SOME STUDIES ON ZERO DIVISOR GRAPHS ASSOCIATED WITH CONNECTED RINGS

${ }^{1}$ K. Suvarna \& ${ }^{2}$ A. Swetha*
${ }^{1}$ Research Supervisor, Department of Mathematics, S. K. University, Anantapur (A.P.), India.
${ }^{2}$ Research Scholar, Department of Mathematics, S. K. University, Anantapur (A.P.), India.

(Received on: 21-10-13; Revised \& Accepted on: 18-11-13)

Abstract

Anderson and Livingston studied the properties of the zero divisor graph of a commutative ring. In this paper, we present the properties of the zero divisor graph of a connected ring. A connected ring $(R,+, ., o)$ is a ring $(R,+,$.$) with$ the connected operation o, that is, x o $y=x$ a y for any x, a, y in R. We prove that if R is a commutative connected ring, then the zero divisor graph $\Gamma(R)$ is connected and diam $(\Gamma(R)) \leq 3$. Moreover, if $\Gamma(R)$ contains a cycle, then girth, $\operatorname{gr}(\Gamma(R)) \leq 7$. Also if R is a commutative connected Artinian ring and $\Gamma(R)$ contains a cycle, then $\operatorname{gr}(\Gamma(R)) \leq 4$.

Key words: connected ring, Artinian ring, zero divisor graph, diameter, cycle, girth.

1. INTRODUCTION

Anderson and Livingston [1] studied the properties of the zero divisor graph of a commutative ring. In this paper we present some properties of zero-divisor graphs associated with connected rings. Throughout this paper R denotes a commutative connected ring with identity element 1 and $Z(R)$ be its set of zero-devisor. $\Gamma(\mathrm{R})$ denotes a graph associated to R such that the vertices of $\Gamma(R)$ of the elements of $Z(R)^{*}$ where $Z(R)$ * is the set of non-zero zero-divisors of R. The vertices x and y are adjacent if and only if x o $y=x$ a $y=0$ for any a in R. This $\Gamma(\mathrm{R})$ is called a zero-divisor graph of $R . \Gamma(R)$ is an empty graph if and only if R is an integral domain. A ring R is Artinian if it satisfies the descending chain condition on ideals. A path whose origin and terminus vertices are same is called a cycle.

The diameter of a graph G is the sup $\{\mathrm{d}(x, y) / x$ and y are distinct vertices in G$\}$, where $\mathrm{d}(x, y)$ is the length of shortest path from x to y in G . The girth of G denoted by gr (G) is the length of the shortest cycle in G .

2. EXAMPLES

We give some examples of zero-divisor graphs.
Let Z_{4} be the connected ring of integers modulo 4.
Then $Z_{4}=\{0,1,2,3$,$\} .$

.	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

(a) We have the following zero-divisor graphs $\Gamma(R)$ with $|\Gamma(R)| \leq 3$.

$$
Z_{4} \text { (or) } Z_{2}[x] /\left(x^{2}\right)
$$

$$
Z_{9}, Z_{2} \times Z_{2} \text { (or) } Z_{3}[x] /\left(x^{2}\right)
$$

${ }^{1}$ K. Suvarna \& ${ }^{2}$ A. Swetha*/ Some Studies On Zero Divisor Graphs Associated With Connected Rings/ IJMA-4(11), Nov.-2013.

$$
\begin{aligned}
& Z_{6}, Z_{8} \text { (or), } Z_{2}[x] /\left(x^{3}\right) \\
& Z_{4}[x] /\left(2 x, x^{2}-2\right)
\end{aligned}
$$

$$
Z_{2}[x, y] /\left(x^{2}, x y, y^{2}\right) \text { or } F_{4}[x] /\left(x^{2}\right)
$$

(b) We have eleven graphs with four vertices out of which only six are connected. These are given by

(i) $Z_{2} \times F_{4}$

(iv)

(ii) $Z_{3} \times Z_{3}$

(v)

(iii) Z_{25} (or) $Z_{5}[x] /\left(x^{2}\right)$

(vi)

From the above six only three (i), (ii), (iii) are zero-divisor graphs $\Gamma(R)$. We prove that the graph $\Gamma(\mathrm{R})$ given in (v) with vertices $\{x, y, z, t\}$ and edges $x y, y z, z t$ can not be a zero-divisor graph $\Gamma(R)$.

Suppose a ring R with zero - divisors $Z(R)=\{0, x, y, z, t\}$. Then $x+z \in Z(R)$, since $(x+z) \cdot y=(x+z) a y=0$. Hence $(x+z)$ must be $0, x, y, z$ or t. But there is only possibility $x+z=y$. Similarly $y+t=z$. Hence $y=x+z=x+y+t$. So $x+t=0 \Rightarrow t$ $=-x$. Thus $y \circ t=y a t=y \circ(-x)=0$, a contradiction. Hence (v) is not a zero - divisor graph. Similarly it can be proved that the graph in (iv) and (vi) are not zero-divisor graphs.
(c) Now clearly $\Gamma(R)$ can not be a triangle or a square. But sub $\Gamma(R)$ can not be an n-gon for $n \geq 5$. So there is a zerodivisor graph for each $n \geq 3$ with an n-cycle.

Let $R_{n}=I_{Z}\left[x_{1}, \ldots \ldots . ., x_{n}\right] / I=Z_{2}\left[x_{1}, \ldots \ldots . ., x_{n}\right]$,
where $I=\left(x_{1}^{2} \ldots \ldots, x_{n}^{2}, \quad x_{1} x_{2}, x_{2} x_{3} \ldots \ldots . . x_{n} x_{1}\right]$.
Then $\Gamma\left(R_{n}\right)$ is finite and has a cycle of length n. i.e., $x_{1}-x_{2} \ldots \ldots \ldots x_{n}-x_{1}$.
(d) Let $R=A x B$, where A and B be integral domains. Suppose $\Gamma(R)$ can be partitioned into two disjoint vertex sets $V_{1}=\left\{(a, 0) / a \in A^{*}\right\}$ and $V_{2}=\left\{(0, b) / b \in B^{*}\right\}$, and two vertices x and y are adjacent if and only if they are in distinct vertex sets. Then $\Gamma(R)$ is a complete bipartite graph with $|\Gamma(R)|=|A|+|B|-2$. A complete bipartite graph with vertex sets having m and n elements is denoted by $K_{m, n}$. If $A=Z_{2}$, Then $\Gamma(R)$ is a star graph with $|\Gamma(R)|=|B|$.

For example, $\Gamma\left(F_{p} \mathrm{x} F_{q}\right)=K_{p-1, q-1}$.
and $\Gamma\left(F_{2} \times F_{q}\right)=K_{1, q-1}$

$Z_{2} \times Z_{7}$

$Z_{3} \times Z_{5}$

${ }^{1}$ K. Suvarna \& ${ }^{2}$ A. Swetha*/ Some Studies On Zero Divisor Graphs Associated With Connected Rings/IJMA-4(11), Nov.-2013.

The set of zero divisors of Z_{4} is $\{0\}$.
$\Gamma(R)$ may be infinite because a connected ring may have an infinite number of zero-divisors. But $\Gamma(R)$ is of most interest when it is finite, for we can $\operatorname{diam} \Gamma(R)$

3. MAIN THEOREMS

We now discuss some properties of $\Gamma(R)$, where R is a commutative connected ring.
Theorem: 3.1 Let R be a commutative connected ring. Then $\Gamma(R)$ is connected and diam $(\Gamma(R)) \leq 3$. Moreover, if $\Gamma(R)$ contains a cycle, then $g(\Gamma(R)) \leq 7$.

Proof: Let R be a commutative connected ring, $\Gamma(R)$ is connected implies that there is a path between any two distinct vertices in $\Gamma(R)$. Let $x, y \in Z(R)^{*}$ and $x \neq y$. Let $d(x, y)$ be the length of shortest path from x to y.

If $x \circ y=x a y=0$, then $d(x, y)=1$.
Suppose that $x \circ y=x a y$ is non-zero.
If $x a x=y a y=0$, then $x-x a y-y$ is a path of length 2, i.e., $d(x, y)=2$. If $x \circ x=x a x=0$ and $y \circ y=y a y \neq 0$, then there is $a b \in Z(R)^{*}-\{x, y\}$ with $b \circ y=b a y=0$. If $b \circ x=b a x=0$, then $x-b-y$ is a path of length 2 . If $b \circ x=b a x \neq 0$, then $x-b a x-y$ is a path of length 2 . In either case we have $d(x, y)=2$.

Similarly if yay $=0$ and $x a x \neq 0$, we can show that $d(x, y)=2$. So we assume that $x a y \neq 0, x a x \neq 0$ and $y a y \neq 0$. Hence there are $s, t \in Z(R)^{*}-\{x, y\}$ with $s a x=$ tay $=0$. If $s=t$, then $x-s-y$ is a path of length 2 . So we assume that $s \neq t$.

If sat $=0$ then $x-s-t-y$ is a path of length 3 . Hence $d(x, y) \leq 3$.
If sat $=0$ then $x-s a t-y$ is a path of length 2 .
Thus $d(x, y) \leq 2$.
Hence $d(x, y) \leq 3$. Thus diam $(\Gamma(R)) \leq 3$. If $\Gamma(R)$ contains a cycle, then $g r(\Gamma(R)) \leq 2$ diam $\Gamma+1$.
So $\operatorname{gr}(\Gamma(R)) \leq 2.3+1=7$.
If we consider the graphs given in Example, it is clear that diam $(\Gamma(R))=0,1,2$.
If $R=Z_{2} \times Z_{4}$ then the path $(\overline{0}, \overline{1})-(\overline{1}, \overline{0})-(\overline{0}, \overline{2})-(\overline{1}, \overline{2})$ gives that diam $(\Gamma(R))=3$.
Remark: The ring R given in Example (a) have diam $(\Gamma(R))=0$, 1 , or 2 . If $R=Z_{2} \times Z_{4}$, then the path $(\overline{0}, \overline{1})-(\overline{1}, \overline{0})-(\overline{0}, \overline{2})-(\overline{1}, \overline{2})$ shows that diam $(\Gamma(R))=3$.

Further the rings given in Example have $g r(\Gamma(R)) \leq 3,4$ or ∞.
If R is Artinnian then we can improve the value of $g(\Gamma(R))$ as $g(\Gamma(R)) \leq 4$.
This can be seen as follows:
Theorem: 3.2 Let R be a commutative connected Artinian ring (in particular, R is a finite commutative connected ring).
If $\Gamma(R)$ contains a cycle, then $\operatorname{gr}(\Gamma(R)) \leq 4$.
Proof: Let R be a commutative connected Artinian ring. Suppose $\Gamma(R)$ contains a cycle. Then R is a finite direct product of Artinian Local rings [3].

Suppose that R is a local ring with non-zero maximal ideal M. So $M=A n n x$ for some $x \in M^{*}$ [5].
If $y \neq z$ and $y, z \in M^{*}-\{x\}$ with $y a z=0$, then $y-x-z-y$ is a triangle, otherwise, $\Gamma(R)$ contains no cycles, a contradiction to $\Gamma(R)$ contains a cycle.

${ }^{1}$ K. Suvarna \& ${ }^{2}$ A. Swetha*/ Some Studies On Zero Divisor Graphs Associated With Connected Rings/ IJMA- 4(11), Nov.-2013.

Therefore in this case $\operatorname{gr}(\Gamma(R))=3$.
Suppose that $R=R_{1} \times R_{2}$.
If R_{1}, R_{2} are such that $\left|R_{1}\right| \geq 3$ and $\left|R_{2}\right| \geq 3$, then we choose $a_{i} \in R_{i}\{0,1\}$. Then $(1,0)-(0,1)-\left(a_{1}, 0\right)-\left(0, a_{2}\right)-(1,0)$ is a square. So in this case, $\operatorname{gr}(\Gamma(R)) \leq 4$.

Thus we may assume that $R_{1}=Z_{2}$.
If $\left|Z\left(R_{2}\right)\right| \leq 2$, then $\Gamma(R)$ contains no cycles, a contradiction. Hence $\left|Z\left(R_{2}\right)\right| \geq 3$.
Since $\Gamma(R)$ is connected, there are distinct $x y \in Z\left(R_{2}\right)^{*}$ with xay $=0$.
Thus $(\overline{0}, x)-(\overline{1}, 0)-(\overline{0}, y)-(\overline{0}, x)$ is a triangle. Hence in this case $\operatorname{gr}(\Gamma(R))=3$.
Thus in all cases, $\operatorname{gr}(\Gamma(R)) \leq 4$.
The proof of the above theorem shows that a finite commutative connected ring ' R ' has $\operatorname{gr}(\Gamma(R))=4$ if and only if either $R \cong F \times K$ where F and K are finite fields with $|F| \geq 3,|K| \geq 3$ or $R \cong F \times A$ where F is a finite field with $|F| \geq 3$ and A is a finite commutative connected ring with $|Z(A)|=2$ i.e., in this case $A=Z_{4}$ or $A \cong Z_{2}(x) /\left(x^{2}\right)$.

REFERENCES

[1] Anderson D.F and Livingston P.S, "The zero-divisor graph of a commutative ring", J. Algebra 217 (1999), 434447.
[2] Anderson D.F, Frazier A, Lauve A, and Livingston P.S, "The zero-divisor graph of a commutative ring 11". Lecture Notes in pure and Appl. Math. 220 (2001), 61-72.
[3] Atiyah M.F and Mac Donald I.G, "Introduction to Commutative Algebra". Addison-Wesley, Reading, M.A., 1969.
[4] Ganesan N, "Properties of rings with a finite number of zero-divisors II", Math. Ann. 161 (1965), 241-246.
[5] Kaplansky I, "Commutative Rings", Rev. ed., Univ. of Chicago press, Chicago, 1974.
[6] Smith, N.O, "Planar zero-divisor Graph", International Journal of Commutative Rings", 2002, 2(4), 177-188.

Source of support: Nil, Conflict of interest: None Declared

