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ABSTRACT 

The aim of the present paper in to find some exact solutions of unsteady two dimensional electrically conducting 

incompressible second grade, MHD aligned fluid flow which undergoes isochoric motion. Governing equations are first 

reformulated in terms of magnetic flux function φ. Study and unsteady solutions have been obtained via inverse method, 

when current density distribution is proportional to the magnetic flux function φ, perturbed by a quadratic term. 
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1. INTRODUCTION: 

 

It is well known that Newtonian fluid flows are governed by Navier-Stokes equations. But flowing behavior of many real 

fluids like blood, dyes, polymer melts, synovial fluids, paints, etc., departs from that of a Newtonian fluid, so that the rate 

of shear is not proportional to the corresponding stress and hence these are classified as non-Newtonian fluid.  

 

The flow of non-Newtonian fluids occur in a wide range of practical applications and have gained a lot of importance in 

recent years because of its numerous technological applications including plastic manufacture, performance of lubricants, 

application of paints, processing of food and movement of biological fluids. Most biologically important fluids contain 

higher molecular weight components and are, therefore, non-Newtonian. The unusual properties of polymer melts and 

solutions, together with the desirable attributes of many polymeric solids, have given rise to the world wide industry of 

polymer processing. Geophysical applications concerning ice and magna flows are based on non-Newtonian constitutive 

behaviours. 

 

However it is not possible to assign a single model to Non-Newtonian fluids as the are themselves varied in nature. For this 

reason, many models or constitutive equations have been proposed and one of the simplest type of model to account for the 

rheological effect of non-Newtonian fluids is the second grade model. The governing equation of non-Newtonian fluids are 

highly non-linear and one order higher than Navier-Stokes equations and hence we face more difficulty in solving them 

exactly.  

 

Navier-Stokes equations are inherently non-linear partial differential equation has non general solution, and only a small 

number of exact solutions have been found because the nonlinear inertial terms do not disappear automatically. Exact 

solutions are very important no only because they are solutions of some fundamental flows but also they serve as accuracy 

checks for experimental, numerical and asymptotic methods. So in order to perform this task one adopt transformations, 

inverse or semi-inverse method for the reformulation of equations in solvable form. Following the Martin's formulation [1], 

some researchers [3,4] have used hodograph transformation [2] in order to linearized the system of governing equations and 

successfully got some exact solutions. Some authors [21, 13] have used inverse method [18] where some a priory condition 

is assumed about the flow variables and have found some exact solutions. 
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Taking the vorticity to be proportional to the stream function, Taylor [17], obtained the solution of the problem of a double  

infinite array of vortices decaying exponentially with time. After Taylor this method has been extensively used by many 

researchers for the first grade fluid such as Kovaznay [6], Wang [18, 12], Lin and Tobak [14], Hui [15], Jeffrey [9], 

Riabouchinsky [11], Chandna [21] and others. They assumed that the vorticity is proprtional to the stream function 

perturbed by a uniform stream and derived several classes of exact solutions. In case of second grade fluid Rajgopal [16] 

and Siddiqui [19], following Nemenyi [18], applied this method to find some exact solutions. Benharbit and Siddiqui [20] 

used  this method to study the steady and unsteady second grade fluid flow by taking vorticity function of the form 

)(2
UyK −=∇ ψψ . Further this work was extended by Chandna and Ukpong [22] in the study of aligned second grade 

fluid flow. Recently Labropulu [25] studied steady and unsteady hydrodynamic flow by taking different vorticity 

distribution. Further Labropulu [23, 26] obtained more exact solutions of second grade fluid flows assuming different forms 

of vorticity and stream function. C thakur and B. Singh [24] by formulating the governing equations of second grade 

aligned flow in terms of magnetic flux function and then found some exact solutions. Furthermore this method has been 

recently applied by Asghar [24] et. al in the study of unsteady Riabouchinsky flows of second grade fluid. In the study of 

second grade aligned fluid flow by Hayat [28] et.al. 

 

In the present paper we have studied second grade electrically conducting fluid flow under the presence of magnetic field in 

porous space, with assumption that velocity and magnetic vector field are parallel to each other. To find the exact solutions 

we have gone through the alternate formulation of the governing equations in terms of magnetic flux function rather than 

introducing stream function and then we have considered current density proportional to the magnetic flux function 

perturbed by a quadratic stream B(Cx+Dy+Ey
2
). At last we have found some exact solutions for finitely and infinitely 

electrically conducting fluid under certain possible cases. 

 

2. EQUATIONS OF MOTION:  

 

The governing equation of unsteady plane flow of an incompressible electrically conducting second grade fluid, under the 

presence of magnetic field are given as  
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The constitutive equation for stress is  

 

,2

12211 AAApIT ααµ +++−=  (5) 

where  

        ( ) ( )TVgradVgradA +=1 ,                                                        (6) 

 

      ( ) ( )T

t VgradVgradAAA ++= 12
 

 

and  

 .0,0,0 211 =+≥≥ aaαµ  

 

In above system, V
�

 is the velocity vector, H
�

the magnetic field intensity, T the stress tensor, p the fluid pressure, ρ the 

fluid density, µ* the magnetic permeability, σ the electrical conductivity, µ the constant viscosity, α1 and α2 the constant 

normal stress moduli, A1 and A2 the Rivlin-Ericksen tensors. 

 

Now since we have considered the two dimensional MHD flow, so we must have  
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Now in view of equation (9) we have the two dimensional form of governing equations as  
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and  

         H1x + H2y = 0                                                                                (14) 

 

Now introducing the vorticity, current density and generalized energy function as  
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Now using equation (15)-(17), the above equations can be rewritten as  
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Thesolenoidal condition of equation (22) leads to the existence of magnetic flux function φ(x,y,t) such that 

 

  H1 = φy,   H2 = - φx.                                        (24) 

 

We, now study the aligned flow i.e 

 

  u = fH1,    v = fH2,                                        (25) 

 

where f = f(x,y,t) ≠ 0, is an arbitrary scalar function and equations (24), (25) implies  
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Again using these equations we have  
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Now using the integrability criteria hxy = hyx, we must have  
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and the diffusion equation (21) gives 
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equation (32) implies 
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3. SOLUTION:  

 

The above system (31) to (34) is coupled system of non-linear PDEs in two unknowns f,φ depending on three independent 

variables x,y and t. It is quite complex to solve. So in order to solve system exactly we must assume f = f0 a constant, so we 

have  
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Now we find the solution of above equation for finitely and infinitely conducting case 

 

3.1 SOLUTION FOR INFINITELY CONDUCTING FLUID: 

 

In this case we consider the fluid of infinite conductivity i.e., ,∞→α under such condition equation (33) implies 
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and hence φt = 0. Equation (32) is identically satisfied and equation (35) becomes 

 

( ) ( ) ( )
.0

),(

,

),(

,

),(

, 2

0

*4
2

01

2
*

2
2

0

4

0 =∇−
∇∂

−
∇∂

−
∇∂

+∇ φµ
φφφ

α
φφ

µ
φφ

ρφµ f
Kyx

f
yxyx

ff                                                        (37) 

 

Now we assume the current density proportional to magnetic flux function φ perturbed by the quadratic stream and is given 

by 

 

 ( )[ ].22
EyDyCxBA ++−=∇ φφ                                                      (38) 

 

 

Again introducing the following transformations 
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Now using (38), (39) in (37) and (39) in (38) we have  
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which is consistent with equation (41) if E = 0. So in this case we must have the trivial solution Φ = 0 and hence using 

equation (39) we have the magnetic flux function 
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Equation (43), when combined with equation (26) shows that this solution corresponds to the uniform flow inclined to the 

axes. 

 

Now solving equation (40) we get 
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Since ηξ ,  are independent variables, we must have E = o and then we get the equation in g(ξ ) as  
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Now solving aboveequation for )(ξg and then combining with equations (39), (46) and taking E=0, we get the solution for 

φ as under 
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and A1, A2, B1, B2, C1 and C2 are arbitrary constants.  

 

In the above equation if we take D=0, C = 1 and 0* →φ  i.e. in the absence of porous media, then the equation (47) 

reduces to  
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Which is identical with the result of C thakur and B. Singh (2002). 

 

Now we have the magnetic field, velocity field, vorticity distribution and current density as  
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Now, proceeding in the similar way we can have for solutions in other two cases as  
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3.2 SOLUTION FOR FINITELY CONDUCTING FLUID: 

 

In this case we consider the fluid of finite conductivity. Taking 0ff =  a constant, equation (32) is identically satisfied and 

using equation (39), equations (31) and (33) becomes 
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We now find out the solution in steady and unsteady cases separately 

 

Case (I) : Steady flow 

For steady flow we must have, .0=Φ t  Now for 0( 2
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which is consistent with equation (54) if and only if E = 0. Thus we have only trivial solution for Φ as Φ = 0, which on 

combining with equation (35) gives the magnetic flux function as 

 

   φ = Cx + Dy                                                      (56) 

 

and this when combining with equation (26), leads to the uniform flow inclined to the axes.  

 

Case (II): Unsteady flow 

 

for unsteady flow equation (54) implies 

 



1Ram Babu Mishra, 1Pankaj Mishra*, 2Atul Srivastava and 3Chandreshwar Thakur/ Some exact solutions of second grade aligned 

magneto hydrodynamic flow in porous media/IJMA- 2(4), Apr.-2011, Page: 589-601 

© 2010, IJMA. All Rights Reserved                                                                                                                                                           597 

   ,),(
2 *

t
A

eyxF
A

BE σµ+=Φ                                                     (57) 

 

which on putting in equation (53) gives 
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In the above equation RHS is a function of t alone so we must have E = 0 . Now we have the equation (57) and (58) as 
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We now introduced the following transformation 
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In the view of above transformation equations using (59) in (38), (58) becomes  
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Now solving the above equation (63) we get 
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and h )(ξ is an unknown function to be determined. Now using equation (62) and (64) we have  
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Now solving (66) and using equation (59), (61) and (39) we get the magnetic flux function as under 
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Now, proceeding in the similar way we can have for solution in other two cases as  

 

{ }
�
�
�

	

�
�
�

�
+++++= ++

+++
))((

321

))((

21
33

*33

)()(
yDmCxm

t
A

yDmCxm

eDmDyCxBBDeBBDH
δσµ

δ

δ  



1Ram Babu Mishra, 1Pankaj Mishra*, 2Atul Srivastava and 3Chandreshwar Thakur/ Some exact solutions of second grade aligned 

magneto hydrodynamic flow in porous media/IJMA- 2(4), Apr.-2011, Page: 589-601 

© 2010, IJMA. All Rights Reserved                                                                                                                                                           599 

{ }
�
�
�

	

�
�
�

�
++++−=

++++++ ))((

321

))((

22

*33*33

)(
t

A
yDmCxmt

A
yDmCxm

CemDyCxBBCeBBCH σµ
δ

σµ
δ

 

{ }
�
�
�

	

�
�
�

�
+++++=

+++
++

))((

321

))((

20

*33

33 )()(
t

A
yDmCxm

yDmCxm
eDmDyCxBBDeBBDfu σµ

δ
δ δ  

{ }
�
�
�

	

�
�
�

�
++++−=

++++++ ))((

321

))((

20

*33*33

)(
t

A
yCmCxmt

A
yDmCxm

CemDyCxBBCeBBCfv σµ
δ

σµ
δ

                                   (70) 

{ } { }
�
�
�

	

�
�
�

�
++++++−=Ω

+++ ))((
2

3213

2

32

*33

)()((2
t

A
yDmCxm

eDmDyCxBBDmDCmB σµ
δ

δδ  

{ } { } .)()((2
))((

2

3213

2

320

*33

�
�
�

	

�
�
�

�
++++++−=

+++ t
A

yDmCxm

eDmDyCxBBDmDCmBf σµ
δ

δδω  

]))((sin

))((cos)(

2

))((

1

2

))((

11

*

CDyCxDeC

CDyCxeDCBDH

yDCx

t
A

yDCx

++−

�
�
�

�
++++=

++

+++

ββ

βδα

δαα

σµ
δαα

 

�
�
�

	
++−

�
�
�

�
+++−=

+++

+++

))((sin

))((cos

2

))((

1

2

))((

12

*

*

CDyCxeC

CDyCxCeCBCH

t
A

yDCx

t
A

yDCx

β

βα

σµ
δαα

σµ
δαα

 

[

�
�
�

	
++

−++++=

+++

++

))((sin

))((cos)(

2

))((

1

2

))((

10

*

CDyCxDeC

CDyCxeDCBDfu

t
A

yDCx

yDCx

ββ

βδα

σµ
δαα

δαα

 

�
�
�

	
++−

�
�
�

�
+++−=

+++

+++

))((sin

))((cos

2

))((

1

2

))((

10

*

*

CDyCxeC

CDyCxCeCBCfv

t
A

yDCx

t
A

yDCx

β

βα

σµ
δαα

σµ
δαα

                                                  (71) 

{ }

]))((sin)(2

))((cos)()(

2

))((22

1

2

))((
222222

1

*

CDyCxeDCC

CDyCxeDCDCC

yDCx

t
A

yDCx

+++

−
�
�
�

�
+++−++−=Ω

++

+++

βαβ

ββδαα

δαα

σµ
δαα

 

{ }

.))((sin)(2

))((cos)()(

2

))((
22

1

2

))((
222222

10

*

*

�
�
�

	
+++

−
�
�
�

�
+++−++−=

+++

+++

CDyCxeDCC

CDyCxeDCDCCf

t
A

yDCx

t
A

yDCx

βαβ

ββδααω

σµ
δαα

σµ
δαα

 

 



1Ram Babu Mishra, 1Pankaj Mishra*, 2Atul Srivastava and 3Chandreshwar Thakur/ Some exact solutions of second grade aligned 

magneto hydrodynamic flow in porous media/IJMA- 2(4), Apr.-2011, Page: 589-601 

© 2010, IJMA. All Rights Reserved                                                                                                                                                           600 

4 CONCLUDING REMARK: 

 

In this paper, we have found the exact solutions of the governing equations of second grade MHD aligned flow in porous 

media when the current density is proportional to the magnetic flux function perturbed by the quadratic stream. The 

magnetic vector field and velocity vector field are assumed parallel to each other. In the paper, we observe that obtained 

solutions consist of uniform flow perturbed by exponential and trigonometric functions in both finitely and infinitely 

conducting fluid cases, see equations (47), (67). We notice that there is only steady solutions in case of infinitely 

conducting fluid flow. It is also remarkable that there is no solution corresponding to 0≠E , i.e quadratic perturbation 

term. But when porous media is absent i.e the term 0
*

→
K

φ
, in all the equations and then on solving the revised equations 

following the reference [28], we can easily get some solutions containing quadratic perturbation term i.e Ey
2. As for 

physical aspect of the problem is concern, our problem is more general than that of references[22, 24, 28) as we have 

considered the fluid flow in porous media. Moreover neglecting the porous parameter in our result and taking D = E = 0, 

we can get the results of B. Singh and C. Thakur [24). 
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