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ABSTRACT 

This manuscript is a classification on Pre-A*-algebra A  in sight of it is like a partially ordered set. Using a binary 
operation in Pre-A*-algebra, an observation is made on Pre A*-Algebra as a partially ordered set with respect to 
binary operation ∧ and obtained consequent results. It is also grant access to an equivalent condition for a Pre A*-
algebra become a Boolean algebra.  
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INTRODUCTION 
 
In a draft manuscript entitled “The Equational theory of Disjoint Alternatives”, E. G. Manes (1989) introduced the 
concept of Ada Error! Bookmark not defined.

∈

(Algebra of disjoint alternatives) (A, ∧, ∨, (−)⃓, (−)𝜋𝜋 , 0, 1, 2) which is 
however differs from the definition of the Ada of E. G. Manes (1993)  later paper entitled “Adas and the equational 
theory of if-then-else”. While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept 
more on the basis of Boolean algebras and the later concept is based on C-algebras (A, ∧, ∨, (−)∼) introduced by 
Fernando Guzman and Craig C. Squir (1990) . P. Koteswara Rao (1994) first introduced the concept of A*-algebra (A, 
∧, ∨, ∗, (−)∼, (−)𝜋𝜋 , 0, 1, 2) not only studied the equivalence with Ada, C-algebra, Ada’s connection with 3-Ring, 
Stone type representation but also introduced the concept of A*-clone, the If-Then-Else structure over A*-algebra and 
Ideal of A*-algebra.  
 
J.Venkateswara Rao (2000) introduced the concept Pre A*-algebra (A, ∧, ∨, (−)∼)  analogous to C-algebra as a reduct 
of A*- algebra. Venkateswara Rao.J, Praroopa.Y (2006) made a structural study on Boolean algebras and Pre A*-
Algebras.  
 
Boolean algebra depends on two element logic. C-algebra, Ada, A*- algebra and our Pre A*-algebra are regular 
extensions of Boolean logic to 3 truth values, where the third truth value stands for an undefined truth value. The Pre 
A*- algebra structure is denoted by (A, ∧, ∨, (−)∼) where A is non-empty set ∧, ∨, are binary operations and (−)∼ is a 
unary operation.  
 
In this paper we define a relation ≤ on Pre A*-algebra with respect to the binary operation ∨ and we discuss the 
properties of a Pre A*-algebra like a poset. We find the necessary conditions for a poset to become a lattice. We also 
present a equivalent condition for a Pre A*-algebra become   a Boolean algebra. For any a A define aA ={x∈A / a ∨

x = x} and ax = a ∨  x~ then ( aA , ∧ , ∨ , a ) is a Pre A*-algebra. We also define a mapping ,a bα from aA to bA  by 

,a bα  (x) = b ∨ x for all x∈ aA  is a homomorphism of Pre A*-algebras. 
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1. PRELIMINARIES 
 
1.1. Definition: The relation R on a set A is called a partial order on A when R(≤) is reflexive, anti-symmetric, and 
transitive. Under these conditions, the set A is called a partially ordered set or a poset. Frequently we write (A, R) or 
(A, ≤) to denote that A is partially ordered by the relation R(≤). Since the relation ≤ on the set of real numbers is the 
prototype of a partial order it is common to write ≤ to represent an arbitrary partial order can be described as follows: 
1. For all a ∈ A, a ≤ a (symmetry) 
2. For all a, b ∈ A, a ≤ b, b ≤ a, then a = b (anti symmetry) 
3. For all a, b, c ∈ A, a ≤ b and b ≤ c, then a ≤ c (transitivity) 
 
Two elements a and b in A are said to be comparable under ≤ if either a ≤ b or b ≤ a; otherwise they are incomparable. 
If every pair of elements of A are comparable, then we say that the poset is totally ordered.  
 

1.2. Definition: An algebra ( , , ,A ∧ ∨ ~( ) − ) where A is a non-empty set with 1, ∧ , ∨  are binary operations and 
~( ) −  is a unary operation satisfying  

(a) ~ ~ =   x x x A∀ ∈  
(b) ,x x x x A∧ = ∀ ∈         
(c) , ,x y y x x y A∧ = ∧ ∀ ∈   

(d) ~  ~ ~( )   ,x y x y x y A∧ = ∨ ∀ ∈       
(e) ( ) ( ) ,  , ,x y z x y z x y z A∧ ∧ = ∧ ∧ ∀ ∈   
(f) ( ) ( ) ( ), , ,x y z x y x z x y z A∧ ∨ = ∧ ∨ ∧ ∀ ∈    

(g) ~(  ),  ,x y x x y x y A∧ = ∧ ∨ ∀ ∈  is called a Pre A*-algebra. 
 

1.1. Example: 3 = {0, 1, 2} with operations ∧ , ∨ ,  ~( ) − defined below is a Pre A*-algebra. 
 
 
 
 
 
 
 
 
 
1.1. Note: The elements 0, 1, 2 in the above example satisfy the following laws: 
(a) 2~ = 2                (b) 1 ∧ x = x for all x ∈ 3               
(c) 0 ∨ x = x for all x ∈ 3     (d) 2 ∧ x = 2 ∨ x = 2 for all x ∈ 3. 
 
1.2. Example: 2 = {0, 1} with operations ∧, ∨, (-)~ defined below is a Pre A*-algebra. 
 

∧ 0 1  ∨ 0 1  x x~ 
0 0 0  0 0 1  0 1 
1 0 1  1 1 1  1 0 

 
1.2. Note: 

(i)   ( )2, , , ( )∨ ∧ −  is a Boolean algebra. So every Boolean algebra is a Pre A* algebra. 

(ii)  The identities 1.2(a) and 1.2(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.2(b)   
        to 1.2(g). 
 
1.3. Definition:  Let A be a Pre A*-algebra. An element x ∈A is called a central element of A if   =1x x∨   and the set 
{x ∈ A/  =1x x∨  } of all central elements of A is called the centre of A and it is denoted by B (A).  
 
1.1. Theorem:[ Satyanarayana.A, (2012)]  Let A be a Pre A*-algebra with 1, then B (A) is a Boolean algebra with  the 
induced operations  ~(-) ,  , ∨∧  

∧ 0 1 2  ∨ 0 1 2  x  x  

0 0 0 2  0 0 1 2  0 1 

1 0 1 2  1 1 1 2  1 0 

2 2 2 2  2 2 2 2  2 2 
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1.1. Lemma: [Satyanarayana.A, (2012),] Every Pre A*-algebra with 1 satisfies the following laws   
 
       (a)   ~1 xxx ∨=∨    (b)  ~0 xxx ∧=∧  
 
1.2. Lemma: [7] Every Pre A*-algebra with 1 satisfies the following laws. 
 
(a)  (  ) = (  ) x x x x x x x∧ ∨ ∨ ∧ =       
(b) (  ) y (x y) (x y)x x∨ ∧ = ∧ ∨ ∧      
(c) ( ) ( ) (  y z)x y z x z x∨ ∧ = ∧ ∨ ∧ ∧  
 
1.4. Definition: Let 1( , , , ( ) )A ∨ ∧ −   and 2( , , , ( ) )A ∨ ∧ −   be a two Pre A*- algebras. A mapping 1 2:f A A→  is 
called a Pre A*-homomorphism if 
 
(i) ( ) ( ) ( )f a b f a f b∧ = ∧    (ii) ( ) ( ) ( )f a b f a f b∨ = ∨      (iii) (  ) ( ( )) f a f a=   
 
The homomorphism 1 2:f A A→  is onto, then f is called epimorphism.  
 
The homomorphism 1 2:f A A→  is one-one then f is called monomorphism 
 
The homomorphisn 1 2:f A A→  is one-one and onto then f  is called an isomorphism, and 1 2,A A  are isomorphic, 

denoted in symbol 1 2A A≅ . 
 
2. Pre A*-algebra as a poset with respect to Binary Operation ∨ 
 
2.1 Definition: Let A be a Pre A*-algebra. Define ≤ on A by x ≤ y if and only if y∨x = x∨y = y. 
 
2.1 Lemma: If A is a Pre A*-algebra, then (A, ≤) is a poset. 
 
Proof: Since x∨x = x, x≤x for all x∈A. 
 
Therefore ≤ is reflexive. 
 
Suppose that x, y, z ∈ A, x ≤ y and y ≤ z. 
 
Then we have y ∨ x = x ∨ y = y and z ∨ y = y ∨ z = y. 
 
Now z = y ∨ z = x ∨ y ∨ z = x ∨ z. 
 
Therefore x ∨ z = z ∨ x = z, i.e., x ≤ z. 
 
This shows that ≤ is transitive. 
 
Suppose that x, y ∈ A, x ≤ y and y ≤ x. 
 
Then we have y ∨ x = x∨y = y and x ∨ y = y ∨ x = y. 
 
This shows that x = y. 
 
Therefore ≤ is antisymmetric. 
 
Therefore (A, ≤) is poset.  
 
2.1. Note: If A is a Pre A*-algebra with 1, 0, 2 then 0 ≤ x (0 ∨ x = x ∨ 0 = x), for all x ∈ A and x ≤ 2 (2 ∨ x = x ∨ 2 = 
2). This shows that 2 is the greatest element and 0 is the least element of the poset.  
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The Hasse diagram of the poset (A, ≤) is given by  

 
Diagram: 2.1 

 
We know that A × A is a Pre A*-algebra under point wise operation. The Hasse diagram is given below                       
A × A = {a1 = (1, 1), a2 = (1, 0), a3 = (1, 2), a4 = (0, 1), a5 = (0, 0), a6 = (0, 2), a7 = (2, 1), a8 = (2, 0), a9 = (2, 2)} 

 
Diagram: 2.2 

 
Observe that, x ≤ a9, i.e., (x ∨ a9 = a9 ∨ x = a9) and a5 ≤ x (x∨a5 = a5∨x=x) for all x ∈ A × A. This shows that a9 is the 
greatest element and a5 is the least element of A × A.  
 
We have 2 × 3 = {a1 = (1,1), a2 = (0,0), a3 = (1,0), a4 = (0,1), a5 = (0,2), a6 = (1,2)} is Pre A*-algebra under point wise 
operation having four central elements two non-central elements and no element is satisfying the property that a~ = a. 
 
The Hasse diagram for (2 × 3, ≤) as given below 
 

 
Diagram: 2.3 

 
Observe that, x ≤ a6, i.e., x ∨ a6 = a6 ∨ x = a6 and a2 ≤ x (x ∨ a2 = a2 ∨ x = x) for all x∈ 2 × 3. This shows that a6 is the 
greatest element and a2 is the least element of 2 × 3. 
 
2.1. Theorem: In the poset (A, ≤), for any x ∈ A, Supremum {x, x~} = x ∨ x~ infimum {x, x~} = x ∧ x~.  
 
Proof: We have (x ∨ x~) ∨ x = x ∨ x~ and x~ ∨ (x ∨ x~) = x ∨ x~ 

 
Therefore,  x ≤ x ∨ x~ and x~ ≤ x ∨ x~. 
 
Hence x ∨ x~ is an upper bound of {x, x~} 
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Suppose n is an upper bound of {x. x~} 
 
That is, x ≤ n, x~ ≤ n ⇒ n ∨ x = n and n ∨ x~ = n 
 
Now n ∨ (x ∨ x~) = (n ∨ x) ∨ x~ = n ∨ x~ = n 
 
This shows that x ∨ x~ ≤ n 
 
Therefore x ∨ x~ is a least upper bound of {x, x~} 
 
This shows that supremum of {x, x~} = x ∨ x~ 
 
Again we have (x ∧ x~) ∨ x = x and (x ∧ x~) ∨ x∼ = x~ 
 
Therefore x ∧ x~ ≤ x and x ∧ x~ ≤ x~ 
 
Hence x ∧ x~ is a lower bound of {x, x~} 
 
Suppose m is a lower bound of {x, x~}  
 
That is, m ≤ x, m ≤ x~ ⇒ m ∨ x = x and m ∨ x~ = x~  
 
Now m ∨ (x ∧ x~) = (m ∨ x) ∧ (m ∨ x~) = x ∧ x~ 
 
This shows that m ≤ x ∧ x~ 
 
Therefore x ∧ x~ is greatest lower bound of {x, x~}.  
 
This shows that infimum of {x, x~} = x ∧ x~. 
 
2.2. Theorem: In a poset (A, ≤) with 1, for any x, y ∈ A, sup{x, y} = x ∨ y.  
 
Proof: We have (x ∨ y) ∨ x = x ∨ y and (x ∨ y) ∨ y = x ∨ y 
 
Therefore,  x ≤ x ∨ y and y ≤ x ∨ y. 
 
Hence x ∨ y us an upper bound of {x, y} 
 
Suppose m is an upper bound of {x, y} 
 
That is, x ≤ m, y ≤ m ⇒ m ∨ x = m and m ∨ y = m 
 
Now m ∨ (x ∨ y) = (m ∨ x) ∨ y = m ∨ y = m. 
 
This shows that x ∨ y ≤ m 
 
Therefore x ∨ y is a least upper bound of {x, y} 
 
This shows that supremum of {x, y} = x ∨ y. 
 
In general for a Pre A*-algebra with 1, x ∧y need not be the greatest lower bound of {x, y} in (A, ≤). For example        
2 ∨ x = 2 ∧ x = 2, ∀x ∈ A is not a greatest lower bound. However we have the following. 
 
2.3. Theorem: In a poset (A, ≤) with 1, for any x, y ∈ Β(Α), Inf(x, y) = x∧y 
 
Proof: If x, y ∈ B(A), then we have x ∨ (x ∧ y) and y ∨ (x ∧ y) = y  
 
This shows that, x ∧ y ≤ x and x ∧ y ≤ y. 
 
Hence x ∧ y is a lower bound of {x, y} 
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Suppose m is a lower bound of {x, y}, then m ∨ x = x, m ∨ y = y.  
 
Now m ∨ (x∧y) = (m ∨ x) ∧ (m ∨ y) = x ∧ y 
 
Therefore m ≤ x ∧ y. 
 
Hence Inf{x, y} = x ∧ y. 
 
2.4. Theorem: In the poset (A, ≤), if x,y ∈ B(A), then x∧y ≤ x ∧ x~ 
 
Proof: (x ∧ x~) ∨ (x ∧ y)  = {(x ∧ x~) ∨ x}∧{(x ∧ x~) ∨ y) 
   = x ∧ (0 ∨ y) 
   = x ∧ y  
Therefore x ∧ y ≤ x ∧ x~ 
 
2.5. Theorem: In the poset (A, ≤), if  x ≤ y, then for any z ∈ A, 
(a) z ∧ x ≤ z ∧ y 
(b) z ∨ x ≤ z ∨ y 
 
Proof: If x ≤ y, then x ∨ y = y  
 
(a) (z ∧ x) ∨ (z ∧ y) = z ∧ (x ∨ y) = z ∧ y. 
 
Therefore z ∧ x ≤ z ∧ y 
 
(b) (z ∨ x) ∨ (z ∨ y) = z ∨ (x ∨ y) = z ∨ y. 
 
Therefore z ∨ x ≤ z ∨ y 
 
Now we are giving the following equivalent conditions for x ≤ y. 
 
2.2. Lemma: In a Pre A*-algebra 
(i) x ≤ y ⇔ x ∨ (x~ ∧ y) = (x~ ∧ y) ∨ x = y  
(ii) x ≤ y ⇔ y ∨ (y~ ∧ x) = (y~ ∧ x) ∨ y = y  
 
Proof:  
 
(i) If x ≤ y, ⇔ x ∨ y = y  
  ⇔ x ∨ (x~ ∧ y) = (x~ ∧ y) ∨ x = y   
 
(ii) If x ≤ y  ⇔ y ∨ x = y  
  ⇔ y ∨ (y~ ∧ x) = (y~ ∧ x) ∨ y = y  
 
Now we prove modular type results in the following 
 
2.3. Lemma: In the poset (A, ≤), if x ≤ y ⇒ x ∨ (y ∧ z) = y ∧ (x ∨ z)  
 
Proof: Suppose x ≤ y, then x ∨ y = y. 
 
Now x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) = y ∧ (x ∨ z) 
 
If x, y ∈ B (A) then by theorem 2.3 Inf{x, y} = x ∧ y. In general x ∧ y need not be an upper bound of {x, y} in poset 
(A, ≤). If x ∧ y is an upper bound of {x, y} in poset (A, ≤), then A becomes Boolean algebra.  
 
Now we have the following theorem. 
 
2.6. Theorem: If A is a Pre A*-algebra and x ∧ (x ∨ y) = x for all x, y ∈ A then (A, ≤) is a lattice.  
 
Proof: By theorem 2.2, we have every pair of elements have l.u.b and if x ∨ (x ∧ y) = x for all x, y ∈A, then by 
theorem 2.3 we have every pair of elements have g.l.b. Hence (A, ≤) is a lattice.  
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Now we present a equivalent condition for a Pre A*-algebra become a Boolean algebra. 
 
2.7. Theorem: The following conditions are equivalent for any Pre A*-algebra (A,∧, ∨, (-) ~). 
(1)  A is a  Boolean Algebra 
(2)  x ∧  y ≤  x for all x, y∈A 
(3)  x ∧  y ≤  y for all x, y ∈A 
(4)  x ∧  y is a lower bound of {x, y} in (A, ≤ ) for all x, y ∈A 
(5)  x ∧  y is a infimum of {x, y} in (A, ≤ ) for all x, y ∈A 
(6)  x ∨  x ~ is the least element in (A, ≤ ) for every x ∈A 
 
Proof:  (1) ⇒ (2) Suppose A be a Boolean algebra 
 
Now x ∨ (x ∧ y) = x (by absorption law)  
 
Therefore  x ∧ y ≤  x. 
 
(2) ⇒ (3) Suppose x ∧  y ≤  x then x ∨  (x ∧  y) = x 
 
Now y ∨  (x ∧  y) = y.   
 
Hence  x ∧ y ≤  y. 
 
(3) ⇒ (4) suppose that x ∧ y ≤  y   ⇒   y ∨ (x ∧  y)= y 
 
Since x ∧  y ≤  y   then x ∧ y is lower bound of y 
 
Now x ∨ (x ∧  y) = x (by supposition) 
 
Therefore x ∧  y ≤  x 
 
⇒  x ∧ y is a  lower bound of x 
 
       x ∧ y is a lower bound of {x, y}. 
 
(4) ⇒ (5) suppose  x ∧ y is a lower bound of {x, y} 
 
Suppose z is a lower bound of{x,  y}  then z ≤  x, z ≤  y that is  
 
x ∨ z = x,  y ∨ z = y 
 
Now z ∨ (x ∧ y) = (z ∨ x) ∧  (z ∨ y) = x ∧ y 
 
Therefore  z ≤  x ∧ y. 
 
x ∧  y is the greatest lower bound of {x, y} 
 
Hence Inf {x, y} = x ∧ y. 
 
(5) ⇒ (6) Suppose Inf { , }x y = x ∧  y then x,y ( )B A∈  
 
Now Inf {x ∧  x ~, y} = x ∧  x ~ ∧ y = x ∧  x ~                                     
 
⇒  x ∧  x ~ 

⊕≤  y  

 

Therefore  x ∧  x ~ is the least element in (A, ≤ ). 
 
(6) ⇒ (1) suppose x ∧  x ~ is the least element in A then x ∧  x ~ ≤  y, 
 
for y ∈A 
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⇒   (x ∧  x ~) ∨ y = y 
 
Now y ∧  (x ∨ y) = [(x ∧  x ~ ) ∨  y] ∨ ( x ∨  y) 
 
                              = [(x ∧  x ~) ∨  x] ∨  y 
 
                              = (x ∧  x ~) ∨  y = y  (by supposition) 
 
Therefore absorption law holds hence A is a Boolean algebra. 
 
2.8. Theorem: Let A be a pre A*-algebra x ∨ x ~ is the greatest element in (A, ≤ ) for every x ∈A then A is a Boolean 
algebra. 
 
Proof:  Suppose x ∨  x ~ is the greatest element in (A, ≤ ) then   
 
       y ≤  x ∨  x ~ for any y ∈A   
 
⇒  (x ∨  x ~) ∨  y = x ∨  x ~ 

 

 Now x ∨ (x ∧  y) = [ (  x)]  x x∧ ∨ ∨ ( x ∧  y) 
 
                               = x ∧  [(x ∨  x ~) ∨  y] 
 
                               = x ∧  (x ∨  x ~)     (by supposition) 
 
                               = x                                
 
Therefore x ∨  (x ∧  y) = x, absorption law holds. 
 
Hence A is a Boolean algebra. 
 
2.9. Theorem: Let A  be a Pre A*-algebra and a ∈A. Let aA = {x∈A / a ∨ x = x}.Then aA  is closed under the 

operations ∧  and ∨ . Also for any x∈ aA define, ax  = a ∨ x~. Then ( aA , ∧ , ∨ ,a ) is a Pre A*-algebra with 1(here 

a  is itself is the identity for ∨  in aA ; that is 1 in aA ). 
 
Proof: Let x , y ∈ aA .Then a ∨ x = x and a ∨ y = y. 
 
Now a ∨  (x ∧ y) = (a ∨ x) ∧  (a ∨ y) = x ∧  y ⇒  x ∧  y∈ aA  
 
Also a ∨  (x ∨ y) = (a ∨ x) ∨ y = x ∨  y ⇒  x ∨ y∈ aA  
 
Therefore aA is closed under the operation ∧  and ∨ . 

a ∨ ax = a ∨  ( a ∨  x~) = a ∨  x~ = ax ⇒ ax ∈ aA  
 
Thus aA is closed under a. 
 
Now for any x, y, z∈ aA  
(1) xaa = (a ∨  x~)a = a ∨  (a ∨  x~)~ = a ∨  (a~ ∧  x) = a ∨ x = x  
 
(2) x ∧ x = (a ∨ x) ∧ (a ∨ x) = x ∧ x = x 
 
(3) x ∧ y = (a ∨ x) ∧  (a ∨ y) =(a ∨ y) ∧  (a ∨ x) = y ∧ x 
 
(4) (x ∧ y)a = a ∨  (x ∧ y) ~ = a ∨  (x ~ ∨ y ~) 
 
                                           = (a ∨ x ~) ∨  (a ∨ y ~)  
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                                           = xa ∨ yb 
 
(5) x ∧ (y ∧ z) = (a ∨ x) ∧ {(a ∨ y) ∧ (a ∨ z)}  
                        = a ∨ {x ∧ (y ∧ z)} 
                        = a ∨ {(x ∧ y) ∧ z} ( since x, y, z∈A) 
                        = (x ∧ y) ∧ z  
 
(6) x ∧ (y ∨ z) = (a ∨ x) ∧ {(a ∨ y) ∨ (a ∨ z)} 
                        = {(a ∨ x) ∧ (a ∨ y)} ∨ {(a ∨ x) ∧ (a ∨ z)} 
                        = {a ∨  (x ∧ y)} ∨ {(a ∨  (x ∧ z)} 
                        = (x ∧ y) ∨ (x ∧ z) 
 
(7) x ∧ ( xa ∨ y) = x ∧ { (a ∨  x~) ∨ y} 
                          = {x ∧ (a ∨ x~)} ∨ (x ∧ y) 
                          = (x ∧  x~) ∨ (x ∧ y)  ( since a ∨ x = x) 
                          = x ∧ ( x~ ∨ y) 
                          = x ∧ y   
Finally x∈ aA implies that a ∨ x = x = x ∨ a. Thus ( aA , ∧ , ∨ ,a ) is a Pre A*-algebra with a as identity for ∨ . 
 
2.10. Theorem: Let a, b be elements in a Pre A*-algebra A such that a b≤ .Then the following hold. 
(1) a ∨ b = b 
(2) The map ,a bα : aA → bA defined by ,a bα  (x) = b ∨ x for all x∈ aA  is a homomorphism of Pre A*-algebras.  

(3) ,a bα  (B( aA )) ⊆  B( bA ) 

(4) If a ≤ b ≤ c then ,a bα ο ,b cα = ,a cα  

(5) ,a aα  is the identity map on aA  
 
Proof: Suppose that a b≤  
(1) We have a b≤  ⇒  a ∨ b = b 
(2) Let x, y ∈ aA .Then ,a bα  (x ∧ y) = b ∨  (x ∧ y) 
                                                               = (b ∨ x) ∧ (b ∨ y) 
                                                               = ,a bα  (x) ∧ ,a bα  (y) 

and ,a bα  (x ∨ y) = b ∨  (x ∨ y) 
                             = (b ∨ x) ∨  (b ∨ y) 
                             = ,a bα  (x) ∨ ,a bα  (y) 
 
Also ,a bα  (xa) = b ∨  xa

 

                          = b ∨  (a ∨  x~) 
                          = (b ∨ a) ∨  x~ 
                          = b ∨  x~ 

                          = b ∨  (b~ ∧  x~)    
                          = b ∨  (b ∨  x) ~   
                          = (b ∨  x)b   
                          = ( ,a bα  (x))b   
 
Therefore ,a bα  is a homomorphism of Pre A*-algebras.  

(3) Let x∈B( aA ) . 
 
Then x ∨  xa =a (since a is identity in aA ) and therefore a = x ∨ (a ∨ x~)                                                                        (i) 
 
Now ,a bα  (x) ∨ [ ,a bα  (x)]b =  (b ∨ x) ∨ (b ∨ x)b 
                                                 = (b ∨ x) ∨ [b ∨  (b ∨ x)~]   
                                                 = (b ∨ x) ∨ [ b ∨  (b~ ∧ x~)]  
                                                 = (b ∨ x) ∨  (b ∨ x~) 
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                                                 = b ∨  (x ∨ x~)  
 
                                                 = (a ∨ b) ∨  (x ∨ x~) 
                                                 = b ∨  [a ∨  (x ∨ x~)] 
                                                 = b ∨  a   (by (i)) 
                                                 = b, which is 1 in bA  

Therefore ,a bα  (x)∈B( bA ) 
 
Thus ,a bα  (B ( aA )) ⊆  B( bA ) 
 
(4) Let a ≤ b ≤ c 
 
[ ,a bα ο ,b cα ] (x) = ,a bα  [ ,b cα (x)] 

                               = ,a bα  [c ∨ x] 
                               = b ∨  c ∨ x 
                               = c ∨ x 
                               = ,a cα  (x) 
 
Therefore ,a bα ο ,b cα = ,a cα  

(5) ,a aα  (x) = a ∨  x = x for all x∈ aA  
 
Then ,a aα  is identity map on aA . 
 
CONCLUSION 
 
This manuscript point ups the character of the Pre-A*-algebra like a partially ordered set. With respect to binary 
operation ∨, able to define a relation ≤ on a Pre-A*-algebra and observed that such a Pre-A*-algebra as a partially 
ordered set with respect to the relation ≤ and derived corresponding results. It has been observed a necessary condition 
a Pre-A*-algebra to become a lattice. We also present a equivalent condition for a Pre A*-algebra become a Boolean 
algebra. For any a∈A defined a set aA ={x∈A / a ∨ x = x}, ax = a ∨  x~ and observed that ( aA , ∧ , ∨ , a) is a Pre A*-

algebra. Also defined a mapping ,a bα from aA to bA  by ,a bα  (x) = b ∨ x for all x∈ aA  and confirmed a 
homomorphism of Pre A*-algebras. 
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