SOLUTIONS OF A MULTI-POINT BOUNDARY VALUE PROBLEM FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

Farheen Anjum ${ }^{\mathbf{1}}, \mathbf{P}$. Venkat Raman ${ }^{\mathbf{2}}$ and M. Vijay Kumar ${ }^{3 *}$
${ }^{1}$ Department of Mathematics, University of Hail, Saudi Arabia.

(Received on: 08-03-13; Revised \& Accepted on: 22-10-13)

Abstract

The present paper, is concerned with the existence of solutions of the following multi-point boundary value problem consisting of the higher-order differential equations.

$(-1)^{n-1} x^{(2 n)}=f\left(t, x(t), x^{\prime}(t), \ldots \ldots . x^{(2 n-1)}(t)\right), t \in(0,1)$,
and the following multi-point boundary value conditions
$\left\{\begin{array}{c}x^{(2 i-1)}(0)=0, i=1,2,3,4, \ldots \ldots \ldots, n, \\ x^{(2 i-1)}(1)=\sum_{k=1}^{p_{i}} \alpha_{i, k} x^{(2 i-1)}\left(\xi_{i}, k\right), i=1,2, \ldots \ldots, n-1, \\ x(1)=\sum_{i=1}^{m} \beta_{i} x\left(\xi_{i}\right),\end{array}\right.$
are sufficient conditions for existence of at least one solution of the $B V P(1)$.

1. INTRODUCTION

In recent years, the solvability of the multi-point boundary value problems for second order differential equations, arise in many applications, we refer the reader to the monographs [1-3] and the references [414]. In [15], Erbe and Tang studied the existence of positive solutions of the following Sturm-Liouvile boundary value problem consisting of the second order differential equation
$\left\{\begin{array}{l}x^{\prime \prime}(t)+f\left(t, x(t), x^{\prime}(t)\right)=0, t \in(0,1) \\ \alpha x(0)-\beta x^{\prime}(0)=\delta x(1)+\gamma x^{\prime}(1)=0\end{array}\right.$
where f is continuous and nonnegative, $\alpha \geq 0, \beta \geq 0, \gamma \geq 0$ and $\delta \geq 0$ with $\alpha \delta+\gamma \delta+\alpha \beta>0$. He proved that, under some assumptions, $\operatorname{BVP}(3)$ has at least one or two positive solutions.

In [6], Liu and Yu studied the solvability of the following multi-point boundary value problem consisting of the second-order differential equation
$\left\{\begin{array}{c}x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), t \in(0,1) \\ x^{\prime}(0)=0, x(1)=\sum_{i=1}^{m} \alpha_{i} x\left(\xi_{i}\right),\end{array}\right.$
where $0<\eta<1,0<\xi<1, \alpha \geq 0$ and $\beta \geq 0$ and f is continuous and $e \in L^{1}[0,1]$.
However, the Sturm-Liouvile type boundary value conditions, i.e.., $x(0)=\alpha x^{\prime}(\xi), x^{\prime}(1)=\beta x(\eta)$ was not studied in [6].Furthermore, to the best of our knowledge, there has been no paper concerned with the existence of solutions of multi-point boundary value problems for higher-order differential equations at resonance, although there were considerable papers concerned with the existence of positive solutions or solutions of higher-order differential equations at non-resonance cases [1-3, 19, 20].Motivated and inspired by papers $[15,16,6]$, we are concerned with the following fourth-order differential equation
$x^{4}(t)=f\left(t, x(t),-x^{\prime \prime}(t)\right), t \in(0,1)$
Or
$x^{4}(t)=f(t, x(t)), t \in(0,1)$
Subject to the following multi-point boundary value conditions $x(1)=x^{\prime}(0)=x^{\prime}(1)=x^{\prime \prime \prime}(0)=0$ as not been studied.

Chyan and Henderson, in [14], studied the following $2 m^{\text {th }}$-order differential equation
$x^{(2 m)}(t)=f\left(t, x(t), x^{\prime \prime}(t), \ldots \ldots \ldots, x^{(2 m-2)}(t)\right), 0<t<1$,
with either the Lindstone boundary condition
$x^{(2 i)}(0)=x^{(2 i)}(1)=0$ for $i=0,1,2,3, \ldots \ldots, m-1$, or the focal boundary value condition
$x^{(2 i+1)}(0)=x^{(2 i)}(1)=0$ for $i=0,1,2,3, \ldots \ldots, m-1$,
For BVP (1) and (2), the corresponding linear differential equation is
$(-1)^{n-1} x^{(2 n)}=0, t \in(0,1)$.

2. MAIN RESULTS

In this section, we establish sufficient conditions for the existence of at least one solution of BVP (1)-(2) and one positive solution of $\operatorname{BVP}(1)$ and (2). respectively. For convenience, we first introduce some notations and an abstract existence theorem by Gaines and Mawhin[9].

Let X and Y be Banach spaces, L : $\operatorname{dom} L \subset X \rightarrow Y$ be a Fredholm operator of index zero, $P: X \rightarrow X, Q: Y \rightarrow Y$ be projectors such that
$\operatorname{Im} P=\operatorname{Ker} L, \operatorname{Ker} Q=\operatorname{Im} L, X=\operatorname{Ker} L \oplus \operatorname{Ker} P, Y=\operatorname{Im} L \oplus \operatorname{Im} Q . \operatorname{It}$ follows that $\left.L\right|_{\text {dom } L \cap K e r ~}$: $\operatorname{Ker} P \rightarrow \operatorname{Im} L$ is invertible, we denote the inverse of that map by $K p$.

If Ω is an open bounded subset of $X \operatorname{domL} \cap \bar{\Omega} \neq \phi$, the map $N: X \rightarrow Y$ will be called L-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{p}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact.

Theorem Gm [9]: Let L be a Fredholm operator of index zero and let N be L-compact on Ω. Assume that the following conditions are satisfied:
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \epsilon[($ dom $L / \operatorname{Ker} L) \cap \partial \Omega] \times(0,1)$;
(ii) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{Ker} L \cap \partial 2$;
(iii) $\operatorname{deg}\left(\left.\Lambda Q N\right|_{\text {KerL }}, \Omega \cap \operatorname{KerL}, 0\right) \neq 0$, where $\Lambda: Y / \operatorname{ImL} \rightarrow$ KerL is the isomorphism.

Then the equation $\mathrm{Lx}=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.
We use the classical Banach space $C^{k}[0,1]$, let $X=C^{2 n-1}[0,1]$ and $Y=C^{0}[0,1]$. Y is endowed with the norm $\|y\|_{\infty}=\max _{t \in[0,1]}|y(t)|, X$ is endowed with the norm $\|x\|=\max \left\{\|x\|_{\infty},\|x\|_{\infty}, \ldots,\|x(2 n-1)\|_{\infty}\right\}$. Define the linear operator L and the nonlinear operator N by
$L: X \cap \operatorname{domL} \rightarrow Y, \quad L x(t)=(-1)^{n-1} X^{(2 n)}(t)$ for $x \in X \cap \operatorname{dom} L$,
$N: X \rightarrow Y, \quad N x(t)=f\left(t, x(t), x^{\prime}(t), \ldots, x^{(2 n-1)}(t)\right)$, for $x \in X$, respectively,
where
domL $=\left\{x \in C^{m-1}[0,1], x^{(2 i-1)}(0)=0\right.$ for $i=1, \ldots ., n$
$x^{(2 i-1)}(1)=\sum_{k=1}^{p_{i}} \alpha_{i, k} x^{(2 i-1)}\left(\xi_{i, k}\right)$, for $i=1, \ldots \ldots, n-1$,
$\left.x(1)=\sum_{i=1}^{m} \beta_{i} x\left(\xi_{i}\right)\right\}$

Suppose $\sum_{k=1}^{p_{i}} \alpha_{i, k} \xi_{i, k} \neq 1$ for $i=1, \ldots . . n-1$. Let, for $i=1, \ldots \ldots, n-1, G_{i-1}(t, s)$ be the Green's function of the problem
$-u^{\prime \prime}(t)=\alpha(t), u(0)=u(1)-\sum_{k=1}^{p_{i}} \alpha_{i, k} u\left(\xi_{i, k}\right)=0$, for some α.Let
$G(t, s)=\int_{0}^{1} \ldots . \int_{0}^{1} G_{1}\left(t, \tau_{1}\right) \ldots \ldots . G_{n-1}\left(\tau_{n-2}, s\right) d \tau_{1} \ldots \ldots \ldots \ldots d \tau_{n-2}$.
Lemma 2.1: The following resultsholds.
(i)There is a k_{i} so that $\alpha_{i, k} \geq 0$ for $k=1, \ldots ., k_{i}$ and $\alpha_{i, k} \leq 0$ for $k=k_{i}+1, \ldots, p_{i}$ with $\sum_{k=1}^{p_{i}} \alpha_{i, k}<1$; $\Delta=\int_{0}^{1} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} u^{l} d u d \tau d s-\sum_{i=1}^{m} \beta_{i} \int_{0}^{\xi_{i}} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} u^{l} d u d \tau d s \neq 0$.

Then the following results hold.
(i) $\operatorname{Ker} L=\{x(t) \equiv c, t \in[0,1], c \in R\}$;
(ii) $\operatorname{ImL}=y \in Y,\left\{\begin{array}{c}\int_{0}^{1} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s \\ \sum_{i=1}^{m} \beta_{i} \int_{0}^{\xi_{i}} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s\end{array}\right\}$
(iii) L is Fredholm operator of index zero;
(iv) There are projectors $P: X \rightarrow X$ and $Q: Y \rightarrow Y$ such that $\operatorname{Ker} L=\operatorname{Im} P$ and $\operatorname{Ker} Q=\operatorname{Im} L$. Furthermore, let $\Omega \subset \mathrm{X}$ be an open bounded subset with $\bar{\Omega} \cap \operatorname{dom} L \neq \phi$, then N is L-compact on $\bar{\Omega}$.
(v) $x(t)$ is a solution of $\operatorname{BVP}(1)$ and $\operatorname{BVP}(2)$ if and only if x is a solution of the operator equation $L x=$ $N x$ in domL.

Proof: (i) The proof is easy and is omitted.
(ii) If $y \in \operatorname{Im} L$, then
$(-1)^{n-1} x^{(2 n)}=y(t), t \in(0,1)$
$x^{(2 i-1)}(0)=x^{(2 i-1)}(1)-\sum_{k=1}^{p_{i}} \alpha_{i, k} x^{(2 i-1)}\left(\xi_{i, k}\right)=0, i=1, \ldots \ldots, n-1 .$,
$x^{(2 n-1)}(0)=0, x(1)=\sum_{i=1}^{m} \beta_{i} x\left(\xi_{i}\right)$.
This implies $\quad x^{(2 n-1)}(t)=(-1)^{n-1} \int_{0}^{t} y(u) d u$ since $\quad x^{(2 n-1)}(0)=0$. we get
$x^{(2 n-3)}(t)=(-1)^{n-2} \int_{0}^{1} G_{n-1}(t, \tau) \int_{0}^{\tau} y(u) d u d \tau$,
Similarly, we get
$x^{\prime}(t)=\int_{0}^{1} G(t, \tau) \int_{0}^{\tau} y(u) d u d \tau$,
So,
$x(t)=c+\int_{0}^{t} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s$.

It follows from $x(1)=\sum_{i=1}^{m} \beta_{i} x\left(\xi_{i}\right)$ that
$\int_{0}^{1} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s=\sum_{i=1}^{m} \beta_{i} \int_{0}^{\xi_{i}} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s$.
On the other hand, assume that $\sum_{i=0}^{2 n-1} r_{i}<\frac{1}{2}$ holds. Let
$x(t)=c+\int_{0}^{t} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s$.
Then $x(t)$ satisfies above equation and hence (ii) is complete.
(iii). from (i), $\operatorname{dim} \operatorname{Ker} L=1$. On the other hand, for $y \in Y$, let
$y_{0}=y-\frac{t^{k}}{\Delta}\left(\int_{0}^{1} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s-\sum_{i=1}^{m} \beta_{i} \int_{0}^{\xi_{i}} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s\right)$. It is easy to check that $y_{0} \in \operatorname{ImL}$. Let $\bar{R}=\left\{c t^{k}: t \in[0,1], c \in R\right\}$.

We get $Y=\bar{R}+I m L$. It follows from $\bar{R} \cap I m L=\{0\}$ that $Y=\bar{R} \oplus I m L$.
Hence $\operatorname{dim} Y / \operatorname{ImL}=1$. On the other hand, f is continuous and ImL is closed. So L is a Fredholm operator of index zero.
(iv). Define the projectors $P: X \rightarrow X$ and $Q: Y \rightarrow Y$ by $P x(t)=x(0)$ for $x \in X$,
$Q y(t)=\frac{t^{k}}{\Delta}\left(\int_{0}^{1} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s-\sum_{i=1}^{m} \beta_{i} \int_{0}^{\xi_{i}} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s\right)$ for $y \in Y$.
It is easy to check that $\operatorname{KerL}=\operatorname{ImP}$ and $\operatorname{ImL}=\operatorname{Ker} Q$. The generalized inverse $K_{p}: \operatorname{ImL} \rightarrow \operatorname{domL} \cap$ KerP of L can be written by
$K_{p} y(t)=\int_{0}^{t} \int_{0}^{1} G(s, \tau) \int_{0}^{\tau} y(u) d u d \tau d s$.
(v). The proof is easy and can be omitted.

Theorem 2.1: Suppose following conditions hold
(A1). There exists functions $a_{i}(i=0,1, \ldots, n-1), b$ and $L^{1}[0,1]$ and a constant $\theta \in[0,1)$ such that for all $x_{i} \in R(i=0,1,2, \ldots . n-1)$, the following inequality holds

$$
\left|f\left(t, x_{0}, x_{1}, \ldots \ldots x_{n-1}\right)\right| \leq \sum_{i=0}^{n-1} a_{i}(t)\left|x_{i}\right|+b(t)\left|x_{n-1}\right|^{\theta}+r(t)
$$

(A2). There is $M>0$ such that for any $x \in \operatorname{dom} L / \operatorname{Ker} L$, if $\left|x^{(n-1)}(t)\right|>M$ for all $t \in[0,1]$, then

$$
\begin{aligned}
& \int_{0}^{1}\left(f\left(s, x(s), x^{\prime}(s), \ldots \ldots \ldots, x^{(n-1)}(s)\right)+e(s)\right) d s \\
& \quad-\beta \int_{0}^{\eta}(\eta-s)\left(f\left(s, x(s), x^{\prime}(s), \ldots \ldots \ldots, x^{(n-1)}(s)\right)+e(s)\right) d s \neq 0
\end{aligned}
$$

(A3). There is $M^{*}>0$ such that, for $x(t)=c t^{n-1}$, either

$$
\begin{aligned}
& c\left[\int_{0}^{1}\left(f\left(s, c s^{n-1}, c(n-1) s^{n-2}, \ldots \ldots(n-1)!c\right)+e(s)\right) d s\right. \\
& \quad-\beta \int_{0}^{\eta}(\eta-s) \int_{0}^{1}\left(f\left(s, c s^{n-1}, c(n-1) s^{n-2}, \ldots \ldots \cdot(n-1)!c\right)+e(s) d s\right]<0
\end{aligned}
$$

for all $|c|>M^{*}$ or

$$
\begin{aligned}
& c\left[\int_{0}^{1}\left(f\left(s, c s^{n-1}, c(n-1) s^{n-2}, \ldots \ldots(n-1)!c\right)+e(s)\right) d s\right. \\
& \quad-\beta \int_{0}^{\eta}(\eta-s) \int_{0}^{1}\left(f\left(s, c s^{n-1}, c(n-1) s^{n-2}, \ldots \ldots(n-1)!c\right)+e(s) d s\right]>0
\end{aligned}
$$

Farheen Anjum ${ }^{1}$, P. Venkat Raman ${ }^{2}$ and M. Vijay Kumar ${ }^{3^{*} / \text { Solutions Of A Multi-Point Boundary Value }}$ Problem For Higher-Order Differential Equations/ IJMA- 4(11), Nov.-2013.

for all $|c|>M^{*}$;
(A4). $\sum_{i=1}^{n-1}\left\|a_{i}\right\|_{1}<1$.
Then BVP (5) and (6) has atleast one solution.
Theorem 2.2: Suppose following conditions hold
($\left.\mathbf{A}^{\prime} \mathbf{1}\right)$. There are continuous functions $h\left(t, x_{0}, x_{1}, \ldots \ldots, x_{2 n-1}\right), e(t)$ and non negative functions $g_{i}(t, x)(i=$ $0,1, \ldots \ldots, 2 n-1)$ and positive numbers β and m such that f satisfies
$(-1)^{n-1} f\left(t, x_{0}, x_{1}, \ldots \ldots x_{2 n-1}\right)=e(t)+h\left(t, x_{0}, x_{1}, \ldots \ldots, x_{2 n-1}\right)+\sum_{i=0}^{2 n-1} g_{i}\left(t, x_{i}\right)$,
and also that h satisfies
$x_{2 n-1} h\left(t, x_{0}, x_{1}, \ldots \ldots, x_{2 n-1}\right) \leq-\beta\left|x_{2 n-1}\right|^{m+1}$
and for all $t \in[0,1]$ and $\left(x_{0}, x_{1}, \ldots \ldots x_{2 n-1}\right) \in R^{2 n}$ and
$\lim _{|x| \rightarrow \infty} \sup _{t \in[0,1]} \frac{\left|g_{i}(t, x)\right|}{|x|^{m}}=r_{i}$, for $i=0,1,2, \ldots \ldots \ldots, 2 n-1$.
With $r_{i} \geq 0$ for $i=0,1,2, \ldots \ldots \ldots, 2 n-1$;
(A'2). There exists constants $L \geq 0, \alpha>0$ and $\alpha_{i} \geq 0(i=1,2, \ldots .2 n-2)$ such that
$\left|f\left(t, x_{0}, x_{1}, \ldots \ldots x_{2 n-1}\right)\right| \geq \alpha\left|x_{0}\right|-\sum_{i=1}^{2 n-2} \alpha_{i}\left|x_{i}\right|-L$
For all $t \in[0,1]$ and $\left(x_{0}, x_{1}, \ldots \ldots x_{2 n-1}\right) \in R^{2 n}$.
Furthermore (A3), (A4) of Theorem 2.1 hold. Then BVP (1) and (2) has atleast one solution provided
$\left(1+\frac{\sum_{i=1}^{2 n-2} \alpha_{i}}{\alpha}\right)^{m} r_{0}+\sum_{i=1}^{2 n-1} r_{i}<\beta$.

REFERENCES

[1] R. P. Agarwal, O’Regan, P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, 1999.
[2] R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore,1986.
[3] R. P. Agarwal, Focal Boundary Value Problems for Differential and Difference Equations, Kluwer, Dordrecht, 1998.
[4] C. P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1992), 540-551.
[5] V. Il'in and E. Moiseev, Non-local boundary value problems of the second kind for a Sturm-Liouville operator, Differential Eqns. 23(1987), 979-987.
[6] B. Liu and J. Yu, Solvability of multi-point boundary value problems at resonance (I), India J. Pure Appl. Math. 33(2002), 475-494.
[7] B. Liu and J. Yu, Existence of solutions for m-point boundary value problems of second order differential equations with impulses, Appl. Math. Comput. 125(2002), 155-175.
[8] V. Il'in and E. Moiseev, Non-local boundary value problems of first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Eqns. 23(1987), 803-810

Farheen Anjum ${ }^{1}$, P. Venkat Raman ${ }^{2}$ and M. Vijay Kumar ${ }^{3^{*} / \text { Solutions Of A Multi-Point Boundary Value }}$ Problem For Higher-Order Differential Equations/ IJMA- 4(11), Nov.-2013.

[9] R. Ma, Existence theorems for a second order three point boundary value problem, J. Math. Anal. Appl. 212(1997), 430-442.
[10] R. Ma, Existence theorems for a second order m-point boundary value problem, J. Math. Anal. Appl. 211 (1997), 545-555.
[11] R. Ma, Positive solutions of nonlinear three-point boundary value problems, Elec. J. Differential Equations 34(1998), 1-8.
[12] W. Feng and J. R. L. Webb, Solvability of three-point boundary value problems at resonance, Nonlinear Anal. 30(1997), 3227-3238.
[13] W. Feng and J. R. L. Webb, Solvability of m-point boundary value problems with nonlinear growth, J. Math. Anal. Appl. 212(1997), 467-489.
[14] C. P. Gupta,A sharper conditions for the solvability of three-point second order boundary value problem, J. Math. Anal. Appl. 205(1997), 579-586.
[15] L. Erbe and M. Tang, Existence and multiplicity of positive solutions to nonlinear boundary value problems, Diff. Equs. Dynam. Systems 4(1996), 313-320.
[16] S. Qi, Multiple positive solutions to boundary value problems for higher-order nonlinear differential equations inn Banach spaces, Acta Math. Appl. Sinica 17(2001), 271-278.
[17] J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS Regional Conference Series inn Math., American Math. Soc., providence, RI, 1979.
[18] J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, in: P. M. Fitzpertrick, M. Martelli, J. Mawhin, R. Nussbaum (Eds.), Topological Methods for Ordinary Differential Equations,, Lecture Notes in Math. Vol.1537, Springer- Verlag, New York/Berlin, 1991.
[19] P. W. Eloe, J. Henderson, Positive solutions for ($n-1,1$) conjugate boundary value problems, Nonlinear Analysis 28(1997), 1669-1680.
[20] Y. Liu and W. Ge, Positive solutions for ($n-1,1$) three-point boundary value problems with coefficient that changes sign, J. Math. Anal. Appl. 282(2003), 816-825.
[21] Y. Liu and W. Ge, Solutions of a multi-point boundary value problem for higher-order differential equations at resonance(I), (preprint).
[22] Y. Liu and W. Ge, Solutions of a multi-point boundary value problem for higher-order differential equations at resonance (II), (preprint).
[23] R. P. Agawarl and F. Wong, Existence of positive solutions for non-positive higher-order BVPs, J. Comput. Appl. Math. 88(1998), 3-14.
[24] B. Liu, Solvability of multi-point boundary value problems at resonance (III), Appl. Math. Comput. 129(2002), 119-143.
[25] B. Liu, Solvability of multi-point boundary value problems at resonance (IV), Appl. Math. Comput., 143(2003), 275-299.

Source of support: Nil, Conflict of interest: None Declared

