2
h (x2 —2x+2)5(x2 —2x+4)2

Y Y Y 43y y+4
(v* +1f (v* +3f

Performing the change of variables X = Y +1 we obtain the function f (y) , hence

the example 8.4 is reduced to example 8.3.

Remark: All the rational functions whose denominator is a product of trinomials whose canonical forms have the same
binomial, can be developed in partial fractions by the real method presented in the second solution of the Example 8.3,
after a convenient change of variable.

Ax+B,
85 f (x) = L -y AT 5 AXEB

1 2
(2 +1f(x2+2x+2f T+ S rax+2f ™

ey 1 @) @)
(01 1) Tl[( )3J (

X* +2X+2 1+2i,2+2i)° (-11-2i,-42+6i)
= (—0.088 +0.016i,0.2974 — 0.1632i ), hence

¢, = Aji + B, =-0.088+0.016i, A, =0.016, B, =—0.088,

G, = 2i(Ai+B,)+0.016 =0.2974-0.1632i , A, =-0.1408, B, =-0.0816;

1 10,0 1,0,0
(C01C11C2):T—21+i 2 2 = ( ) 2 = ( ) B
(x*+1) | (1-2i,-2+2i1) (~3-4i,4+12i,2-12i)

=(~0.12 +0.16i,-0.416 + 0.288i,-0.7456 + 0.3008i ), hence

Co = A (-1+i)+B, =-0.12+0.16i, A, =0.16, B, = 0.04;
¢, = 2i[A(-1+i)+B,]+0.16 = -0.416 + 0.288i, A =0.288, B, =0.432;
C, =4[ A (-1+i)+B, |+0.288(~1+i)+0.432+0.576i = —0.7456 + 0.3005i,

A, =0.1408, B, =0.3632. Therefore

0.016x—-0.088 0.1408x+0.0816 0.16x+0.04  0.288x+0.432 0.1408x +0.3632
f(x): a2 2.1 + 5 3 T, 2 T 2 .
(x*+1) X"+ (x*+2x+2) (x2 +2x+2) XT+2x+2
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4
s f(x)= (x+17(x2 —2x -1

Solution: 1 (Based on Theorem 3)

(50,61,'62)=Ti[( . )2]=((4’0’0) _ (109) =(1,4,11) and

x?—2x-1 2,-4,1)"° (1-45)

4 (4,0) (4,0) .
c.,C)=T" - ’ = ! = =(10-72,-51+36+2), in
(c0.c.) M[(x+1)3j +v21)° (20+14v218+12V2) ( )
conformity with the algorithms
2442 1 4 0 ‘ 204142 1841242
2442 1 4 12-642 \ 10-742  —51+3642
6+442  2+4/2 /| —12+642

2442 —12+642
6+4V2  4+242 /
2+\/§ 1

20+1442 12+8y2

6+4\/§

20+144/2 18+1242

50, Co = A [L+/2)+ B, =10 742, Aj =-7, B, =17 and
¢, =2v2|A[+2)+ B, |-7=-51+36v2, A =-11, B, =29.

Therefore the decomposition in partial fractions is
f(X)— 1 N 4 N 11 N 17-7x N 29 -11x (14)
(x+1)®  (x+17 x+1 (XZ_Zx_l)Z x2—2x-1"

Solution: 2 (Based on Theorem 2)

f(x)=

4
(x+1)3(x—1—\/§)2 (x—1+ \/5)2

e 4 Lo [ 4 } 1
h (x2—2x—1)2 (x+1)’ e (x+1)‘°’(x—1+\/§)2 (x—l—\/E)2
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+Pll_¢§ : 2 - 2
(x+1)3(x—1—\5) (x—1+x/§)
[ (4,0,0)} 1 4(1,0) 1
=P 2 3+P1+ﬁ %3 2 2
(2-41)" J(x+1) (2+/21) #(2/2) " J(x-1-2)
T J
L pt 4(1,0,0) 1 _w (1,0,0)] 1
12 (2_\/21)*3*(_2\/5’1)*2 (X—l+\/§)2 -1 (1,_4,5) (X+l)3
Lt (1,0,0) 1
2| (40+2842,64+442) (x—l—ﬁ)2
) (10,0) 1 1
e (40-28V2,64-4442) (X_1+ﬁ)z_P‘1(1’4'11)(x+1)3
+%Pli\/§(10—7\/§,—44+37\/§)m
1, 1 1 4 11
+§Pl_ﬁ (1O+7\/§,_44_37\/§)(x—1+\/§)2 (x+1)° +(x+1)2 X+
10-742 —44+431J2  10+7/2  -44-7\2

(15)

' 8(x—1—\/§)2 ’ 8(X—1—\/§)+ 8(x—1+ \/E)Z " 8(x—1+ \/5)

Remark: A little algebraic calculus shows that the two developments of f(X) in partial fractions given by the
formulas (14) and (15) are equal. However, for integration and for calculus of the inverse Laplace transform, more
convenient is the development (15). Indeed, it gives

1 4
J' f(x)dx=-

>

2(x+1) x+1

10-7/2 44_§1ﬁln‘x—l—\/§‘

+11In|x+1|- -
e 8(x-1-+2)
10+742 444312
- - In
8(x -1+ \/E) 8
where C is an arbitrary constant. If X is a complex variable with Re(x) >1+ \/E , from formula (15) it results the
inverse Laplace transform

‘x—1+\/§‘+c,

10-72 (1) 44-312 fue)
8
+%tem _ﬂem

L*(f(x))= %tzet +4te +11e™" +
" t>0.

9. CONCLUSIONS

Besides the well known applications of the Taylor series development — the approximation of the functions by
polynomials and power series method for solving different types of equations, the last being now named Taylor
differential transformation method, we added other two, the automatic high order differentiation in [1] and the partial
fractions decomposition in this paper. As can see by the above examples, the new methods given in the present article
can be applied to cases that are difficult to solve by the methods known so far.
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