MORE RESULTS ON EDGE TRIMAGIC LABELING OF GRAPHS

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$
1,Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakavilai - 629153, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil- 629 003, Tamilnadu, India.

(Received on: 12-10-13; Revised \& Accepted on: 06-11-13)

Abstract

An edge magic total labeling of a (p, q) graph is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that $F O R$ each edge $x y \in E(G)$, the value of $f(x)+f(x y)+f(y)$ is a constant k. I there exists three constants k_{1}, k_{2} and k_{3} such that $f(x)+f(x y)+f(y)$ is either k_{1} or k_{2} or k_{3}, it is said to be an edge trimagic total labeling. In this paper we prove that the ladder $L_{n}(o d d n)$, triangular ladder $T L_{n}$, generalized Petersen graph $P\left(n, \frac{n-1}{2}\right)$, the helm graph H_{n} and the flower graph $F l_{n}$ are edge trimagic total and super edge trimagic total graphs.

Keywords: Function, Bijection, Magic labeling, Trimagic labeling.
AMS Subject Classification: 05C78.

1. INTRODUCTION

We begin with simple, finite and undirected graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$. A graph labeling is an assignment of integers to elements of a graph, the vertices or edges, or both subject to certain conditions. The concept of graph labeling was introduced by Rosa in 1967. In 1970, Kotzig and Rosa[5] defined, a magic labeling of graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G})$) is a bijection $f: V \cup E \rightarrow\{1,2, \ldots, p+q\}$ such that for each edge $x y \in E(G), f(x)+f(x y)+f(y)$ is a magic constant. In 1996, Ringel and Llado called this labeling as edge magic. In 2001, Wallis [6] introduced this as edge magic total labeling. An edge magic total labeling is called a super edge magic total if the vertices are labeled with smallest positive integers.

In 2004, J.Baskar Babujee[1] introduced the bimagic labeling of graphs. In 2013, C. Jayasekaran, M. Regees and C. Davidraj[3] introduced the edge trimagic total labeling of graphs. An edge trimagic total labeling of a (p,q) graph G is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for each edge $x y \in E(G)$, the value of $f(x)+f(x y)+f(y)$ is equal to any of the distinct constants k_{1} or k_{2} or k_{3}. A graph G is said to be an edge trimagic total if it admits an edge trimagic total labeling. An edge trimagic total labeling is called super edge trimagic total labeling if G has the additional property that the vertices are labeled with smallest positive integers. A simple graph in which there exists an edge between every pair of vertices is called a complete graph. The complete graph with n vertices is denoted by K_{n}. A walk of a graph G is an alternating sequence of vertices and edges $\mathrm{v}_{0}, \mathrm{x}_{1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}$ beginning and ending with vertices, in which each edge is incident with the two vertices immediately preceding and following it. It is closed if $\mathrm{v}_{0}=$ v_{n} and is open otherwise. An open walk in which no vertex appears more than once is called a path. A path with n vertices is denoted by P_{n}. A ladder L_{n} is a graph $P_{n} \times P_{2}$ with $V\left(L_{n}\right)=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq\right.$ $\mathrm{n}-1\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$. A triangular ladder $\mathrm{TL}_{\mathrm{n}}, \mathrm{n} \geq 2$, is a graph obtained from the ladder $\mathrm{L}_{\mathrm{n}} \approx \mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{2}$ by adding the edges $u_{i} v_{i+1}$ for $1 \leq i \leq n-1$. The generalized Petersen graph $P(n, m)$ is a graph that consists of an outer-cycle $y_{0}, y_{1}, y_{2}, \ldots$, y_{n-1} a set of n spokes $y_{i} x_{i}, 0 \leq i \leq n-1$, and n edges $x_{i} x_{i+m}, 0 \leq i \leq n-1$, where all subscripts are taken modulo n. A wheel W_{n} with n spokes is a graph that has a centre x connected to all the n vertices in cycle C_{n}. A helm H_{n} is constructed from a wheel W_{n} by adding n vertices of degree one adjacent to each terminal vertex. A flower graph Fl_{n} is constructed from a helm H_{n} by joining each vertex of degree one to the center.

Corresponding author: C. Jayasekaran ${ }^{2 *}$
${ }^{2}$ Department of Mathematics, Pioneer Kumaraswamy College,
Nagercoil- 629 003, Tamilnadu, India.

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$ / More Results On Edge Trimagic Labeling Of Graphs/IJMA- 4(11), Nov.-2013.

For further references, we use Dynamic survey of graph labeling by J. A. Galian[5]. We follow the notations and terminology of [2]. In [4], we introduced the concept edge trimagic and super edge trimagic total labeling and proved, the pyramid graph $\operatorname{Py}(\mathrm{n}), \mathrm{K}_{4}$ snake graph, wheel snake $n \mathrm{~W}_{4}$ and a fan graph F_{n} are edge trimagic total and super edge trimagic total graphs. In this paper, we prove the ladder L_{n}, triangular ladder TL_{n}, generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right.$), the helm graph H_{n} and the flower graph Fl_{n} are edge trimagic total and super edge trimagic total graphs.

2. EDGE TRIMAGIC LABELING FOR SOME FAMILIES OF GRAPHS

In this section, we prove edge trimagic total and super edge trimagic total labeling for the families of graphs like Ladder, Triangular Ladder, generalized Petersen graph, Helm and Flower graphs and give examples for edge trimagic labeling for each of the above graphs.

Theorem: 2.1 The Ladder $\mathrm{L}_{\mathrm{n}}=\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{2}$ admits an edge trimagic total labeling for all $\mathrm{n} \geq 2$.
Proof: Let $V=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ be the vertex set and $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} / 1 \leq i \leq n\right\}$ be the edge set of the ladder L_{n}. Then L_{n} has $2 n$ vertices and $3 n-2$ edges.

Case: 1 n is odd.
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 2 \mathrm{n}, 2 \mathrm{n}+1, \ldots, 5 n-2\}$ such that
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, i \text { is odd } \\ \frac{n+i+1}{2}, i \text { is even }\end{array}\right.$
$f\left(v_{i}\right)=\left\{\begin{array}{l}\frac{3 n+i}{2}, i \text { is odd } \\ \frac{2 n+i}{2}, i \text { is even }\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{n}-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=5 \mathrm{n}-\mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{n}-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Now we prove this labeling is an edge trimagic total labeling.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
For odd i , $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+3 \mathrm{n}-\mathrm{i}+\frac{\mathrm{n}+\mathrm{i}+1+1}{2}=\frac{7 \mathrm{n}+3}{2}=\lambda_{1}($ say $)$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{n}+\mathrm{i}+1}{2}+3 \mathrm{n}-\mathrm{i}+\frac{\mathrm{i}+1+1}{2}=\frac{7 \mathrm{n}+3}{2}=\lambda_{1}$.
Next we consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\frac{3 \mathrm{n}+\mathrm{i}}{2}+5 \mathrm{n}-\mathrm{i}-1+\frac{2 \mathrm{n}+\mathrm{i}+1}{2}=\frac{15 \mathrm{n}-1}{2}=\lambda_{2}($ Say $)$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\frac{2 \mathrm{n}+\mathrm{i}}{2}+5 \mathrm{n}-\mathrm{i}-1+\frac{3 \mathrm{n}+\mathrm{i}+1}{2}=\frac{15 \mathrm{n}-1}{2}=\lambda_{2}$.
Finally we consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd i, $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{i}+1}{2}+4 \mathrm{n}-\mathrm{i}+\frac{3 \mathrm{n}+\mathrm{i}}{2}=\frac{11 \mathrm{n}+1}{2}=\lambda_{3}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{n}+\mathrm{i}+1}{2}+4 \mathrm{n}-\mathrm{i}+\frac{2 \mathrm{n}+\mathrm{i}}{2}=\frac{11 \mathrm{n}+1}{2}=\lambda_{3}$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the magic constant $\lambda_{1}=\frac{7 \mathrm{n}+3}{2}, \lambda_{2}=\frac{15 \mathrm{n}-1}{2}$ and $\lambda_{3}=\frac{11 \mathrm{n}+1}{2}$.
Hence the Ladder L_{n} is an edge trimagic total when n is odd.
Case: 2 n is even.
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 2 \mathrm{n}, 2 \mathrm{n}+1, \ldots, 5 \mathrm{n}-2\}$ such that
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, i \text { is odd } \\ \frac{n+i}{2}, i \text { is even }\end{array}\right.$
$f\left(v_{i}\right)=\left\{\begin{array}{l}\frac{3 n+i+1}{2}, i \text { is odd } \\ \frac{2 n+\mathrm{i}}{2}, i \text { is even }\end{array}\right.$
$f\left(u_{i} u_{i+1}\right)=3 n-i, 1 \leq i \leq n-1 ; f\left(v_{i} v_{i+1}\right)=4 n-i-1,1 \leq i \leq n-1$ and $f\left(u_{i} v_{i}\right)=5 n-i-1,1 \leq i \leq n$.
Now we prove this labeling is an edge trimagic total.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+3 \mathrm{n}-\mathrm{i}+\frac{\mathrm{n}+\mathrm{i}+1}{2}=\frac{7 \mathrm{n}+2}{2}=\lambda_{1}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{n}+\mathrm{i}}{2}+3 \mathrm{n}-\mathrm{i}+\frac{\mathrm{i}+1+1}{2}=\frac{7 \mathrm{n}+2}{2}=\lambda_{1}$.
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\frac{3 \mathrm{n}+\mathrm{i}+1}{2}+4 \mathrm{n}-\mathrm{i}-1+\frac{2 \mathrm{n}+\mathrm{i}+1}{2}=\frac{13 \mathrm{n}}{2}=\lambda_{2}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\frac{2 \mathrm{n}+\mathrm{i}}{2}+4 \mathrm{n}-\mathrm{i}-1+\frac{3 \mathrm{n}+\mathrm{i}+1+1}{2}=\frac{13 \mathrm{n}}{2}=\lambda_{2}$.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{i}+1}{2}+5 \mathrm{n}-\mathrm{i}-1+\frac{3 \mathrm{n}+\mathrm{i}+1}{2}=\frac{13 \mathrm{n}}{2}=\lambda_{2}$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{n}+\mathrm{i}}{2}+5 \mathrm{n}-\mathrm{i}-1+\frac{2 \mathrm{n}+\mathrm{i}}{2}=\frac{13 \mathrm{n}-2}{2}=\lambda_{3}($ say $)$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the magic constant
$\lambda_{1}=\frac{7 \mathrm{n}+2}{2}, \lambda_{2}=\frac{13 \mathrm{n}}{2}$ and $\lambda_{3}=\frac{13 \mathrm{n}-2}{2}$.
Hence the Ladder L_{n} is an edge trimagic total when n is even.
Therefore, by case 1 and case 2 the ladder L_{n} admits an edge trimagic total labeling.
Theorem: 2.2 The Ladder $L_{n}=P_{n} \times P_{2}$ is a super edge trimagic total for all $n \geq 2$.
Proof: We proved that the Ladder $L_{n}=P_{n} x P_{2}$ is an edge trimagic total graph for all n with $2 n$ vertices. The labeling given in Theorem 2.1 is as follows:

When n is odd,
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, i \text { is odd } \\ \frac{n+i+1}{2}, i \text { is even }\end{array}\right.$
$f\left(v_{i}\right)=\left\{\begin{array}{l}\frac{3 n+i}{2}, i \text { is odd } \\ \frac{2 n+i}{2}, i \text { is even } .\end{array}\right.$
When n is even,
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, i \text { is odd } \\ \frac{n+i}{2}, i \text { is even }\end{array}\right.$
$f\left(v_{i}\right)=\left\{\begin{array}{c}\frac{3 n+i+1}{2}, i \text { is odd } \\ \frac{2 n+i}{2}, i \text { is even } .\end{array}\right.$

Hence the $2 n$ vertices get labels $1,2, \ldots, 2 n$. Therefore, the ladder L_{n} is a super edge trimagic total for all n.
Example: 2.3 An edge trimagic total labeling of the Ladders L_{7} and L_{6} are given in figure 1 and figure 2, respectively.

Figure 1: L_{7} with $\lambda_{1}=26, \lambda_{2}=39$ and $\lambda_{3}=52$.

Figure 2: L_{6} with $\lambda_{1}=22, \lambda_{2}=39$ and $\lambda_{3}=38$.
Theorem: 2.4 The triangular Ladder TL_{n} admits an edge trimagic total labeling for all $\mathrm{n} \geq 2$.
Proof: Let $V=\left\{v_{i}, u_{i} / 1 \leq i \leq n\right\}$ be the vertex set and $E=\left\{v_{i} v_{i+1}, u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{i} v_{i+1} / 1 \leq i \leq n-\right.$ $1\}$ be the edge set of the triangular Ladder TL_{n}. Then TL_{n} has 2 n vertices and $4 \mathrm{n}-3$ edges.

Case: 1 n is odd.
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 6 \mathrm{n}-3\}$ such that $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=6 \mathrm{n}-4 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-$ $1 ; f\left(v_{i} v_{i+1}\right)=6 n-4 i-2,1 \leq i \leq n-1 ; f\left(u_{i} v_{i}\right)=6 n 4 i+1,1 \leq i \leq n$ and $f\left(u_{i} v_{i+1}\right)=6 n-4 i-1,1 \leq i \leq n-1$.

Now, we prove this labeling is an edge trimagic total.
For the edge $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$,
$f\left(u_{i}\right)+f\left(u_{i} u_{i+1}\right)+f\left(u_{i+1}\right)=2 i+6 n-4 i+2(i+1)=6 n+2=\lambda_{1}$ (say).
For the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{i}-1+6 \mathrm{n}-4 \mathrm{i}-2+2(\mathrm{i}+1)-1=6 \mathrm{n}-2=\lambda_{2}$ (say).
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$,
$f\left(u_{i}\right)+f\left(u_{i} v_{i}\right)+f\left(v_{i}\right)=2 i+6 n-4 i+1+2 i-1=6 n=\lambda_{3}$ (say).
Also, for the edges, $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$,
$f\left(u_{i}\right)+f\left(u_{i} v_{i+1}\right)+f\left(v_{i+1}\right)=2 i+6 n-4 i-1+2(i+1)-1=6 n=\lambda_{3}$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the magic constant $\lambda_{1}=6 n+2, \lambda_{2}=6 n-2$ and $\lambda_{3}=6 n$.
Therefore, the triangular Ladder TL_{n} admits an edge trimagic total labeling when n is odd.
Case: 2 n is even.
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 6 \mathrm{n}-3\}$ such that
$f\left(u_{i}\right)=2 i-1,1 \leq i \leq n ; f\left(v_{i}\right)=2 i, 1 \leq i \leq n ; f\left(u_{i} u_{i+1}\right)=6 n-4 i-1,1 \leq i \leq n-1 ; f\left(v_{i} v_{i+1}\right)=6 n-4 i, 1 \leq i \leq n-1 ; f\left(u_{i} v_{i}\right)=6 n-4 i+1$, $1 \leq i \leq n$ and $f\left(u_{i} v_{i+1}\right)=6 n-4 i-2,1 \leq i \leq n-1$.

Now we prove this labeling is an edge trimagic total.
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$,
$f\left(u_{i}\right)+f\left(u_{i} u_{i+1}\right)+f\left(u_{i+1}\right)=2 i-1+6 n-4 i-1+2(i+1)-1=6 n-1=\lambda_{1}($ say $)$.
For the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$,
$f\left(v_{i}\right)+f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)=2 i+6 n-4 i-2(i+1)=6 n+2=\lambda_{2}($ say $)$.
For the edges $u_{i} v_{i}, 1 \leq i \leq n$,

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1+6 \mathrm{n}-4 \mathrm{i}+1+2 \mathrm{i}=6 \mathrm{n}=\lambda_{3} \text { (say). }
$$

Also, for the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$,
$f\left(u_{i}\right)+f\left(u_{i} v_{i+1}\right)+f\left(v_{i+1}\right)=2 i-1+6 n-4 i-2+2(i+1)=6 n-1=\lambda_{1}$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the magic constant $\lambda_{1}=6 n-1, \lambda_{2}=6 n+2$, and $\lambda_{3}=6 n$.
Therefore, the triangular Ladder TL_{n} admits an edge trimagic total labeling for even n .
Hence by case 1 and case 2, the triangular Ladder TL_{n} admits an edge trimagic total labeling.
Theorem: 2.5 The triangular ladder TL_{n} admits a super edge trimagic total labeling.
Proof: We have proved that the triangular ladder TL_{n} has an edge trimagic total labeling with 2 n vertices. The labeling given in the proof of Theorem 2.4, is as follows:

For odd $\mathrm{n}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}$.
For even $\mathrm{n}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Hence the 2 n vertices get labels $1,2, \ldots, 2 \mathrm{n}$. Therefore, the triangular ladder TL_{n} admits a super edge trimagic total labeling for all $\mathrm{n} \geq 2$.

Example: 2.6 An super edge trimagic total labeling of the triangular ladders TL_{7} and TL_{6} are given in figure 3 and figure 4, respectively.

Figure 3: TL_{7} with magic constants $\lambda_{1}=40, \lambda_{2}=42$ and $\lambda_{3}=44$.

Figure 4: TL_{6} with magic constants $\lambda_{1}=35, \lambda_{2}=36$ and $\lambda_{3}=38$.

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$ / More Results On Edge Trimagic Labeling Of Graphs/IJMA- 4(11), Nov.-2013.

Theorem: 2.7 The generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right.$) admits an edge trimagic total labeling (n is odd).
Proof: Consider a generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right)$ with the vertex set
$\mathrm{V}=\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}} / 0 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$ and the edge set
$\mathrm{E}=\left\{\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} / 0 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+1} / 0 \leq \mathrm{i} \leq \mathrm{n}-2\right\} \cup\left\{\mathrm{x}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+\frac{\mathrm{n}-1}{2}} / 0 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{y}_{0} \mathrm{y}_{\mathrm{n}-1}\right\}$, where the subscripts taken modulo n .
Then $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right)$ has 2 n vertices and 3 n edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 5 \mathrm{n}\}$ such that $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=2 \mathrm{n}-\mathrm{i}, 0 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{n}-\mathrm{i}, 0 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}\left(\mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+1}\right)=3 \mathrm{n}+2 \mathrm{i}+2,0 \leq \mathrm{i} \leq \mathrm{n}-2 ; \mathrm{f}\left(\mathrm{y}_{0} \mathrm{y}_{\mathrm{n}-1}\right)=5 \mathrm{n} ; \mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)=3 \mathrm{n}+2 \mathrm{i}+1$,
$0 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+\frac{\mathrm{n}-1}{2}}\right)=2 \mathrm{n}+2 \mathrm{i}+1,0 \leq \mathrm{i} \leq \mathrm{n}-1$.
Now we have to prove that the generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right)$ admits an edge trimagic total labeling.
For the edges $y_{i} y_{i+1}, 0 \leq i \leq n-2$;
$\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{y}_{\mathrm{i}+1}\right)=\mathrm{n}-\mathrm{i}+3 \mathrm{n}+2 \mathrm{i}+2+\mathrm{n}-(\mathrm{i}+1)=5 \mathrm{n}+1=\lambda_{1}($ say $)$.
For the edge $\mathrm{y}_{0} \mathrm{y}_{\mathrm{n}-1}$;
$\mathrm{f}\left(\mathrm{y}_{0}\right)+\mathrm{f}\left(\mathrm{y}_{0} \mathrm{y}_{\mathrm{n}-1}\right)+\mathrm{f}\left(\mathrm{y}_{\mathrm{n}-1}\right)=\mathrm{n}-0+5 \mathrm{n}+\mathrm{n}-(\mathrm{n}-1)=6 \mathrm{n}+1=\lambda_{2}($ say $)$.
For the edges $\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}, 0 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{y}_{\mathrm{i}}\right)=2 \mathrm{n}-\mathrm{i}+3 \mathrm{n}+2 \mathrm{i}+1+\mathrm{n}-\mathrm{i}=6 \mathrm{n}+1=\lambda_{2}$.
For the edges $\mathrm{x}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+\frac{\mathrm{n}-1}{2}}, 0 \leq \mathrm{i} \leq \mathrm{n}-1$ with i taken modulo n .
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}+\frac{\mathrm{n}-1}{2}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+\frac{\mathrm{n}-1}{2}}\right)=2 \mathrm{n}-\mathrm{i}+2 \mathrm{n}+2 \mathrm{i}+1+2 \mathrm{n}-\left(\mathrm{i}+\frac{\mathrm{n}-1}{2}\right)=\frac{11 \mathrm{n}+3}{2}=\lambda_{3}(\operatorname{say})$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(u)$ yields any one of the magic constants $\lambda_{1}=5 n+1, \lambda_{2}=6 n+1$ and $\lambda_{3}=\frac{11 n+3}{2}$.
Therefore, the generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right)$ admits an edge trimagic total labeling.
Theorem: 2.8 The generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right)$ admits a super edge trimagic total labeling.
Proof: We have proved that the generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right)$ admits edge trimagic total labeling. The labeling given in the Theorem 2.7 for the vertices is, $f\left(x_{i}\right)=2 n-i, 0 \leq i \leq n-1$ and $f\left(y_{i}\right)=n-i, 0 \leq i \leq n-1$. Since the vertices get labels $1,2, \ldots, 2 n$ the generalized Petersen graph $P\left(n, \frac{n-1}{2}\right)$ is a super edge trimagic total.

Example: 2.9 Generalized Petersen graph $\mathrm{P}(9,4)$ is super edge trimagic total.

Figure 5: Petersen graph $P(9,4)$ with $\lambda_{1}=46, \lambda_{2}=55$ and $\lambda_{3}=51$.

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$ / More Results On Edge Trimagic Labeling Of Graphs/IJMA-4(11), Nov.-2013.

Theorem: 2.10 The Helm graph H_{n} has an edge trimagic total labeling for every positive even integer n.
Proof: Let $V=\{u\} \cup\left\{v_{i} / 1 \leq i \leq n\right\} \cup\left\{w_{i} / 1 \leq i \leq n\right\}$ be the vertex set and $E=\left\{\operatorname{uv}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq\right.$ $\mathrm{n}-1\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right\}$ be the edge set of the helm graph H_{n}. Then H_{n} has $2 \mathrm{n}+1$ vertices and 3 n edges.

Define a bijection $f: V \cup E \rightarrow\{1,2, \ldots, 5 n+1\}$ such that $f(u)=1$,
$f\left(v_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}+1, i \text { is odd } \\ \frac{i+n}{2}+1, i \text { is even }\end{array}\right.$
$f\left(w_{i}\right)=\left\{\begin{array}{l}n+\frac{i+1}{2}+1, i \text { is odd } \\ n+\frac{i+n}{2}+1, i \text { is even }\end{array}\right.$
$f\left(u v_{i}\right)=\left\{\begin{array}{l}5 n-\frac{i+1}{2}+2, i \text { is odd } \\ 5 n-\frac{n+i}{2}+2, i \text { is even }\end{array}\right.$
$\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)=4 \mathrm{n}+1, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=4 \mathrm{n}-\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=3 \mathrm{n}-\mathrm{i}+2,1 \leq \mathrm{i} \leq \mathrm{n}$.
Now we prove this labeling is an edge trimagic total.
Consider the edges $\mathrm{uv}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i}, \mathrm{f}(\mathrm{u})+\mathrm{f}\left(\mathrm{uv}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1+\frac{\mathrm{i}+1}{2}+1+5 \mathrm{n}-\frac{\mathrm{i}+1}{2}+2=5 \mathrm{n}+4=\lambda_{1}$ (say).
For even $\mathrm{i}, \mathrm{f}(\mathrm{u})+\mathrm{f}\left(\mathrm{uv}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1+5 \mathrm{n}-\frac{\mathrm{n}+\mathrm{i}}{2}+2+\frac{\mathrm{i}+\mathrm{n}}{2}+1=5 \mathrm{n}+4=\lambda_{1}$.
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+1+4 \mathrm{n}-\mathrm{i}+1+\frac{\mathrm{i}+1+\mathrm{n}}{2}+1=4 \mathrm{n}+\frac{\mathrm{n}}{2}+4=\lambda_{2}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+\mathrm{n}}{2}+1+4 \mathrm{n}-\mathrm{i}+1+\frac{\mathrm{i}+1+1}{2}+1=4 \mathrm{n}+\frac{\mathrm{n}}{2}+4=\lambda_{2}$
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\frac{\mathrm{i}+1}{2}+1+3 \mathrm{n}-\mathrm{i}+2+\mathrm{n}+\frac{\mathrm{i}+1}{2}+1=4 \mathrm{n}+5=\lambda_{3}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\frac{\mathrm{i}+\mathrm{n}}{2}+1+3 \mathrm{n}-\mathrm{i}+2+\mathrm{n}+\frac{\mathrm{i}+\mathrm{n}}{2}+1=5 \mathrm{n}+4=\lambda_{1}$.
For the edge $\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}, \mathrm{f}\left(\mathrm{v}_{1}\right)+\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=\frac{1+1}{2}+1+4 \mathrm{n}+1+\frac{\mathrm{n}+\mathrm{n}}{2}+1=5 \mathrm{n}+4=\lambda_{1}$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the constants $\lambda_{1}=5 n+4, \lambda_{2}=4 n+\frac{n}{2}+4$ and $\lambda_{3}=4 n+5$.
Therefore, the helm graph H_{n} admits an edge trimagic total labeling for every positive even integer n.
Theorem: 2.11 The helm graph H_{n} is a super edge trimagic total for even n.
Proof: We have proved that the helm graph H_{n} is an edge trimagic total for even n . The labeling given in the proof of Theorem 2.10, the labeling for the vertices are $f(u)=1$,

$$
f\left(v_{i}\right)=\left\{\begin{array}{c}
\frac{i+1}{2}+1, i \text { is odd } \\
\frac{i+n}{2}+1, i \text { is even }
\end{array}\right.
$$

and $f\left(w_{i}\right)=\left\{\begin{array}{c}n+\frac{i+1}{2}+1, i \text { is odd } \\ n+\frac{i+n}{2}+1, i \text { is even. }\end{array}\right.$

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$ / More Results On Edge Trimagic Labeling Of Graphs/IJMA-4(11), Nov.-2013.

Since the helm graph H_{n} has $2 n+1$ vertices and get labels $1,2, \ldots, 2 n+1$, the helm graph H_{n} is a super edge trimagic total labeling.

Example: 2.12 The helm graph H_{6} given in figure 6 admits a super edge trimagic total labeling with magic constants 29, 31and 34.

Figure 6: Helm graph H_{6} with $\lambda_{1}=29, \lambda_{2}=31$ and $\lambda_{3}=34$.
Theorem: 2.13 The flower graph Fl_{n} has an edge trimagic total labeling for all n .
Proof: Let $V=\left\{v_{i}, w_{i} / 1 \leq i \leq n\right\} \cup\{u\}$ be the vertex set and $E=\left\{\mathrm{uv}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, \mathrm{uw}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right\}$ be the edge set of the flower graph Fl_{n}. Then the flower graph Fl_{n} has $2 \mathrm{n}+1$ vertices and 4 n edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 6 \mathrm{n}+1\}$ such that $\mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}$; $\mathrm{f}\left(\mathrm{uv}_{\mathrm{i}}\right)=5 \mathrm{n}-\mathrm{i}+2,1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=4 \mathrm{n}-2 \mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{n}-2 \mathrm{i}+2,1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{uw}_{\mathrm{i}}\right)=6 \mathrm{n}-\mathrm{i}+2,1 \leq \mathrm{i} \leq \mathrm{n}$ and $f\left(v_{1} v_{n}\right)=4 n+1$.

Now, we prove the above labeling is an edge trimagic total.
For the edges $\mathrm{uv}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$,
$\mathrm{f}(\mathrm{u})+\mathrm{f}\left(\mathrm{uv} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1+5 \mathrm{n}-\mathrm{i}+2+\mathrm{i}+1=5 \mathrm{n}+4=\lambda_{1}$ (say).
For all the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=\mathrm{i}+1+4 \mathrm{n}-2 \mathrm{i}+1+\mathrm{i}+1+1=4 \mathrm{n}+4=\lambda_{2}$ (say).
For the edges $v_{i} W_{i}, 1 \leq i \leq n$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{i}+1+4 \mathrm{n}-2 \mathrm{i}+2+\mathrm{n}+\mathrm{i}+1=5 \mathrm{n}+4=\lambda_{1}$.
For the edge $\mathrm{uw}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$,
$\mathrm{f}(\mathrm{u})+\mathrm{f}\left(\mathrm{uw}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=1+6 \mathrm{n}-\mathrm{i}+2+\mathrm{n}+\mathrm{i}+1=7 \mathrm{n}+4=\lambda_{2}($ say $)$.
And for the edge $\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}, \mathrm{f}\left(\mathrm{v}_{1}\right)+\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=1+1+4 \mathrm{n}+1+\mathrm{n}+1=5 \mathrm{n}+4=\lambda_{1}$.
Hence for each edge uv, $f(u)+f(u v)+f(v)$ yields any one of the magic constant $\lambda_{1}=5 n+4, \lambda_{2}=4 n+4$ and $\lambda_{3}=7 n+4$.
Therefore, the flower graph Fl_{n} admits an edge trimagic total labeling for all n .
Theorem: 2.14 The flower graph Fl_{n} is a super edge trimagic total for all $\mathrm{n} \geq 3$.
Proof: We have proved that the flower graph Fl_{n} admits an edge trimagic total labeling for $\mathrm{n} \geq 3$. The labeling given in the proof of the Theorem 2.13, the labeling for the vertices are, $f(u)=1, f\left(v_{i}\right)=i+1,1 \leq i \leq n ; f\left(w_{i}\right)=n+i+1,1 \leq i \leq n$. Since the flower graph $F l_{n}$ has $2 n+1$ vertices and get labels $1,2, \ldots, 2 n+1$, the flower graph $F l_{n}$ is a super edge trimagic total labeling.

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$ / More Results On Edge Trimagic Labeling Of Graphs/IJMA-4(11), Nov.-2013.

Example: 2.15 The flower graph Fl_{6} given in figure 7 is a super edge trimagic total graph with magic constants 34,28 and 46.

Figure 7: Flower graph Fl_{6} with $\lambda_{1}=34, \lambda_{2}=28$ and $\lambda_{3}=46$.

CONCLUSION

In this paper, we have proved some classes of graphs namely, the ladder L_{n}, triangular ladder TL_{n}, generalized Petersen graph $\mathrm{P}\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right.$), the helm graph H_{n} and the flower graph Fl_{n} are edge trimagic total and super edge trimagic total graphs. There will be many trimagic graphs can be constructed in future.

REFERENCES

[1] J. Baskar Babujee, "On Edge Bimagic Labeling", Journal of Combinatorics Information \& System Sciences, Vol. 28-29, Nos. 1-4, pages. 239-244 (2004).
[2] N. Hartsfield and G. Ringel, "Pearls in Graph Theory", Academic press, Cambridge, 1990.
[3] C. Jayasekaran, M. Regees and C. Davidraj, "Edge Trimagic Labeling of Some Graphs" Accepted for publication in the, International Journal of Combinatorial Graph Theory and Applications.
[4] Joseph A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics, 19 (2012), \#DS6.
[5] A. Kotzig and A. Rosa, "Magic Valuations of finite graphs", Canad. Math. Bull., Vol. 13, pages. 415-416 (1970).
[6] W.D. Wallis, E.T. Baskoroo, M. Miller and Slamin, "Edge magic total labelings", Australasian Journal of combin., Vol. 22, pages. 177-190 (2000).

Source of support: Nil, Conflict of interest: None Declared

