International Journal of Mathematical Archive-4(11), 2013, 287-296

CHARACTERIZATION OF A PARTIAL ORDER RELATION ON PRE A* -ALGEBRA

D. Kalyani^{1*}, B. Rami Reddy², J. Venkateswara Rao³ and A. Satyanarayana⁴

¹Lecturer in Mathematics, Government College for Women, Guntur - 522 001, (A.P.), India.

²Head of the dept. of Mathematics, Hindu College, Guntur, (A.P.), India.

³Professor of Mathematics, Mekelle University, Mekelle, Ethiopia.

⁴Lecturer in Mathematics, A.N.R College, Gudiwada, (A.P.), India.

(Received on: 08-03-13; Revised & Accepted on: 22-10-13)

ABSTRACT

This manuscript is a classification on Pre-A*-algebra A in sight of it is like a partially ordered set. Using a binary operation in Pre-A*-algebra, an observation is made on Pre A*-Algebra as a partially ordered set with respect to binary operation \land and obtained consequent results. It is also grant access to an equivalent condition for a Pre A*-algebra become a Boolean algebra.

Key words: A*-algebra, Pre-A*-algebra, Boolean algebra, partially ordered set, Ada, homomorphism.

AMS subject classification (2000): 06E05, 06E25, 06E99, 06B10.

INTRODUCTION

In a draft manuscript entitled "The Equational theory of Disjoint Alternatives", E. G. Manes (1989) introduced the concept of Ada **Error! Bookmark not defined.** (Algebra of disjoint alternatives) (A, \land , \lor , $(-)^+$, $(-)_{\pi}$, 0, 1, 2) which is however differs from the definition of the Ada of E. G. Manes (1993) later paper entitled "Adas and the equational theory of if-then-else". While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras (A, \land , \lor , $(-)^{\sim}$) introduced by Fernando Guzman and Craig C. Squir (1990) . P. Koteswara Rao (1994) first introduced the concept of A*-algebra (A, \land , \lor , $(-)_{\pi}$, $(-)_{\pi}$, (0, 1, 2) not only studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation but also introduced the concept of A*-clone, the If-Then-Else structure over A*-algebra and Ideal of A*-algebra.

J.Venkateswara Rao (2000) introduced the concept Pre A*-algebra (A, \land , \lor , $(-)^{\sim}$) analogous to C-algebra as a reduct of A*- algebra. Venkateswara Rao.J, Praroopa.Y (2006) made a structural study on Boolean algebras and Pre A*-Algebras.

Boolean algebra depends on two element logic. C-algebra, Ada, A*- algebra and our Pre A*-algebra are regular extensions of Boolean logic to 3 truth values, where the third truth value stands for an undefined truth value. The Pre A*- algebra structure is denoted by $(A, \Lambda, V, (-)^{\sim})$ where A is non-empty set Λ , V, are binary operations and $(-)^{\sim}$ is a unary operation.

In this paper we define a relation \leq on Pre A*-algebra with respect to the binary operation \vee and we discuss the properties of a Pre A*-algebra like a poset. We find the necessary conditions for a poset to become a lattice. We also present a equivalent condition for a Pre A*-algebra become a Boolean algebra. For any $a \in A$ define $A_a = \{x \in A \mid a \lor x = x\}$ and $x^a = a \lor x^{\sim}$ then $(A_a, \land, \lor, \overset{a}{})$ is a Pre A*-algebra. We also define a mapping $\alpha_{a,b}$ from A_a to A_b by $\alpha_{a,b}$ (x) = b \lor x for all $x \in A_a$ is a homomorphism of Pre A*-algebras.

Corresponding author: D. Kalyani^{1*} ¹Lecturer in Mathematics, Government College for Women, Guntur - 522 001. (A.P.), India.

International Journal of Mathematical Archive- 4(11), Nov. - 2013

1. PRELIMINARIES

1.1. Definition: The relation R on a set A is called a partial order on A when $R(\leq)$ is reflexive, anti-symmetric, and transitive. Under these conditions, the set A is called a partially ordered set or a poset. Frequently we write (A, R) or (A, \leq) to denote that A is partially ordered by the relation $R(\leq)$. Since the relation \leq on the set of real numbers is the prototype of a partial order it is common to write \leq to represent an arbitrary partial order can be described as follows:

- 1. For all $a \in A$, $a \le a$ (symmetry)
- 2. For all $a, b \in A$, $a \le b, b \le a$, then a = b (anti symmetry)
- 3. For all a, b, $c \in A$, $a \le b$ and $b \le c$, then $a \le c$ (transitivity)

Two elements a and b in A are said to be comparable under \leq if either a \leq b or b \leq a; otherwise they are incomparable. If every pair of elements of A are comparable, then we say that the poset is totally ordered.

1.2. Definition: An algebra $(A, \land, \lor, (-))$ where A is a non-empty set with $1, \land, \lor$ are binary operations and

- (-) ~ is a unary operation satisfying
- (a) $x = x \quad \forall x \in A$
- (b) $x \land x = x, \forall x \in A$
- (c) $x \wedge y = y \wedge x, \forall x, y \in A$
- (d) $(x \land y) = x \lor y \lor \forall x, y \in A$
- (e) $x \land (y \land z) = (x \land y) \land z, \ \forall x, y, z \in A$
- (f) $x \land (y \lor z) = (x \land y) \lor (x \land z), \forall x, y, z \in A$
- (g) $x \wedge y = x \wedge (x \lor y), \forall x, y \in A$ is called a Pre A*-algebra.

1.1. Example: $\mathbf{3} = \{0, 1, 2\}$ with operations $\land, \lor, (-)$ ~ defined below is a Pre A*-algebra.

^	0	1	2	\sim	0	1	2	x	x~
0	0	0	2	0	0	1	2	0	1
1	0	1	2	1	1	1	2	1	0
2	2	2	2	2	2	2	2	2	2

1.1. Note: The elements 0, 1, 2 in the above example satisfy the following laws: (a) $2^{\tilde{}} = 2$ (b) $1 \wedge x = x$ for all $x \in 3$ (c) $0 \vee x = x$ for all $x \in 3$ (d) $2 \wedge x = 2 \vee x = 2$ for all $x \in 3$.

1.2. Example: $2 = \{0, 1\}$ with operations \land , \lor , $(-)^{\sim}$ defined below is a Pre A*-algebra.

^	0	1	\vee	0	1	Х	x~
0	0	0	0	0	1	0	1
1	0	1	1	1	1	1	0

1.2. Note:

- (i) $(2, \lor, \land, (-\tilde{)})$ is a Boolean algebra. So every Boolean algebra is a Pre A* algebra.
- (ii) The identities 1.2(a) and 1.2(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.2(b) to 1.2(g).

1.3. Definition: Let A be a Pre A*-algebra. An element $x \in A$ is called a central element of A if $x \lor x = 1$ and the set $\{x \in A | x \lor x = 1\}$ of all central elements of A is called the centre of A and it is denoted by B (A).

1.1. Theorem: [Satyanarayana.A, (2012)] Let A be a Pre A*-algebra with 1, then B (A) is a Boolean algebra with the induced operations $\land, \lor, (-)^{\sim}$

© 2013, IJMA. All Rights Reserved

D. Kalyani^{1*}, B. Rami Reddy², J. Venkateswara Rao³ and A. Satyanarayana⁴/ Characterization of a Partial order relation on Pre A* -Algebra / IJMA- 4(11), Nov.-2013.

1.1. Lemma: [Satyanarayana.A, (2012),] Every Pre A*-algebra with 1 satisfies the following laws

(a)
$$x \lor 1 = x \lor x^{\sim}$$
 (b) $x \land 0 = x \land x^{\sim}$

1.2. Lemma: [7] Every Pre A*-algebra with 1 satisfies the following laws.

(a) $x \land (x \lor x)$ $x \not= (x \land x) = x$ (b) $(x \lor x) \land y = (x \land y) \lor (x \land y)$ (c) $(x \lor y) \land z = (x \land z) \lor (x \land y \land z)$

1.4. Definition: Let $(A_1, \lor, \land, (-)^{\sim})$ and $(A_2, \lor, \land, (-)^{\sim})$ be a two Pre A*- algebras. A mapping $f: A_1 \to A_2$ is called a Pre A*-homomorphism if

(i) $f(a \wedge b) = f(a) \wedge f(b)$ (ii) $f(a \vee b) = f(a) \vee f(b)$ (iii) $f(a^{\sim}) = (f(a))^{\sim}$

The homomorphism $f: A_1 \to A_2$ is onto, then f is called epimorphism.

The homomorphism $f: A_1 \to A_2$ is one-one then f is called monomorphism

The homomorphism $f: A_1 \to A_2$ is one-one and onto then f is called an isomorphism, and A_1, A_2 are isomorphic, denoted in symbol $A_1 \cong A_2$.

2. Pre A*-algebra as a poset with respect to Binary Operation V

2.1 Definition: Let A be a Pre A*-algebra. Define \leq on A by $x \leq y$ if and only if $y \lor x = x \lor y = y$.

2.1 Lemma: If A is a Pre A*-algebra, then (A, \leq) is a poset.

Proof: Since $x \lor x = x$, $x \le x$ for all $x \in A$.

Therefore \leq is reflexive.

Suppose that x, y, $z \in A$, $x \le y$ and $y \le z$.

Then we have $y \lor x = x \lor y = y$ and $z \lor y = y \lor z = y$.

Now $z = y \lor z = x \lor y \lor z = x \lor z$.

Therefore $x \lor z = z \lor x = z$, i.e., $x \le z$.

This shows that \leq is transitive.

Suppose that x, $y \in A$, $x \le y$ and $y \le x$.

Then we have $y \lor x = x \lor y = y$ and $x \lor y = y \lor x = y$.

This shows that x = y.

Therefore \leq is antisymmetric.

Therefore (A, \leq) is poset.

2.1. Note: If A is a Pre A*-algebra with 1, 0, 2 then $0 \le x$ ($0 \lor x = x \lor 0 = x$), for all $x \in A$ and $x \le 2$ ($2 \lor x = x \lor 2 = 2$). This shows that 2 is the greatest element and 0 is the least element of the poset.

D. Kalyani^{1*}, B. Rami Reddy², J. Venkateswara Rao³ and A. Satyanarayana⁴/ Characterization of a Partial order relation on Pre A* -Algebra / IJMA- 4(11), Nov.-2013.

The Hasse diagram of the poset (A, \leq) is given by

Diagram: 2.1

We know that A × A is a Pre A*-algebra under point wise operation. The Hasse diagram is given below A × A = { $a_1 = (1, 1), a_2 = (1, 0), a_3 = (1, 2), a_4 = (0, 1), a_5 = (0, 0), a_6 = (0, 2), a_7 = (2, 1), a_8 = (2, 0), a_9 = (2, 2)$ }

Diagram: 2.2

Observe that, $x \le a_9$, i.e., $(x \lor a_9 = a_9 \lor x = a_9)$ and $a_5 \le x$ $(x \lor a_5 = a_5 \lor x = x)$ for all $x \in A \times A$. This shows that a_9 is the greatest element and a_5 is the least element of $A \times A$.

We have $\mathbf{2} \times \mathbf{3} = \{a_1 = (1,1), a_2 = (0,0), a_3 = (1,0), a_4 = (0,1), a_5 = (0,2), a_6 = (1,2)\}$ is Pre A*-algebra under point wise operation having four central elements two non-central elements and no element is satisfying the property that $a^{\sim} = a$.

The Hasse diagram for $(2 \times 3, \leq)$ as given below

Diagram: 2.3

Observe that, $x \le a_6$, i.e., $x \lor a_6 = a_6 \lor x = a_6$ and $a_2 \le x$ ($x \lor a_2 = a_2 \lor x = x$) for all $x \in \mathbf{2} \times \mathbf{3}$. This shows that a_6 is the greatest element and a_2 is the least element of $\mathbf{2} \times \mathbf{3}$.

2.1. Theorem: In the poset (A, \leq) , for any $x \in A$, Supremum $\{x, x^{\tilde{}}\} = x \lor x^{\tilde{}}$ infimum $\{x, x^{\tilde{}}\} = x \land x^{\tilde{}}$.

Proof: We have $(x \lor x^{\tilde{}}) \lor x = x \lor x^{\tilde{}}$ and $x^{\tilde{}} \lor (x \lor x^{\tilde{}}) = x \lor x^{\tilde{}}$

Therefore, $x \le x \lor x^{\sim}$ and $x^{\sim} \le x \lor x^{\sim}$.

Hence $x \lor x^{\sim}$ is an upper bound of $\{x, x^{\sim}\}$

© 2013, IJMA. All Rights Reserved

D. Kalyani^{1*}, B. Rami Reddy², J. Venkateswara Rao³ and A. Satyanarayana⁴/ Characterization of a Partial order relation on Pre A* -Algebra / IJMA- 4(11), Nov.-2013.

Suppose n is an upper bound of $\{x, x^{\tilde{}}\}$

That is, $x \le n$, $x^{\sim} \le n \Longrightarrow n \lor x = n$ and $n \lor x^{\sim} = n$

Now $n \lor (x \lor x^{\sim}) = (n \lor x) \lor x^{\sim} = n \lor x^{\sim} = n$

This shows that $x \lor x^{\sim} \le n$

Therefore $x \lor x^{\tilde{}}$ is a least upper bound of $\{x, x^{\tilde{}}\}$

This shows that supremum of $\{x, x^{\sim}\} = x \lor x^{\sim}$

Again we have $(x \land x^{\sim}) \lor x = x$ and $(x \land x^{\sim}) \lor x^{\sim} = x^{\sim}$

Therefore $x \wedge x^{\sim} \leq x$ and $x \wedge x^{\sim} \leq x^{\sim}$

Hence $x \wedge x^{\sim}$ is a lower bound of $\{x, x^{\sim}\}$

Suppose m is a lower bound of $\{x, x^{\sim}\}$

That is, $m \le x$, $m \le x^{\sim} \Rightarrow m \lor x = x$ and $m \lor x^{\sim} = x^{\sim}$

Now $m \lor (x \land x^{\sim}) = (m \lor x) \land (m \lor x^{\sim}) = x \land x^{\sim}$

This shows that $m \le x \land x^{\sim}$

Therefore $x \wedge x^{\sim}$ is greatest lower bound of $\{x, x^{\sim}\}$.

This shows that infimum of $\{x, x^{\sim}\} = x \wedge x^{\sim}$.

2.2. Theorem: In a poset (A, \leq) with 1, for any $x, y \in A$, $\sup\{x, y\} = x \lor y$.

Proof: We have $(x \lor y) \lor x = x \lor y$ and $(x \lor y) \lor y = x \lor y$

 $Therefore, \ x \leq x \lor y \ and \ y \leq x \lor y.$

Hence $x \lor y$ us an upper bound of $\{x, y\}$

Suppose m is an upper bound of $\{x, y\}$

That is, $x \le m$, $y \le m \Longrightarrow m \lor x = m$ and $m \lor y = m$

Now $m \lor (x \lor y) = (m \lor x) \lor y = m \lor y = m$.

This shows that $x \lor y \le m$

Therefore $x \lor y$ is a least upper bound of $\{x, y\}$

This shows that supremum of $\{x, y\} = x \lor y$.

In general for a Pre A*-algebra with 1, x \land y need not be the greatest lower bound of {x, y} in (A, \leq). For example $2 \lor x = 2 \land x = 2$, $\forall x \in A$ is not a greatest lower bound. However we have the following.

2.3. Theorem: In a poset (A, \leq) with 1, for any $x, y \in B(A)$, $Inf(x, y) = x \land y$

Proof: If $x, y \in B(A)$, then we have $x \lor (x \land y)$ and $y \lor (x \land y) = y$

This shows that, $x \land y \le x$ and $x \land y \le y$.

Hence $x \land y$ is a lower bound of $\{x, y\}$ © 2013, IJMA. All Rights Reserved Suppose m is a lower bound of $\{x, y\}$, then $m \lor x = x$, $m \lor y = y$.

Now $m \lor (x \land y) = (m \lor x) \land (m \lor y) = x \land y$

Therefore $m \leq x \wedge y$.

Hence $Inf\{x, y\} = x \land y$.

2.4. Theorem: In the poset (A, \leq) , if $x, y \in B(A)$, then $x \land y \leq x \land x^{\sim}$

Proof: $(x \land x^{\tilde{}}) \lor (x \land y) = \{(x \land x^{\tilde{}}) \lor x\} \land \{(x \land x^{\tilde{}}) \lor y)$ = $x \land (0 \lor y)$ = $x \land y$ Therefore $x \land y \le x \land x^{\tilde{}}$

2.5. Theorem: In the poset (A, \leq) , if $x \leq y$, then for any $z \in A$, (a) $z \land x \leq z \land y$ (b) $z \lor x \leq z \lor y$

Proof: If $x \le y$, then $x \lor y = y$

(a) $(z \land x) \lor (z \land y) = z \land (x \lor y) = z \land y$.

Therefore $z \land x \le z \land y$

(b) $(z \lor x) \lor (z \lor y) = z \lor (x \lor y) = z \lor y$.

Therefore $z \lor x \le z \lor y$

Now we are giving the following equivalent conditions for $x \le y$.

2.2. Lemma: In a Pre A*-algebra (i) $x \le y \Leftrightarrow x \lor (x^{\tilde{}} \land y) = (x^{\tilde{}} \land y) \lor x = y$ (ii) $x \le y \Leftrightarrow y \lor (y^{\tilde{}} \land x) = (y^{\tilde{}} \land x) \lor y = y$

Proof:

(i) If $x \le y$, $\Leftrightarrow x \lor y = y$ $\Leftrightarrow x \lor (x^{\tilde{}} \land y) = (x^{\tilde{}} \land y) \lor x = y$

Now we prove modular type results in the following

2.3. Lemma: In the poset (A, \leq) , if $x \leq y \Rightarrow x \lor (y \land z) = y \land (x \lor z)$

Proof: Suppose $x \le y$, then $x \lor y = y$.

Now $x \lor (y \land z) = (x \lor y) \land (x \lor z) = y \land (x \lor z)$

If x, $y \in B$ (A) then by theorem 2.3 Inf{x, y} = x \land y. In general x \land y need not be an upper bound of {x, y} in poset (A, \leq). If x \land y is an upper bound of {x, y} in poset (A, \leq), then A becomes Boolean algebra.

Now we have the following theorem.

2.6. Theorem: If A is a Pre A*-algebra and $x \land (x \lor y) = x$ for all $x, y \in A$ then (A, \leq) is a lattice.

Proof: By theorem 2.2, we have every pair of elements have l.u.b and if $x \lor (x \land y) = x$ for all x, $y \in A$, then by theorem 2.3 we have every pair of elements have g.l.b. Hence (A, \leq) is a lattice. © 2013, IJMA. All Rights Reserved 292 Now we present a equivalent condition for a Pre A*-algebra become a Boolean algebra.

2.7. Theorem: The following conditions are equivalent for any Pre A*-algebra $(A, \land, \lor, (-) \tilde{})$.

(1) A is a Boolean Algebra

- (2) $x \land y \le x$ for all $x, y \in A$
- (3) $x \land y \le y$ for all $x, y \in A$
- (4) $x \land y$ is a lower bound of $\{x, y\}$ in (A, \leq) for all $x, y \in A$
- (5) $x \land y$ is a infimum of $\{x, y\}$ in (A, \leq) for all $x, y \in A$
- (6) $x \lor x^{\sim}$ is the least element in (A, \leq) for every $x \in A$

Proof: (1) \Rightarrow (2) Suppose A be a Boolean algebra

Now $x \lor (x \land y) = x$ (by absorption law)

Therefore $x \wedge y \leq x$.

(2) \Rightarrow (3) Suppose $x \land y \le x$ then $x \lor (x \land y) = x$

Now $y \lor (x \land y) = y$.

Hence $x \wedge y \leq y$.

(3) \Rightarrow (4) suppose that $x \land y \le y \Rightarrow y \lor (x \land y) = y$

Since $x \land y \le y$ then $x \land y$ is lower bound of y

Now $x \lor (x \land y) = x$ (by supposition)

Therefore $x \land y \leq x$

 $\Rightarrow x \land y$ is a lower bound of x

 $x \wedge y$ is a lower bound of $\{x, y\}$.

(4) \Rightarrow (5) suppose $x \land y$ is a lower bound of $\{x, y\}$

Suppose z is a lower bound of $\{x, y\}$ then $z \le x, z \le y$ that is

 $x \lor z = x, y \lor z = y$

Now $z \lor (x \land y) = (z \lor x) \land (z \lor y) = x \land y$

Therefore $z \le x \land y$.

 $x \land y$ is the greatest lower bound of $\{x, y\}$

Hence Inf $\{x, y\} = x \land y$.

(5) \Rightarrow (6) Suppose Inf $\{x, y\} = x \land y$ then $x, y \in B(A)$

Now Inf { $x \land x^{\sim}, y$ } = $x \land x^{\sim} \land y = x \land x^{\sim}$

$$\Rightarrow x \land x \ \tilde{\leq}_{\oplus} y$$

Therefore $x \land x^{\sim}$ is the least element in (A, \leq) .

(6) \Rightarrow (1) suppose $x \land x^{\sim}$ is the least element in A then $x \land x^{\sim} \le y$,

for $y \in A$

 $\implies (x \land x^{\sim}) \lor y = y$

Now $y \land (x \lor y) = [(x \land x^{\sim}) \lor y] \lor (x \lor y)$ = $[(x \land x^{\sim}) \lor x] \lor y$ = $(x \land x^{\sim}) \lor y = y$ (by supposition)

Therefore absorption law holds hence A is a Boolean algebra.

2.8. Theorem: Let A be a pre A*-algebra $x \lor x^{\sim}$ is the greatest element in (A, \leq) for every $x \in A$ then A is a Boolean algebra.

Proof: Suppose $x \vee x^{\sim}$ is the greatest element in (A, \leq) then

$$y \le x \lor x^{\sim}$$
 for any $y \in A$

 $\implies (x \lor x^{\sim}) \lor y = x \lor x^{\sim}$

Now $\mathbf{x} \lor (\mathbf{x} \land \mathbf{y}) = [\mathbf{x} \land (\mathbf{x} \lor \mathbf{x})] \lor (\mathbf{x} \land \mathbf{y})$

$$= x \land [(x \lor x^{\sim}) \lor y]$$
$$= x \land (x \lor x^{\sim}) \quad (by supposition)$$
$$= x$$

Therefore $x \lor (x \land y) = x$, absorption law holds.

Hence A is a Boolean algebra.

2.9. Theorem: Let A be a Pre A*-algebra and $a \in A$. Let $A_a = \{x \in A \mid a \lor x = x\}$. Then A_a is closed under the operations \land and \lor . Also for any $x \in A_a$ define, $x^a = a \lor x^a$. Then $(A_a, \land, \lor, \overset{a}{})$ is a Pre A*-algebra with 1(here a is itself is the identity for \lor in A_a ; that is 1 in A_a).

Proof: Let *x* , $y \in A_a$. Then $a \lor x = x$ and $a \lor y = y$.

Now $a \lor (x \land y) = (a \lor x) \land (a \lor y) = x \land y \Longrightarrow x \land y \in A_a$

Also $a \lor (x \lor y) = (a \lor x) \lor y = x \lor y \Longrightarrow x \lor y \in A_a$

Therefore A_a is closed under the operation \land and \lor . $a \lor x^a = a \lor (a \lor x^{\tilde{}}) = a \lor x^{\tilde{}} = x^a \Longrightarrow x^a \in A_a$

Thus A_a is closed under ^a.

Now for any x, y, $z \in A_a$ (1) $x^{aa} = (a \lor x^{\sim})^a = a \lor (a \lor x^{\sim})^{\sim} = a \lor (a^{\sim} \land x) = a \lor x = x$ (2) $x \land x = (a \lor x) \land (a \lor x) = x \land x = x$ (3) $x \land y = (a \lor x) \land (a \lor y) = (a \lor y) \land (a \lor x) = y \land x$ (4) $(x \land y)^a = a \lor (x \land y)^{\sim} = a \lor (x^{\sim} \lor y^{\sim})$ $= (a \lor x^{\sim}) \lor (a \lor y^{\sim})$

(5)
$$x \wedge (y \wedge z) = (a \vee x) \wedge \{(a \vee y) \wedge (a \vee z)\}$$

= $a \vee \{x \wedge (y \wedge z)\}$
= $a \vee \{(x \wedge y) \wedge z\}$ (since x, y, $z \in A$)
= $(x \wedge y) \wedge z$

$$(6) x \wedge (y \vee z) = (a \vee x) \wedge \{(a \vee y) \vee (a \vee z)\} = \{(a \vee x) \wedge (a \vee y)\} \vee \{(a \vee x) \wedge (a \vee z)\} = \{a \vee (x \wedge y)\} \vee \{(a \vee (x \wedge z))\} = (x \wedge y) \vee (x \wedge z)$$

(7) $\mathbf{x} \wedge (\mathbf{x}^{a} \vee \mathbf{y}) = \mathbf{x} \wedge \{ (\mathbf{a} \vee \mathbf{x}^{\tilde{}}) \vee \mathbf{y} \}$ $= \{ \mathbf{x} \wedge (\mathbf{a} \vee \mathbf{x}^{\tilde{}}) \} \vee (\mathbf{x} \wedge \mathbf{y})$ $= (\mathbf{x} \wedge \mathbf{x}^{\tilde{}}) \vee (\mathbf{x} \wedge \mathbf{y}) \text{ (since } \mathbf{a} \vee \mathbf{x} = \mathbf{x})$ $= \mathbf{x} \wedge (\mathbf{x}^{\tilde{}} \vee \mathbf{y})$ $= \mathbf{x} \wedge \mathbf{y}$

Finally $x \in A_a$ implies that $a \lor x = x = x \lor a$. Thus $(A_a, \land, \lor, \circ)$ is a Pre A*-algebra with a sidentity for \lor .

2.10. Theorem: Let a, b be elements in a Pre A*-algebra A such that $a \le b$. Then the following hold. (1) a \lor b = b

- (2) The map $\alpha_{a,b}: A_a \to A_b$ defined by $\alpha_{a,b}$ (x) = b \lor x for all x $\in A_a$ is a homomorphism of Pre A*-algebras.
- (3) $\alpha_{a,b}$ (B(A_a)) \subseteq B(A_b)
- (4) If $a \le b \le c$ then $\alpha_{a,b} \circ \alpha_{b,c} = \alpha_{a,c}$
- (5) $\alpha_{a,a}$ is the identity map on A_a

Proof: Suppose that $a \le b$ (1) We have $a \le b \implies a \lor b = b$ (2) Let x, y $\in A_a$. Then $\alpha_{a,b}$ (x \land y) = b \lor (x \land y) = (b \lor x) \land (b \lor y) = $\alpha_{a,b}$ (x) $\land \alpha_{a,b}$ (y)

and
$$\alpha_{a,b}$$
 $(\mathbf{x} \lor \mathbf{y}) = \mathbf{b} \lor (\mathbf{x} \lor \mathbf{y})$
= $(\mathbf{b} \lor \mathbf{x}) \lor (\mathbf{b} \lor \mathbf{y})$
= $\alpha_{a,b}$ $(\mathbf{x}) \lor \alpha_{a,b}$ (\mathbf{y})

Also $\alpha_{a,b}$ (x^a) = b \lor x^a

$$= b \lor (a \lor x^{\sim})$$

$$= (b \lor a) \lor x^{\sim}$$

$$= b \lor x^{\sim}$$

$$= b \lor (b^{\sim} \land x^{\sim})$$

$$= b \lor (b \lor x)^{\sim}$$

$$= (b \lor x)^{b}$$

$$= (\alpha_{a,b} (x))^{b}$$

Therefore $\alpha_{a,b}$ is a homomorphism of Pre A*-algebras. (3) Let $x \in B(A_a)$.

Then $x \lor x^a = a$ (since a is identity in A_a) and therefore $a = x \lor (a \lor x^{-})$

Now
$$\alpha_{a,b}$$
 (x) \vee [$\alpha_{a,b}$ (x)]^b = (b \vee x) \vee (b \vee x)^b
= (b \vee x) \vee [b \vee (b \vee x)[~]]
= (b \vee x) \vee [b \vee (b \vee x[~])]
= (b \vee x) \vee (b \vee x[~])

(i)

 $= (a \lor b) \lor (x \lor x^{\tilde{}})$ = b \times [a \leftarrow (x \leftarrow x^{\tilde{}})] = b \leftarrow a (by (i)) = b, which is 1 in A_b

Therefore $\alpha_{a,b}$ (x) \in B(A_b)

Thus $\alpha_{a,b}$ (B (A_a)) \subseteq B(A_b)

(4) Let $a \le b \le c$

 $\begin{bmatrix} \alpha_{a,b} & o & \alpha_{b,c} \end{bmatrix} (\mathbf{x}) = \alpha_{a,b} \begin{bmatrix} \alpha_{b,c} (\mathbf{x}) \end{bmatrix}$ $= \alpha_{a,b} \begin{bmatrix} c \lor \mathbf{x} \end{bmatrix}$ $= b \lor c \lor \mathbf{x}$ $= c \lor \mathbf{x}$ $= \alpha_{a,c} (\mathbf{x})$

Therefore $\alpha_{a,b} \circ \alpha_{b,c} = \alpha_{a,c}$

(5) $\alpha_{a,a}$ (x) = a \lor x = x for all x $\in A_a$

Then $\alpha_{a,a}$ is identity map on $A_{a,a}$.

CONCLUSION

This manuscript point ups the character of the Pre-A*-algebra like a partially ordered set. With respect to binary operation \lor , able to define a relation \leq on a Pre-A*-algebra and observed that such a Pre-A*-algebra as a partially ordered set with respect to the relation \leq and derived corresponding results. It has been observed a necessary condition a Pre-A*-algebra to become a lattice. We also present a equivalent condition for a Pre A*-algebra become a Boolean algebra. For any $a \in A$ defined a set $A_a = \{x \in A \mid a \lor x = x\}$, $x^a = a \lor x^a$ and observed that $(A_a, \land, \lor, \overset{a}{})$ is a Pre A*-algebra. Also defined a mapping $\alpha_{a,b}$ from A_a to A_b by $\alpha_{a,b}$ (x) = $b \lor x$ for all $x \in A_a$ and confirmed a homomorphism of Pre A*-algebras.

REFERENCES

- 1. Fernando Guzman and Craig C.Squir (1990): The Algebra of Conditional logic, Algebra Universalis 27, 88-110.
- 2. Koteswara Rao. P (1994), A*-Algebra, an If-Then-Else structures (Doctoral Thesis) Nagarjuna University, A.P., India.
- 3. Manes E.G (1989): The Equational Theory of Disjoint Alternatives, Personal Communication to Prof. N. V. Subrahmanyam.
- 4. Manes E.G (1993): Ada and the Equational Theory of If-Then-Else, Algebra Universalis 30, 373-394.
- 5. Venkateswara Rao.J.(2000), On A*-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.
- 6. Venkateswara Rao.J, Praroopa.Y (2006) "Boolean algebras and Pre A*-Algebras", Acta Ciencia Indica (Mathematics), (ISSN: 0970-0455), 32: pp 71-76.
- 7. Satyanarayana.A, (2012), Algebraic Study of Certain Classes of Pre A*-Algebras and C-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.

Source of support: Nil, Conflict of interest: None Declared