International Journal of Mathematical Archive-4(11), 2013, 220-230 MAAvailable online through www.ijma.info ISSN 2229 - 5046

Fuzzy Bi-Γ-ideals in Γ-semi near-field spaces (F-Bi-I-Γ-SNF-S)

N V Nagendram^{1*}

Assistant Professor (Mathematics), Department of Science & Humanities (Mathematics), Lakireddy Balireddy College of Engineering, Mylavaram 521 230 Krishna District - Andhra Pradesh India. E-mail: <u>nvn220463@yahoo.co.in</u>

T V Pradeep Kumar²

Assistant Professor, Department of Mathematics, Acharya Nagarjuna University College of Engineering, Acharya Nagarjuna University, Nambur, Nagarjuna Nagar 523 510, Andhra Pradesh, India

Y Venkateswara Reddy³

Professor (Retd.) cum Subject Advisor, Department of Mathematics, Acharya Nagarjuna University College of Engineering, Acharya Nagarjuna University, Nambur, Nagarjuna Nagar 523 510, Andhra Pradesh, India.

(Received on: 28-10-13; Revised & Accepted on: 28-11-13)

ABSTRACT

In this paper, we consider the fuzzification of bi- Γ -ideals in Γ -semi near-field spaces, and investigate some of their related properties. Maximal fuzzy bi- Γ -ideals of Γ -semi near-field spaces are introduced and their properties discussed. Finally, chain conditions relating to fuzzy bi- Γ -ideals of Γ -semi near-field spaces are investigated

Key words: Γ -semi near-field space, fuzzy Γ -ideals, fuzzy bi- Γ -ideals, fuzzy interior, Γ -ideals.

AMS 2000 Subject classification code: 16D50, 20M99, 20N25, 16P20, 16Y30, 03E72.

SECTION 1: INTRODUCTION

Fuzzy bi- Γ -ideals in Γ -semi near-field spaces were first introduced in the literature by N V Nagendram in depth study of existing literature of Zadeh [25], the fuzzy set theories developed by zadeh and others found many applications in the domain of mathematics and elsewhere.

 Γ -semi near-field spaces defined by N V Nagendram and the ideal theory in Γ -semi near-field spaces studied by N V Nagendram, Dr. T V Pradeep Kumar and Dr. Y Venkateswara Reddy. Fuzzy ideals of rings were introduced by Liu and have been studied by several authors. The notion of fuzzy ideals and its properties were applied to various areas: semigroups and BCK algebras and semi-rings. The classification of left(resp. right) ideals of Γ -near-rings, and investigated the related properties by Y B Jun. Also he introduced the notion of fuzzy characteristic left (resp. right) ideals and normal fuzzy left (resp. right) ideals of Γ -near-rings, and studied some of their related properties.

In continuation, I state fuzzy bi- Γ -ideals in Γ -semi near-field spaces, and investigate its properties. As we know, Γ -semi groups are generalization of semi-groups, Chinram [4] studied some properties of bi-ideals in semi-groups and it has motivated us to study and to introduce the notion fuzzification of a bi- Γ -ideals in a Γ -semi near-field space as a generalization of a Γ -semi near-field.

In this paper, we consider a fuzzification of the concept of a bi- Γ -ideal in a Γ -semi near-field space and some properties of such bi- Γ -ideals are investigated. The homeomorphic property of fuzzy bi- Γ -ideal is established. The concept of a fuzzy interior Γ -bi-ideal and a fuzzy - Γ -ideal are also introduced and some properties are discussed. Now the notion of maximal fuzzy bi- Γ -ideals of Γ -semi near-field spaces discussed. Finally chain conditions relating to fuzzy bi- Γ -ideals of Γ -semi near-field spaces.

SECTION 2: PRELIMINARIES

We first recall some basic concepts for the sake of completeness.

Definition 2.1: A near-ring space N is a system with two binary operations "+" and "." such that: (1) (N, +) is a near- ring,(not necessarily abelian) (2) (N, \cdot) is a semi-near- ring and (3) (x + y)z = xz + yz, for all x, y, $z \in N$.

We will use the word "near-ring" to mean "right distributive near-ring" and write xy instead of x.y.

Note that 0.x = 0 and (-x)y = -xy but in general x.0 = 0 for some $x \in N$.

Definition 2.2: Let $(N, +, \cdot)$ be a near-ring. A subset I of N is said to be an ideal of N if: (1) (I, +) is a normal subgroup of (N, +), (2) IN \in I, (3) $n_1 (n_2 + i) - n_1 n_2 \in$ I, for all $i \in$ I and $n_1 , n_2 \in$ N.

If I satisfies (1) and (2), then it is called a right ideal of N. If I satisfies (1) and (3), then it is called a left ideal of N.

Definition 2.3: A Γ -near-ring is a triple (N, +, Γ) where (i) (N, +) is a group,

(ii) Γ is a non-empty set of binary operators on N such that $\forall \beta \in \Gamma$, $(N, +, \beta)$ is a near-ring and (iii) $x\beta(y\alpha z) = (x\beta y)\alpha z$ for all x, y, $z \in N$ and $\beta, \alpha \in \Gamma$.

Definition 2.4: A subset A of a Γ -near-ring N is called a left ideal (or right ideal) of N if (i) (A, +) is a normal divisor of (N, +), (ii) $u\beta(x + v) - u\beta v \in A$ i.e., $u\beta x \in A$ for all $x \in A$, $\beta \in \Gamma$ and $u, v \in N$.

Definition 2.5.: A near-field space N is a system with two binary operations "+" and "." such that: (1) (N, +) is a near-field (N not necessarily abelian) (2) (N, \cdot) is a semi-near-field and (3) (x + y)z = xz + yz, for all x, y, z \in N.

We will use the word "near-field" to mean "right distributive near-field" and write xy instead of x. y.

Note that 0.x = 0 and (-x)y = -xy but in general x.0 = 0 for some $x \in N$.

Definition 2.5: Let S be s semi near-field. By a sub semi near-field of S we mean a non-empty sub near-field space A of S such that $A^2 \subseteq A$.

For the sake of completeness, we now recall some concepts of fuzzy theory.

Definition 2.6: A mapping $\lambda: N \to [0, 1]$ is called fuzzy near-field space of N and complement of a near-field space λ , denoted by λ' is the fuzzy near-field space in N given by $\lambda'(x) = 1 - \lambda(x)$ for all $x \in N$. the level near-field space of a fuzzy near-field space λ of N is defined as $U(\lambda; t) = \{x \in N / \lambda(x) \ge t\}$.

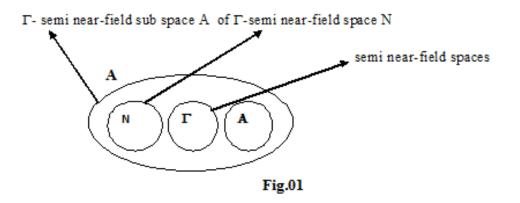
Definition 2.7: A fuzzy near-field space λ in N is called a fuzzy sub semi near-field space of N if $\lambda(xy) \ge \min{\{\lambda(x), \lambda(y)\}} \forall x, y \in N$.

Definition 2.8: A sub semi near-field space A of a semi near-field space N is called a bi-ideal of N if $ANA \subseteq A$.

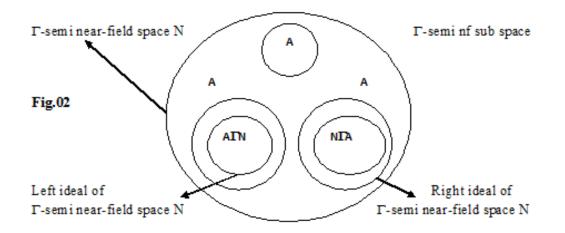
Definition 2.9: A fuzzy sub semi near-field space λ of a semi near-field space N is called a fuzzy bi-ideal of N if $\lambda(xyz) \ge \min \{\lambda(x), \lambda(z)\} \forall x, y \text{ and } z \in N$.

Definition 2.10: Let $N = \{x, y, z, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two non-empty semi near-field spaces. Then N is called a Γ -semi near-field space if it satisfies the axioms (i) $x\gamma y \in N$, (ii) $(x\alpha y)\gamma z = x\alpha(y\gamma z)$, $\forall x, y, z \in N$ and $\alpha, \gamma \in \Gamma$.

Definition 2.11: Let N be a Γ -semi near-field space. A non-empty Γ -semi near-field sub space A of a Γ -semi near-field space N is said to be a Γ -sub semi near-field space if $A\Gamma A \subseteq A$.



Definition 2.12: A left (right) ideal of a Γ -semi near-field space N is a non-empty Γ -semi near-field sub space A of a Γ -semi near-field space N such that N Γ A \subseteq A(A Γ M \subseteq A).



Definition 2.13: If A is both a left and right ideal of a Γ -semi near-field space N, then we say that A is a Γ -ideal of (Γ -semi near-field space) N.

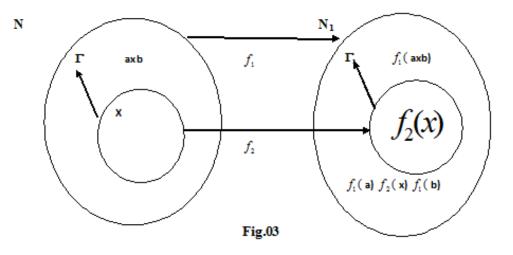
Definition 2.14: A Γ -semi near-field space N is called left-zero (or right-zero) if $x\gamma y = x$ (or $x\gamma y = y$) for all $x, y \in N$ and $\gamma \in \Gamma$.

Definition 2.15: An element e in a Γ -semi near-field space N is called an idempotent if $e\gamma e = e$ for some $\gamma \in \Gamma$.

Definition 2.16: A Γ -sub semi near-field space A of Γ -semi near-field space N is called an interior Γ -ideal of N if M Γ A Γ M \subseteq A.

Definition 2.17: Let N be a Γ -semi near-field space. A sub Γ -semi near-field space A of N is called a bi- Γ -ideal of N if $A\Gamma M\Gamma A \subseteq A$.

Definition 2.18: Let N be a Γ -semi near-field space and N₁ a Γ_1 -semi near-field space. A pair of mappings $f_1: N \to N_1$ and $f_2: \Gamma \to \Gamma_1$ is said to be a homomorphism from (N, Γ) to (N₁, Γ_1) if $f_1(axb) = f_1(a)f_2(x)f_1(b)$ for all a, b \in N and x $\in \Gamma$.



 (f_1, f_2) pair is a Homomorphism from (N, Γ) to (N_1, Γ_1)

Definition 2.19: A fuzzy set λ of a Γ -semi near-field space is called a fuzzy Γ -semi near-field space of N if and only if $\lambda(x \ \gamma \ y) \ge \min{\{\lambda(x), \lambda(y)\}} \ \forall \ x, y \in N \text{ and } \gamma \in \Gamma$.

Definition 2.20: A Γ -semi near-field space N is said to satisfy the left (or right) ascending chain condition a.c.c. of left (or right) ideals if every strictly increasing sequence $U_1 \subset U_2 \subset U_3 \subset \cdots$ of left (right) ideals of N is of finite length.

Definition 2.21: A Γ -semi near-field space N is said to satisfy the left (or right) Notherian if N satisfies the left (or right) ascending chain condition a.c.c. of left (or right) ideals.

Note 2.22: Let E_N denote the set of all idempotent elements in a Γ -semi near-field space N and χ_A the characteristic function of a sub Γ -semi near-field space A of N. And Let N denote Γ -semi near-field space otherwise specified and λ of a near-field space N is a notion of fuzzy bi- Γ -ideal of N.

Definition 2.23: A fuzzy set λ of N is called a fuzzy bi- Γ -ideal of N if satisfies following axioms: (i) $\lambda(x \gamma y) \ge \min \{\lambda(x), \lambda(y)\} \forall x, y \in N \text{ and } \gamma \in \Gamma$, (ii) $\lambda(x\beta y\alpha z) \ge \min \{\lambda(x), \lambda(z)\} \forall x, y, z \in N \text{ and } \beta, \alpha \in \Gamma$.

Example 2.24: Let N = {0, p, q, r} and $\Gamma = \{\gamma, \beta, \alpha\}$ be the non-empty near-field space of binary operations defined and shown in composition tables as below:

β	0	р	q	r	α	0	р	q	r	γ	0	р	q	r
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
р	р	р	р	р	р	0	р	0	0	р	0	р	0	р
q	0	0	0	q	q	0	0	q	0	q	0	q	0	r
r	0	0	0	r	r	0	0	0	r	r	0	0	0	q

Fig.04

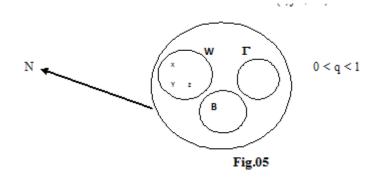
Clearly N is a Γ -semi near-field space. Moreover the fuzzy near-field space map defined λ : N \rightarrow [0,1] such as $\lambda(0) = 0.6$, $\lambda(p) = 0.7$, $\lambda(q) = 0.8$, $\lambda(r) = 0.9$ is a fuzzy bi- Γ -ideal of a Γ -semi near-field space N.

SECTION: 3 some results on fuzzy bi-Γ-ideals in a Γ-semi near-field space

In this section we obtain some results on fuzzy bi- Γ -ideals in a Γ -semi near-field space N.

Lemma 3.1: If W is a bi- Γ -ideal of N then $\forall 0 < q < 1$, \exists a fuzzy bi- Γ -ideal λ of Γ -semi near-field space N $\ni \lambda_q = W$.

Proof: Let $\lambda : N \to [0, 1]$ defined by $\lambda(x) = \frac{\langle q, ifx \in W,}{\langle 0, ifx \notin W,}$ where q is a fixed number in (0, 1). Then, clearly $\lambda_q = W$.



Now suppose that W is a bi- Γ -ideal of N. $\forall x, y \in W$ and $\gamma \in \Gamma \ni x\gamma y \in W$, we have $\lambda(x \gamma y) \ge q = \min \{\lambda(x), \lambda(y)\} \forall x, y \in N \text{ and } \gamma \in \Gamma$. Also for all x, y, z $\in W$ and β , $\alpha \in \Gamma$ such that $x\beta y\alpha z \in W$, we have $\lambda(x\beta y\alpha z) \ge q = \min \{\lambda(x), \lambda(z)\}$. Thus λ is a fuzzy bi- Γ -ideal of Γ -semi near-field space N. This completes the proof of Lemma.

Lemma 3.2: Let W be a non-empty near-field subspace of Γ -semi near-field space N. Then W is a bi- Γ -ideal λ of Γ -semi near-field space N if and only if χ_W is a fuzzy bi- Γ -ideal λ of N.

Proof: (\Rightarrow **if**) Let x, y \in W and $\gamma \in \Gamma$. From hypothesis, $x\gamma y \in W$.

(a) If $x, y \in W$ and $\gamma \in \Gamma$, then $\chi_W(x) = 1$ and $\chi_W(y) = 1$.

In this case $\chi_W(x\gamma y) = 1 \ge \min \{\chi_W(x), \chi_W(y)\}.$

(b) If $x \in W$, $y \notin W$ and $\gamma \in \Gamma$, then $\chi_W(x) = 1$ and $\chi_W(y) = 0$.

So, $\chi_W(x\gamma y) = 0 \ge \min \{\chi_W(x), \chi_W(y)\}.$

(c) If $x \notin W$, $y \in W$ and $\gamma \in \Gamma$, then $\chi_W(x) = 0$ and $\chi_W(y) = 1$.

So, $\chi_W(x\gamma y) = 0 \ge \min \{\chi_W(x), \chi_W(y)\}.$

(d) If $x \notin W$, $y \notin W$ and $\gamma \in \Gamma$, then $\chi_W(x) = 0$ and $\chi_W(y) = 0$.

So, $\chi_W(x\gamma y) \ge 0 = \min \{\chi_W(x), \chi_W(y)\}.$

Thus by (i) of definition 2.23 holds good.

- Let x, y, $z \in W$ and $\beta, \alpha \in \Gamma$. From hypothesis, $x\beta y\alpha z \in W$.
- (a) If $x, z \in W$, then $\chi_W(x) = 1$ and $\chi_W(z) = 1$.

In this case $\chi_W(x\beta y\alpha z) = 1 \ge \min \{\chi_W(x), \chi_W(z)\}.$

(b) If $x \in W$, $z \notin W$, then $\chi_W(x) = 1$ and $\chi_W(z) = 0$.

So, $\chi_W(x\beta y\alpha z) = 0 \ge \min \{\chi_W(x), \chi_W(z)\}.$

(c) If $x \notin W$, $z \in W$, then $\chi_W(x) = 0$ and $\chi_W(z) = 1$.

So, $\chi_W(x\beta y\alpha z) = 0 \ge \min \{\chi_W(x), \chi_W(z)\}.$

(d) If $x \notin W$, $y \notin W$, then $\chi_W(x) = 0$ and $\chi_W(z) = 0$.

So, $\chi_W(x\beta y\alpha z) \ge 0 = \min \{\chi_W(x), \chi_W(y)\}.$ © 2013, IJMA. All Rights Reserved

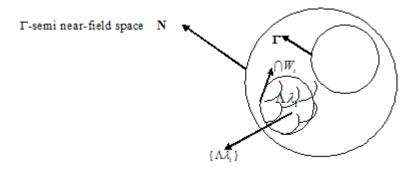
Thus (ii) of definition 2.23 holds good.

(\leftarrow iff) Suppose, that χ_W is a fuzzy bi- Γ -ideal of N. Then by Lemma 3.1, χ_W is two valued, hence W is a bi- Γ -ideal of N. this completes the proof of Lemma.

The following theorem proves that an intersection of a family of fuzzy bi-- Γ -ideals of Γ -semi near-field space N also a fuzzy bi-- Γ -idea.

Theorem 3.3: If $\{W_i\}_{i \in \Lambda}$ is a family of fuzzy bi- Γ -ideals of Γ -semi near-field space N. Then $\bigcap W_i$ is a fuzzy bi- Γ -ideals of N, where $\bigcap W_i = \{\Lambda \lambda_i\}$ and $\Lambda \lambda_i(x) = \inf \{\lambda_i(x) | i \in \Lambda, x \in W\}$.

Proof: Let $x, y \in N$, where N is a Γ -semi near-field space.



Let $x, y \in N$. Then we have,

(a)
$$\Lambda \lambda_i (x\gamma y) = \inf \{ \min \{ \lambda_i (x), \lambda_i (y) \} \ni i \in \Lambda, x, y \in W \}$$

$$= \min \{ \inf \{ (\lambda_i (x)), \inf (\lambda_i (y)) \} \ni i \in \Lambda, x, y \in W \}$$

$$= \min \{ \inf \{ (\lambda_i (x) \ni i \in \Lambda, x \in W) \}, \inf (\lambda_i (y)) \} \ni i \in \Lambda, y \in W \}$$

$$= \min \{ \Lambda \lambda_i (x), \Lambda \lambda_i (y) \}.$$

Let x, y, $z \in N$ and $\beta, \alpha \in \Gamma$. Then we have,

(b)
$$\Lambda \lambda_i (x\beta y\alpha z) = \inf \{ \min \{ \lambda_i(x), \lambda_i(z) \} \ni i \in \Lambda, x, z \in W \}$$

 $= \min \{ \inf \{ (\lambda_i(x)), \inf (\lambda_i(z)) \} \ni i \in \Lambda, x, z \in W \}$
 $= \min \{ \inf \{ (\lambda_i(x) \ni i \in \Lambda, x \in W) \}, \inf (\lambda_i(z)) \} \ni i \in \Lambda, z \in W \}$
 $= \min \{ \Lambda \lambda_i(x), \Lambda \lambda_i(z) \}.$

Therefore, $\bigcap W_i$ is a fuzzy bi- Γ -ideals of Γ -semi near-field space N. This completes the proof of theorem.

Theorem 3.4: A fuzzy near-field sub space W in a bi- Γ -ideals of Γ -semi near-field space N is a fuzzy bi- Γ -ideal of N if and only if the level fuzzy near-field space U($\lambda; q$) = { $x \in N/\lambda(x) \ge q$ } is a bi- Γ -ideal of N when it is non-empty.

Proof: (**IF** Part) Let λ be a fuzzy bi- Γ -ideal of N. Then $\lambda(x\gamma y) \ge \min\{\lambda(x), \lambda(y)\}$. $x, y \in U(\lambda; q), \gamma \in \Gamma \Longrightarrow \lambda(x) \ge q, \lambda(y) \ge q$ $\Longrightarrow \lambda(x\gamma y) \ge \min\{\lambda(x), \lambda(y)\} \ge q$ $\Rightarrow \lambda(x\gamma y) \ge q$ $\Rightarrow x\gamma y \in U(\lambda; q).$ Also, $\lambda (x\beta y\alpha z) \geq \min \{\lambda(x), \lambda(z)\}$

$$\begin{aligned} \mathbf{x}, \mathbf{y} \in \mathbf{U}(\lambda; \mathbf{q}), \, \boldsymbol{\beta}, \boldsymbol{\alpha} \in \Gamma \Rightarrow \lambda(x) \geq q, \lambda(y) \geq q, \lambda(z) \geq q \\ \Rightarrow \lambda(\mathbf{x}\boldsymbol{\beta}\mathbf{y}\boldsymbol{\alpha}z) \geq \min\{\lambda(\mathbf{x}), \lambda(z)\} \geq q \\ \Rightarrow \lambda(\mathbf{x}\boldsymbol{\beta}\mathbf{y}\boldsymbol{\alpha}z) \geq q \\ \Rightarrow \mathbf{x}\boldsymbol{\beta}\mathbf{y}\boldsymbol{\alpha}z \in \mathbf{U}(\lambda; \mathbf{q}) \end{aligned}$$

Thus $U(\lambda; q)$ is a bi- Γ -ideal of N.

(\leftarrow **IFF part**) If U(λ ; q) is a bi- Γ -ideal of N.

let
$$q = \min\{\lambda(x), \lambda(y)\}$$
. Then $x, y \in U(\lambda; q), \gamma \in \Gamma \implies x\gamma \ y \in U(\lambda; q)$
 $\Rightarrow \lambda(x\gamma \ y) \ge q$
 $\Rightarrow \lambda(x\gamma \ y) \ge \min\{\lambda(x), \lambda(y)\}$

Let us define, $q = \min \{\lambda(\mathbf{x}), \lambda(\mathbf{z})\}$. Then $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{U}(\lambda; \mathbf{q}), \beta, \alpha \in \Gamma \Rightarrow \mathbf{x}\beta \mathbf{y}\alpha \mathbf{z} \in \mathbf{U}(\lambda; \mathbf{q})$ $\Rightarrow \lambda(\mathbf{x}\beta \mathbf{y}\alpha \mathbf{z}) \ge q$ $\Rightarrow \lambda(\mathbf{x}\beta \mathbf{y}\alpha \mathbf{z}) \ge \min \{\lambda(\mathbf{x}), \lambda(\mathbf{z})\}.$

Consequently, λ is a fuzzy bi- Γ -ideal of N. This completes the proof of theorem.

Note 3.5: Let λ be a fuzzy bi- Γ -ideal of N. If N is completely regular, then $\lambda(a) = \lambda(a\beta a)$ for all $a \in \mathbb{N}$ and $\beta \in \Gamma$.

Theorem 3.6: Let the pair of mappings $f: N \to N_1, h: \Gamma \to \Gamma_1$ be a homomorphism of Γ -semi near-field spaces. If λ is a fuzzy bi- Γ -ideal of M₁, then the pre image $f^{-1}(\lambda)$ of λ under f is a fuzzy bi- Γ -ideal of N.

Proof: (i) Let x, y \in N and $\gamma \in \Gamma$. Then we have, $f^{-1}(\lambda)(x\gamma y) = \lambda(f(x\gamma y))$ = $\lambda(f(x)h(\gamma)f(z))$ = $\min{\{\lambda(f(x), \lambda(f(y))\}\}}$ = $\min{\{f^{-1}(\lambda(x)), f^{-1}(\lambda(y))\}}$

(ii) Let x, y, z \in N and
$$\beta$$
, $\alpha \in \Gamma$. Then,
 $f^{-1}(\lambda)(x\beta y\alpha z) = \lambda(f(x\beta y\alpha z))$
 $= \lambda(f(x)h(\beta)f(y)h(\alpha)f(z))$
 $\ge \min{\lambda(f(x),\lambda(f(z)))}$
 $= \min{f^{-1}(\lambda(x)), f^{-1}(\lambda(y))}$

Therefore $f^{-1}(\lambda)$ is a fuzzy bi- Γ -ideal of N. This completes the proof of the theorem.

Proposition 3.7: If W is a left-zero fuzzy Γ - sub semi near-field space in a bi- Γ -ideals of Γ -semi near-field space N and λ a fuzzy Γ -left ideal of N, then $\lambda(x) = \lambda(z)$ for all x, y, $z \in N$.

Proof: Let x, y, $z \in W$. Since W is left-zero fuzzy Γ - sub semi near-field space of N and λ a fuzzy Γ -left ideal of N, $x\beta y\alpha z = x$ and $z\alpha y\beta x = z$ for all β , $\alpha \in \Gamma$.

In this case, by hypothesis, we have that $\lambda(x) = \lambda(x\beta y\alpha z) \ge \lambda(z), \lambda(z) = \lambda(z\alpha y\beta x) \ge \lambda(x)$.

Thus we obtain $\lambda(x) = \lambda(z) \forall x, y, z \in N$. This completes the proof of theorem.

Lemma 3.8: If W is a left-zero fuzzy Γ - sub semi near-field space in a bi- Γ -ideals of Γ -semi near-field space N, then χ_W is a fuzzy Γ -left ideal of N.

Proof: Let x, y, $z \in W$ and β , $\alpha \in \Gamma$. Since W is left-zero fuzzy Γ - sub semi near-field space of N, $x\beta y\alpha z \in N$. (i) If $z \in N$, then $\chi_W(z) = 1 \Rightarrow \chi_W(x\beta y\alpha z) = 1 = \chi_W(z)$ (ii) If $z \notin N$, then $\chi_W(z) = 0$, hence $\chi_W(x\beta y\alpha z) \ge 0 = \chi_W(z)$.

Consequently, χ_W is a fuzzy Γ -left ideal of Γ -semi near-field space N. This completes the proof of lemma.

Theorem 3.9: Let λ be a fuzzy Γ -left ideal of Γ -semi near-field space N. If E_W is a left – zero fuzzy Γ - sub semi near-field space in a bi- Γ -ideals of Γ -semi near-field space N, then $\lambda(e) = \lambda(e_2)$ for all $e, e_2 \in E_W$.

Proof: Let $e, e_2 \in E_W$. From the hypothesis, $e\beta e_1 \alpha e_2 = e$ and $e_2 \alpha e_1 \beta e = e_2$ for all $e_1 \in E_W$ and β , $\alpha \in \Gamma$. Thus, since λ be a fuzzy Γ -left ideal of Γ -semi near-field space N, we get that λ (e) = $\lambda(e\beta e_{1\alpha}e_2) \ge \lambda(e_2)$, λ (e₂) = $\lambda(e_2\alpha e_1\beta e) \ge \lambda(e)$.

Hence we have $\lambda(e) = \lambda(e_2)$ for all $e, e_2 \in E_W$. This completes the proof of theorem.

Theorem 3.10: If W is an interior Γ -left ideal of Γ -semi near-field space N, Then χ_W is a fuzzy interior Γ -left ideal of Γ -semi near-field space N.

Proof: Since W is a none-empty fuzzy Γ- sub semi near-field space in a bi-Γ-ideals of Γ-semi near-field space N. Let x, y, z ∈ W andβ, α ∈ Γ. From the hypothesis, xβyαz ∈ W
(i) If y ∈ W, then χ_W(y) = 1 thus, χ_W (xβyαz) = 1 = χ_W(y)

(ii) If $y \notin W$, then $\chi_W (x \beta y \alpha z) \ge 0 = \chi_W(y)$.

Hence χ_W is a fuzzy interior Γ -left ideal of Γ -semi near-field space N. This completes the proof of the theorem.

Note 3.11: Every fuzzy Γ -left ideal of Γ -semi near-field space N is a fuzzy interior Γ -left ideal of Γ -semi near-field space N.

Note 3.12: If N is regular, then every fuzzy interior Γ -left ideal of Γ -semi near-field space N is a fuzzy Γ -left ideal of Γ -semi near-field space N.

SECTION 4: MAIN RESULTS ON CHAIN CONDITIONS OF A Γ-SEMI NEAR-FIELD SPACE N

In this section I derived main results on chain conditions of a Γ -semi near-field space N. we know that the intersection of all bi- Γ -ideals of Γ -semi near-field space N. Let \land be a totally ordered set of a Γ -semi near-field space N and let $\{A_j \mid j \in \land\}$ be a collection of all bi- Γ -ideals of Γ -semi near-field space N such that for all j < I if and only if $A_i \subset A_j$. Then $\cap A_i$, j < I is a bi- Γ -ideal of Γ -semi near-field space N.

Theorem 4.1: Let $\{A_j / j \in A \subseteq [0, 1]\}$ be a collection of bi- Γ -ideals of Γ -semi near-field space N such that (a) $N = \bigcup_{j \in A} A_j$ (b) j < I if and only if $A_i \subset A_j \forall i, j \in A$. Then the fuzzy set $\lambda \in M$ defined by $\lambda(x) = \sup\{j \in A / x \in A_i\} \forall x \in M$ is a fuzzy bi- Γ -ideal of Γ -semi near-field space N.

Proof: For any $i \in [0, 1]$, we consider the following two cases: $i = \sup\{j \in \Lambda / j < i\}, i \neq \sup\{j \in \Lambda / j < i\}.$

 $\begin{array}{l} \textbf{Case (i):} \Rightarrow we know that for all x, y \in A_j \text{ and } \gamma \in \Gamma, x \ \gamma \ y \in U(\lambda \ ; i) \\ (\Leftrightarrow) x \ \gamma \ y \in A_j \text{ for all } j < i, \end{array}$

$$(\Leftrightarrow) x \gamma y \in \bigcap_{j < i} A_j \text{ . Also, } \forall x, y, z \in A_j \text{ and } \beta, \alpha \in \Gamma, x\beta y\alpha z \in U(\lambda; i)$$
$$(\Leftrightarrow) x\beta y\alpha z \in A_i \text{ for all } j < i$$

$$(\Leftrightarrow) \ \mathbf{x} \beta \mathbf{y} \mathbf{\alpha} \mathbf{z} \in \bigcap_{j < i} A_j \ .$$

Hence, $U(\lambda; i) = \bigcap_{j < i} A_j$, which is a bi- Γ -ideal of Γ -semi near-field space N.

Case (ii): $\Rightarrow \exists e > 0$ such that $(i - e, i) \cap \land = \phi$.

We claim that
$$U(\lambda ; i) = \bigcap_{j < i} A_j$$
. If $x \gamma y \in \bigcap_{j < i} A_j$, for some, $j < i. \gamma \in \Gamma$.
 $\Rightarrow \lambda(x \gamma y) \ge j \ge i$.

Hence $x \gamma y \in U(\lambda; i)$, showing that if $x \gamma y \in A_j$, for $j \le i - e$ and so $x \gamma y \notin U(\lambda; i)$.

Also, if $x\beta y\alpha z \in \bigcap_{j < i} A_j$ then $x\beta y\alpha z \in A_j$ for some $j < i, \beta, \alpha \in \Gamma$. $\Rightarrow \lambda(x\beta y\alpha z) \ge j \ge i$. Hence, $x\beta y\alpha z \in U(\lambda; i)$, and $\therefore x\beta y\alpha z \notin U(\lambda; i)$. $\therefore U(\lambda; i) = \bigcap_{j < i} A_j$ and so $U(\lambda; i) = \bigcap_{j < i} A_j$.

Hence λ is a fuzzy bi- Γ -ideal of Γ -semi near-field space N.

This completes the proof of theorem.

Note 4.2: Let {A_n/n ∈ ∧} be a family of bi-Γ-ideals of Γ-semi near-field space N which is nested, that is N = A₁ ⊃ A₂ ⊃ A₃ ⊃ . . . An ⊃ A_{n+1} ⊃. Let λ be the fuzzy in N defined by $\lambda(x) = \begin{cases} \frac{n}{n+1} \text{if } x \in A_n \setminus A_{n+1}, \forall n = 1, 2, 3, ... \\ 1 & \text{if } x \in \bigcap_{n=1io} A_n \end{cases} \text{ for all } x \in N.$

Then λ is a fuzzy bi- Γ -ideal of Γ -semi near-field space N.

Note 4.3: A fuzzy bi- Γ -ideal λ of Γ -semi near-field space N is finite – valued if and only if it is generated by a finite – values fuzzy bi- Γ -ideal λ in N.

Theorem 4.4: If N is a Γ -Notherian, then every fuzzy bi- Γ -ideal λ Γ -semi near-field space N is finite - valued.

Proof: Let, $\lambda: N \to [0, 1]$ be a fuzzy bi- Γ -ideal of Γ -semi near-field space N which is not finite – valued. Then, \exists an infinite sequence of distinct numbers $\lambda(0) = t_1 > t_2 t_3 > t_4 > \ldots > t_n > \ldots$ where $t_i = \lambda(x_i)$ for some $x_i \in N$. This sequence induces an infinite sequence of distinct bi- Γ -ideal of Γ -semi near-field space N. so that we have the following conclusion $U(\lambda; i) \subset U(\lambda; t_2) \subset \ldots \subset U(\lambda; t_n) \subset \ldots$ which is a contradiction. This completes the proof of the theorem.

Note 4.5: By combining note 4.2 and Note 4.3 we have the following corollary.

Corollary 4.6: If N is a Γ -Notherian, then every fuzzy bi- Γ -ideal of Γ -semi near-field space Nis generated by a fuzzy set in N.

REFERENCES

[1] Antony J.M and shrewood, Fuzzy groups redefined, J.Maths. Anal.Appl.69, 124-130,1979.

[2] Barness, W.E on the Γ -rings of nobusawa, pacific J Math, 18,411-422, 1966.

© 2013, IJMA. All Rights Reserved

[3] Chinram R, Jirojkul C on bi-Γ-ideals in Γ-semigroups, songklanakarin.

[4] Dib, K A on fuzzy spaces and fuzzy group theory, inform.sci 80,253-282, 1994.

[5] G Pilz Near rings, North Holland.

[6] N V Nagendram, Kum. E.S. Sudeeshna, "Generalization Of $((\in, \in VqK))$ -Fuzzy Sub-Near-Fields and Ideals Of Near-Fields (GF-NF-IO-NF)", published in International Journal of Mathematical Archive IJMA- ISSN. 2229 - 5046, Vol.4, No. 328-343, June 29th day 2013.

[7] N V Nagendram, Kum. E.S. Sudeeshna, "Generalization Of $((\in, \in VqK))$ -Fuzzy Sub-Near-Fields and Ideals Of Near-Fields (GF-NF-IO-NF)", published in International Journal of Mathematical Archive IJMA- ISSN. 2229 - 5046, Vol.4, No. 328-343, June 29th day 2013.

[8] C K Wong, Fuzzy topology, product and quotient theorems, J. Math. Anal. Appli. 45, (1974), 512-521.

[9] L A Zadeh, fuzzy sets, information and control 8 91965), 338-353.

[10] N V Nagendram, Kum. E.S. Sudeeshna , "Generalization Of $((\in, \in VqK))$ -Fuzzy Sub-Near-Fields and Ideals Of Near-Fields (GF-NF-IO-NF)", published in International Journal of Mathematical Archive IJMA- ISSN. 2229 - 5046, Vol.4, No. 328-343, June 29th day 2013.

[11] N V Nagendram, "Non-Commutative Near Fields Of Algebra And Its Extensions (NC-NF-IE)", accepted and to be published in International Journal of Advances in Algebra, Korean@Research India Publications, IJAA- ISSN 0973-6964 Volume 6, Number 1 (2013), pp. 73-89.

[12] N V Nagendram, "A Note On Near – Field group Of Quotient Near-Fields (NF-GQ-NF)", accepted and to be published in International Journal of Advances in Algebra, Korean@Research India Publications, IJAA -June,2013, ISSN: 0973-6964; Vol:6; Issue:2; Pp.91-99.

[13] N V Nagendram, Dr. T V Pradeep Kumar "A Note on Levitzki Radical of Near Fileds(LR - NF) " International Journal of Mathematical Archive(IJMA) Published ISSN NO.2229-5046, Vol No. 4 No. 5, pp 288-295, 2013.

[14] N V Nagendram, Dr. T V Pradeep Kumar "Some Problems And Applications Of Ordinary Differential Equations To Hilbert Spaces In Engineering Mathematics (SP-ODE-HEM)" International Journal of Mathematical Archive(IJMA) Published ISSN NO.2229-5046, Vol No. 4 No. 4, pp. 118-125, 2013.

[15] N.V. Nagendram, 'Amalgamated Duplications of Some Special Near-Fields(AD-SP-N-F)', International Journal of Mathematical Archive(IJMA) -4(3), 2013, ISSN 2229-5046, Pp. 1 - 7.

[16] N.V. Nagendram, 'Infinite Sub-near-Fields of Infinite-near-fields and near-left almost-near-fields(IS-NF-INF-NL-A-NF)', International Journal of Mathematical Archive(IJMA) Published ISSN. No.2229 - 5046, Vol. no.4, no.2, pp. 90-99 (2013).

[17] N.V. Nagendram, Dr.T.V.Pradeep Kumar & Dr.Y.Venkateswara Reddy, 'Semi Simple near-fields generating from Algebraic K-theory(SS-NF-G-F-AK-T) ', International Journal of Mathematical Archive(IJMA) -3(12), 2012, ISSN 2229-5046, Pp. 1-7.

[18] N.V. Nagendram, Dr.T.V.Pradeep Kumar & Dr.Y.Venkateswara Reddy, 'A note on generating near fields effectively: Theorems from Algebraic-Theory-(G-NF-E-TFA-KT)', International Journal of Mathematical Archive - 3(10), 2012, ISSN 2229-5046, Pp. 3612-3619.

[19] N V Nagendram 1 and B Ramesh 2 on "Polynomials over Euclidean Domain in Noetherian Regular Delta Near Ring Some Problems related to Near Fields of Mappings(PED-NR-Delta-NR & SPR-NF)" published in IJMA, ISSN: 2229-5046,Vol.3(8),pp no.2998 - 3002August,2012.

[20] N V Nagendram research paper on "Near Left Almost Near-Fields (N-LA-NF)" communicated to for 2nd intenational conference by International Journal of Mathematical Sciences and Applications, IJMSA@mindreader publications, New Delhi on 23-04-2012 also for publication.

[21] N V Nagendram, T Radha Rani, Dr T V Pradeep Kumar and Dr Y V Reddy "A Generalized Near Fields and (m, n) Bi-Ideals over Noetherian regular Delta-near rings (GNF-(m, n) BI-NR-delta-NR)", communicated to International Journal of Theoretical Mathematics and Applications (TMA), Greece, Athens, dated 08-04-2012.

[22] N VNagendram1, N Chandra Sekhara Rao2 "Optical Near field Mapping of Plasmonic Nano Prisms over Noetherian Regular Delta Near Fiedls (ONFMPN-NR-Delta-NR)" accepted for 2nd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 15 – 16 th December 2012 also for publication.

[23] N V Nagendram, B Ramesh, Ch Padma, T Radha Rani and S V M Sarma research article "A Note on Finite Pseudo Artinian Regular Delta Near Fields (FP AR-Delta-NF)" Published by International Journal of Advances in Algebra, IJAA, Jordan ISSN 0973-6964 Volume 5, Number 3 (2012), pp. 131-142.

[24] Satyanarayana Bh., A note on Γ -near-rings, Indian j of mathematics, bf41 (3), 427-433, 1999.

[25] Zadeh, L A Fuzzy sets, information and control, 8, 338-353, 1965.

Source of support: Nil, Conflict of interest: None Declared