International Journal of Mathematical Archive-4(11), 2013, 287-296 IMA Available online through www.ijma.info ISSN 2229-5046

CHARACTERIZATION OF A PARTIAL ORDER RELATION ON PRE A* -ALGEBRA

D. Kalyani ${ }^{1}{ }^{\text {* }}$, B. Rami Reddy ${ }^{2}$, J. Venkateswara Rao ${ }^{\mathbf{3}}$ and A. Satyanarayana ${ }^{4}$
¹Lecturer in Mathematics, Government College for Women, Guntur - 522 001, (A.P.), India.
${ }^{2}$ Head of the dept. of Mathematics, Hindu College, Guntur, (A.P.), India.
${ }^{3}$ Professor of Mathematics, Mekelle University, Mekelle, Ethiopia.
${ }^{4}$ Lecturer in Mathematics, A.N.R College, Gudiwada, (A.P.), India.

(Received on: 08-03-13; Revised \& Accepted on: 22-10-13)

Abstract

This manuscript is a classification on Pre-A*-algebra A in sight of it is like a partially ordered set. Using a binary operation in Pre-A*-algebra, an observation is made on Pre A^{*}-Algebra as a partially ordered set with respect to binary operation \wedge and obtained consequent results. It is also grant access to an equivalent condition for a Pre A^{*} algebra become a Boolean algebra.

Key words: A*-algebra, Pre-A*-algebra, Boolean algebra, partially ordered set, Ada, homomorphism.
AMS subject classification (2000): 06E05, 06E25, 06E99, 06B10.

INTRODUCTION

In a draft manuscript entitled "The Equational theory of Disjoint Alternatives", E. G. Manes (1989) introduced the concept of Ada Error! Bookmark not defined.(Algebra of disjoint alternatives) (A, $\left.\wedge, \mathrm{V},(-)^{\prime},(-)_{\pi}, 0,1,2\right)$ which is however differs from the definition of the Ada of E. G. Manes (1993) later paper entitled "Adas and the equational theory of if-then-else". While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras ($\left.\mathrm{A}, \wedge, \vee,(-)^{\sim}\right)$ introduced by Fernando Guzman and Craig C. Squir (1990) . P. Koteswara Rao (1994) first introduced the concept of A*-algebra (A, $\left.\wedge, ~ \vee, *,(-)^{\sim},(-)_{\pi}, 0,1,2\right)$ not only studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation but also introduced the concept of A^{*}-clone, the If-Then-Else structure over A^{*}-algebra and Ideal of A*-algebra.
J.Venkateswara Rao (2000) introduced the concept Pre A^{*}-algebra ($\mathrm{A}, \wedge, \mathrm{V},(-)^{\sim}$) analogous to C-algebra as a reduct of A*- algebra. Venkateswara Rao.J, Praroopa.Y (2006) made a structural study on Boolean algebras and Pre A*Algebras.

Boolean algebra depends on two element logic. C-algebra, Ada, A*- algebra and our Pre A*-algebra are regular extensions of Boolean logic to 3 truth values, where the third truth value stands for an undefined truth value. The Pre A^{*} - algebra structure is denoted by $\left(A, \wedge, V,(-)^{\sim}\right)$ where A is non-empty set Λ, V, are binary operations and $(-)^{\sim}$ is a unary operation.

In this paper we define a relation \leq on Pre A^{*}-algebra with respect to the binary operation \vee and we discuss the properties of a Pre A*-algebra like a poset. We find the necessary conditions for a poset to become a lattice. We also present a equivalent condition for a Pre A^{*}-algebra become a Boolean algebra. For any $\mathrm{a} \in \mathrm{A}$ define $A_{a}=\{\mathrm{x} \in \mathrm{A} / \mathrm{a} \vee$ $\mathrm{x}=\mathrm{x}\}$ and $x^{a}=\mathrm{a} \vee \mathrm{x}^{\sim}$ then $\left(A_{a}, \wedge, \vee,^{\mathrm{a}}\right)$ is a Pre A^{*}-algebra. We also define a mapping $\alpha_{a, b}$ from A_{a} to A_{b} by $\alpha_{a, b}(\mathrm{x})=\mathrm{b} \vee \mathrm{x}$ for all $\mathrm{x} \in A_{a}$ is a homomorphism of Pre A^{*}-algebras.

Corresponding author: D. Kalyani ${ }^{1 *}$
${ }^{1}$ Lecturer in Mathematics, Government College for Women, Guntur - 522 001. (A.P.), India.

1. PRELIMINARIES

1.1. Definition: The relation R on a set A is called a partial order on A when $R(\leq)$ is reflexive, anti-symmetric, and transitive. Under these conditions, the set A is called a partially ordered set or a poset. Frequently we write (A, R) or (A, \leq) to denote that A is partially ordered by the relation $\mathrm{R}(\leq)$. Since the relation \leq on the set of real numbers is the prototype of a partial order it is common to write \leq to represent an arbitrary partial order can be described as follows:

1. For all $\mathrm{a} \in \mathrm{A}, \mathrm{a} \leq \mathrm{a}$ (symmetry)
2. For all $\mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \leq \mathrm{b}, \mathrm{b} \leq \mathrm{a}$, then $\mathrm{a}=\mathrm{b}$ (anti symmetry)
3. For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}, \mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c}$, then $\mathrm{a} \leq \mathrm{c}$ (transitivity)

Two elements a and b in A are said to be comparable under \leq if either $\mathrm{a} \leq \mathrm{b}$ or $\mathrm{b} \leq \mathrm{a}$; otherwise they are incomparable. If every pair of elements of A are comparable, then we say that the poset is totally ordered.
1.2. Definition: An algebra $\left(A, \wedge, \vee,(-)^{\sim}\right)$ where A is a non-empty set with $1, \wedge, \vee$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying
(a) $x^{\sim \sim}=x \quad \forall x \in A$
(b) $x \wedge x=x, \forall x \in A$
(c) $x \wedge y=y \wedge x, \forall x, y \in A$
(d) $(x \wedge y)^{\sim}=x^{\sim} \vee y^{\sim} \forall x, y \in A$
(e) $x \wedge(y \wedge z)=(x \wedge y) \wedge z, \forall x, y, z \in A$
(f) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z), \forall x, y, z \in A$
(g) $x \wedge y=x \wedge\left(x^{\sim} \vee y\right), \forall x, y \in A$ is called a Pre A*-algebra.
1.1. Example: $\mathbf{3}=\{0,1,2\}$ with operations $\wedge, \vee,(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

\wedge	0	1	2	\vee	0	1	2		x	x^{\sim}
0	0	0	2	0	0	1	2		0	1
1	0	1	2	1	1	1	2	1	0	
2	2	2	2	2	2	2	2	2	2	

1.1. Note: The elements $0,1,2$ in the above example satisfy the following laws:
(a) $2^{\sim}=2$
(b) $1 \wedge x=x$ for all $x \in 3$
(c) $0 \vee \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in \mathbf{3}$
(d) $2 \wedge x=2 \vee x=2$ for all $x \in 3$.
1.2. Example: $2=\{0,1\}$ with operations $\wedge, \vee,(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

\wedge	0	1		\vee	0	1		x	x^{\sim}
0	0	0		0	0	1		0	1
1	0	1		1	1	1		1	0

1.2. Note:

(i) $(2, \vee, \wedge,(-))$ is a Boolean algebra. So every Boolean algebra is a Pre $A *$ algebra.
(ii) The identities 1.2(a) and 1.2(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.2(b) to $1.2(\mathrm{~g})$.
1.3. Definition: Let A be a Pre A^{*}-algebra. An element $\mathrm{x} \in \mathrm{A}$ is called a central element of A if $x \vee \chi^{\sim}=1$ and the set $\left\{\mathrm{x} \in \mathrm{A} / X \vee \tilde{X^{\sim}}=1\right\}$ of all central elements of A is called the centre of A and it is denoted by B (A).
1.1. Theorem:[Satyanarayana.A, (2012)] Let A be a Pre A*-algebra with 1, then $B(A)$ is a Boolean algebra with the induced operations $\wedge, \vee,(-)^{\sim}$
1.1. Lemma: [Satyanarayana.A, (2012),] Every Pre A*-algebra with 1 satisfies the following laws
(a) $x \vee 1=X \vee X^{\sim}$
(b) $x \wedge 0=x \wedge x^{\sim}$
1.2. Lemma: [7] Every Pre A*-algebra with 1 satisfies the following laws.
(a) $x \wedge\left(x^{\sim} \vee x\right) \quad x \forall\left(x^{\sim} \wedge x\right)=x$
(b) $\left(x \vee x^{\sim}\right) \wedge y=(x \wedge y) \vee\left(x^{\sim} \wedge y\right)$
(c) $(x \vee y) \wedge z=(x \wedge z) \vee\left(x^{\sim} \wedge y \wedge z\right)$
1.4. Definition: Let $\left(A_{1}, \vee, \wedge,(-)^{\sim}\right)$ and $\left(A_{2}, \vee, \wedge,(-)^{\sim}\right)$ be a two Pre A^{*} - algebras. A mapping $f: A_{1} \rightarrow A_{2}$ is called a Pre A*-homomorphism if
(i) $f(a \wedge b)=f(a) \wedge f(b)$
(ii) $f(a \vee b)=f(a) \vee f(b)$
(iii) $f\left(a^{\sim}\right)=(f(a))^{\sim}$

The homomorphism $f: A_{1} \rightarrow A_{2}$ is onto, then f is called epimorphism.

The homomorphism $f: A_{1} \rightarrow A_{2}$ is one-one then f is called monomorphism

The homomorphisn $f: A_{1} \rightarrow A_{2}$ is one-one and onto then f is called an isomorphism, and A_{1}, A_{2} are isomorphic, denoted in symbol $A_{1} \cong A_{2}$.

2. Pre A^{*}-algebra as a poset with respect to Binary Operation \vee

2.1 Definition: Let A be a Pre A^{*}-algebra. Define \leq on A by $x \leq y$ if and only if $y \vee x=x \vee y=y$.
2.1 Lemma: If A is a Pre A^{*}-algebra, then (A, \leq) is a poset.

Proof: Since $x \vee x=x, x \leq x$ for all $x \in A$.
Therefore \leq is reflexive.
Suppose that $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}, \mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$.
Then we have $y \vee x=x \vee y=y$ and $z \vee y=y \vee z=y$.
Now $z=y \vee z=x \vee y \vee z=x \vee z$.
Therefore $\mathrm{x} \vee \mathrm{z}=\mathrm{z} \vee \mathrm{x}=\mathrm{z}$, i.e., $\mathrm{x} \leq \mathrm{z}$.
This shows that \leq is transitive.
Suppose that $\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$.
Then we have $y \vee x=x \vee y=y$ and $x \vee y=y \vee x=y$.
This shows that $x=y$.
Therefore \leq is antisymmetric.
Therefore (A, \leq) is poset.
2.1. Note: If A is a Pre A*-algebra with $1,0,2$ then $0 \leq x(0 \vee x=x \vee 0=x)$, for all $x \in A$ and $x \leq 2(2 \vee x=x \vee 2=$ 2). This shows that 2 is the greatest element and 0 is the least element of the poset.

The Hasse diagram of the poset (A, \leq) is given by

Diagram: 2.1
We know that $\mathrm{A} \times \mathrm{A}$ is a Pre A^{*}-algebra under point wise operation. The Hasse diagram is given below $A \times A=\left\{a_{1}=(1,1), a_{2}=(1,0), a_{3}=(1,2), a_{4}=(0,1), a_{5}=(0,0), a_{6}=(0,2), a_{7}=(2,1), a_{8}=(2,0), a_{9}=(2,2)\right\}$

Diagram: 2.2
Observe that, $x \leq a_{9}$, i.e., $\left(x \vee a_{9}=a_{9} \vee x=a_{9}\right)$ and $a_{5} \leq x\left(x \vee a_{5}=a_{5} \vee x=x\right)$ for all $x \in A \times A$. This shows that a_{9} is the greatest element and a_{5} is the least element of $\mathrm{A} \times \mathrm{A}$.

We have $2 \times 3=\left\{a_{1}=(1,1), a_{2}=(0,0), a_{3}=(1,0), a_{4}=(0,1), a_{5}=(0,2), a_{6}=(1,2)\right\}$ is Pre A^{*}-algebra under point wise operation having four central elements two non-central elements and no element is satisfying the property that $\mathrm{a}^{\sim}=\mathrm{a}$.

The Hasse diagram for $(2 \times 3, \leq)$ as given below

Diagram: 2.3
Observe that, $x \leq a_{6}$, i.e., $x \vee a_{6}=a_{6} \vee x=a_{6}$ and $a_{2} \leq x\left(x \vee a_{2}=a_{2} \vee x=x\right)$ for all $x \in 2 \times 3$. This shows that a_{6} is the greatest element and a_{2} is the least element of 2×3.
2.1. Theorem: In the poset (A, \leq), for any $x \in A$, Supremum $\left\{x, x^{\sim}\right\}=x \vee x^{\sim}$ infimum $\left\{x, x^{\sim}\right\}=x \wedge x^{\sim}$.

Proof: We have $\left(x \vee x^{\sim}\right) \vee x=x \vee x^{\sim}$ and $x^{\sim} \vee\left(x \vee x^{\sim}\right)=x \vee x^{\sim}$
Therefore, $\mathrm{x} \leq \mathrm{x} \vee \mathrm{x}^{\sim}$ and $\mathrm{x}^{\sim} \leq \mathrm{x} \vee \mathrm{x}^{\sim}$.
Hence $x \vee x^{\sim}$ is an upper bound of $\left\{x, x^{\sim}\right\}$

D. Kalyani $i^{i^{*}}$, B. Rami Reddy ${ }^{2}$, J. Venkateswara Rao ${ }^{3}$ and A. Satyanarayana ${ }^{4}$ / Characterization of a Partial order relation on Pre A*-Algebra / IJMA- 4(11), Nov.-2013.

Suppose n is an upper bound of $\left\{x . x^{\sim}\right\}$
That is, $\mathrm{x} \leq \mathrm{n}, \mathrm{x}^{\sim} \leq \mathrm{n} \Rightarrow \mathrm{n} \vee \mathrm{x}=\mathrm{n}$ and $\mathrm{n} \vee \mathrm{x}^{\sim}=\mathrm{n}$
Now $n \vee\left(x \vee x^{\sim}\right)=(n \vee x) \vee x^{\sim}=n \vee x^{\sim}=n$
This shows that $\mathrm{x} \vee \mathrm{x}^{\sim} \leq \mathrm{n}$

Therefore $x \vee x^{\sim}$ is a least upper bound of $\left\{x, x^{\sim}\right\}$
This shows that supremum of $\left\{x, x^{\sim}\right\}=x \vee x^{\sim}$
Again we have $\left(x \wedge x^{\sim}\right) \vee x=x$ and $\left(x \wedge x^{\sim}\right) \vee x^{\sim}=x^{\sim}$
Therefore $\mathrm{x} \wedge \mathrm{x}^{\sim} \leq \mathrm{x}$ and $\mathrm{x} \wedge \mathrm{x}^{\sim} \leq \mathrm{x}^{\sim}$
Hence $x \wedge x^{\sim}$ is a lower bound of $\left\{x, x^{\sim}\right\}$
Suppose m is a lower bound of $\left\{x, x^{\sim}\right\}$
That is, $\mathrm{m} \leq \mathrm{x}, \mathrm{m} \leq \mathrm{x}^{\sim} \Rightarrow \mathrm{m} \vee \mathrm{x}=\mathrm{x}$ and $\mathrm{m} \vee \mathrm{x}^{\sim}=\mathrm{x}^{\sim}$
Now $m \vee\left(x \wedge x^{\sim}\right)=(m \vee x) \wedge\left(m \vee x^{\sim}\right)=x \wedge x^{\sim}$
This shows that $\mathrm{m} \leq \mathrm{x} \wedge \mathrm{x}^{\sim}$
Therefore $x \wedge x^{\sim}$ is greatest lower bound of $\left\{x, x^{\sim}\right\}$.
This shows that infimum of $\left\{x, x^{\sim}\right\}=x \wedge x^{\sim}$.
2.2. Theorem: In a poset (A, \leq) with 1 , for any $x, y \in A, \sup \{x, y\}=x \vee y$.

Proof: We have $(x \vee y) \vee x=x \vee y$ and $(x \vee y) \vee y=x \vee y$
Therefore, $\mathrm{x} \leq \mathrm{x} \vee \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x} \vee \mathrm{y}$.
Hence $x \vee y$ us an upper bound of $\{x, y\}$
Suppose m is an upper bound of $\{x, y\}$
That is, $\mathrm{x} \leq \mathrm{m}, \mathrm{y} \leq \mathrm{m} \Rightarrow \mathrm{m} \vee \mathrm{x}=\mathrm{m}$ and $\mathrm{m} \vee \mathrm{y}=\mathrm{m}$
Now $m \vee(x \vee y)=(m \vee x) \vee y=m \vee y=m$.
This shows that $\mathrm{x} \vee \mathrm{y} \leq \mathrm{m}$
Therefore $\mathrm{x} \vee \mathrm{y}$ is a least upper bound of $\{\mathrm{x}, \mathrm{y}\}$
This shows that supremum of $\{x, y\}=x \vee y$.
In general for a Pre A^{*}-algebra with $1, x \wedge y$ need not be the greatest lower bound of $\{x, y\}$ in (A, \leq). For example $2 \vee x=2 \wedge x=2, \forall x \in A$ is not a greatest lower bound. However we have the following.
2.3. Theorem: In a poset (A, \leq) with 1 , for any $x, y \in B(A), \operatorname{Inf}(x, y)=x \wedge y$

Proof: If $x, y \in B(A)$, then we have $x \vee(x \wedge y)$ and $y \vee(x \wedge y)=y$
This shows that, $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{x}$ and $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{y}$.
Hence $x \wedge y$ is a lower bound of $\{x, y\}$

D. Kalyani $i^{i^{*}}$, B. Rami Reddy ${ }^{2}$, J. Venkateswara Rao ${ }^{3}$ and A. Satyanarayana ${ }^{4}$ / Characterization of a Partial order relation on Pre A*-Algebra / IJMA- 4(11), Nov.-2013.

Suppose m is a lower bound of $\{x, y\}$, then $m \vee x=x, m \vee y=y$.
Now $m \vee(x \wedge y)=(m \vee x) \wedge(m \vee y)=x \wedge y$
Therefore $\mathrm{m} \leq \mathrm{x} \wedge \mathrm{y}$.
Hence $\operatorname{Inf}\{\mathrm{x}, \mathrm{y}\}=\mathrm{x} \wedge \mathrm{y}$.
2.4. Theorem: In the poset (A, \leq), if $x, y \in B(A)$, then $x \wedge y \leq x \wedge x^{\sim}$

Proof: $\left(x \wedge x^{\sim}\right) \vee(x \wedge y)=\left\{\left(x \wedge x^{\sim}\right) \vee x\right\} \wedge\left\{\left(x \wedge x^{\sim}\right) \vee y\right)$

$$
\begin{aligned}
& =x \wedge(0 \vee y) \\
& =x \wedge y
\end{aligned}
$$

Therefore $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{x} \wedge \mathrm{x}^{\sim}$
2.5. Theorem: In the poset (A, \leq), if $x \leq y$, then for any $z \in A$,
(a) $\mathrm{z} \wedge \mathrm{x} \leq \mathrm{z} \wedge \mathrm{y}$
(b) $\mathrm{z} \vee \mathrm{x} \leq \mathrm{z} \vee \mathrm{y}$

Proof: If $x \leq y$, then $x \vee y=y$
(a) $(z \wedge x) \vee(z \wedge y)=z \wedge(x \vee y)=z \wedge y$.

Therefore $\mathrm{z} \wedge \mathrm{x} \leq \mathrm{z} \wedge \mathrm{y}$
(b) $(z \vee x) \vee(z \vee y)=z \vee(x \vee y)=z \vee y$.

Therefore $\mathrm{z} \vee \mathrm{x} \leq \mathrm{z} \vee \mathrm{y}$
Now we are giving the following equivalent conditions for $\mathrm{x} \leq \mathrm{y}$.
2.2. Lemma: In a Pre A^{*}-algebra
(i) $x \leq y \Leftrightarrow x \vee\left(x^{\sim} \wedge y\right)=\left(x^{\sim} \wedge y\right) \vee x=y$
(ii) $x \leq y \Leftrightarrow y \vee\left(y^{\sim} \wedge x\right)=\left(y^{\sim} \wedge x\right) \vee y=y$

Proof:
(i) If $\mathrm{x} \leq \mathrm{y}, \quad \Leftrightarrow \mathrm{x} \vee \mathrm{y}=\mathrm{y}$

$$
\Leftrightarrow x \vee\left(x^{\sim} \wedge y\right)=\left(x^{\sim} \wedge y\right) \vee x=y
$$

(ii) If $x \leq y \quad \Leftrightarrow y \vee x=y$
$\Leftrightarrow y \vee\left(y^{\sim} \wedge x\right)=\left(y^{\sim} \wedge x\right) \vee y=y$
Now we prove modular type results in the following
2.3. Lemma: In the poset (A, \leq), if $x \leq y \Rightarrow x \vee(y \wedge z)=y \wedge(x \vee z)$

Proof: Suppose $x \leq y$, then $x \vee y=y$.
Now $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)=y \wedge(x \vee z)$
If $x, y \in B(A)$ then by theorem 2.3 $\operatorname{Inf}\{x, y\}=x \wedge y$. In general $x \wedge y$ need not be an upper bound of $\{x, y\}$ in poset (A, \leq). If $\mathrm{x} \wedge \mathrm{y}$ is an upper bound of $\{\mathrm{x}, \mathrm{y}\}$ in poset (A, \leq), then A becomes Boolean algebra.

Now we have the following theorem.
2.6. Theorem: If A is a Pre A^{*}-algebra and $x \wedge(x \vee y)=x$ for all $x, y \in A$ then (A, \leq) is a lattice.

Proof: By theorem 2.2, we have every pair of elements have l.u.b and if $x \vee(x \wedge y)=x$ for all $x, y \in A$, then by theorem 2.3 we have every pair of elements have g.l.b. Hence (A, \leq) is a lattice.

D. Kalyani $i^{1^{*}}$, B. Rami Reddy ${ }^{2}$, J. Venkateswara Rao ${ }^{3}$ and A. Satyanarayana ${ }^{4}$ / Characterization of a Partial order relation on Pre A*-Algebra / IJMA- 4(11), Nov.-2013.

Now we present a equivalent condition for a Pre A*-algebra become a Boolean algebra.
2.7. Theorem: The following conditions are equivalent for any Pre A^{*}-algebra ($\left.\mathrm{A}, \wedge, \vee,(-)^{\sim}\right)$.
(1) A is a Boolean Algebra
(2) $x \wedge y \leq x$ for all $x, y \in A$
(3) $x \wedge y \leq y$ for all $x, y \in A$
(4) $x \wedge y$ is a lower bound of $\{x, y\}$ in (A, \leq) for all $x, y \in A$
(5) $x \wedge y$ is a infimum of $\{x, y\}$ in (A, \leq) for all $x, y \in A$
(6) $\mathrm{x} \vee \mathrm{x}^{\sim}$ is the least element in (A, \leq) for every $\mathrm{x} \in \mathrm{A}$

Proof: (1) \Rightarrow (2) Suppose A be a Boolean algebra
Now $x \vee(x \wedge y)=x($ by absorption law $)$
Therefore $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{x}$.
(2) \Rightarrow (3) Suppose $x \wedge y \leq x$ then $x \vee(x \wedge y)=x$

Now $y \vee(x \wedge y)=y$.
Hence $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{y}$.
(3) \Rightarrow (4) suppose that $x \wedge y \leq y \Rightarrow y \vee(x \wedge y)=y$

Since $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{y}$ then $\mathrm{x} \wedge \mathrm{y}$ is lower bound of y
Now $x \vee(x \wedge y)=x($ by supposition $)$
Therefore $\mathrm{x} \wedge \mathrm{y} \leq \mathrm{x}$
$\Rightarrow \mathrm{x} \wedge \mathrm{y}$ is a lower bound of x
$x \wedge y$ is a lower bound of $\{x, y\}$.
(4) \Rightarrow (5) suppose $x \wedge y$ is a lower bound of $\{x, y\}$

Suppose z is a lower bound of $\{\mathrm{x}, \mathrm{y}\}$ then $\mathrm{z} \leq \mathrm{x}, \mathrm{z} \leq \mathrm{y}$ that is
$x \vee z=x, y \vee z=y$
Now $z \vee(x \wedge y)=(z \vee x) \wedge(z \vee y)=x \wedge y$
Therefore $\mathrm{z} \leq \mathrm{x} \wedge \mathrm{y}$.
$\mathrm{x} \wedge \mathrm{y}$ is the greatest lower bound of $\{\mathrm{x}, \mathrm{y}\}$
Hence $\operatorname{Inf}\{x, y\}=x \wedge y$.
(5) \Rightarrow (6) Suppose $\operatorname{Inf}\{x, y\}=x \wedge y$ then $x, y \in B(A)$

Now $\operatorname{Inf}\left\{x \wedge x^{\sim}, y\right\}=x \wedge x^{\sim} \wedge y=x \wedge x^{\sim}$
$\Rightarrow \mathrm{x} \wedge \mathrm{x}^{\sim} \leq_{\oplus} \mathrm{y}$
Therefore $\mathrm{x} \wedge \mathrm{x}^{\sim}$ is the least element in (A, \leq).
(6) \Rightarrow (1) suppose $\mathrm{x} \wedge \mathrm{x}^{\sim}$ is the least element in A then $\mathrm{x} \wedge \mathrm{x}^{\sim} \leq y$,
for $\mathrm{y} \in \mathrm{A}$
D. Kalyani i^{*}, B. Rami Reddy ${ }^{2}$, J. Venkateswara Rao ${ }^{3}$ and A. Satyanarayana ${ }^{4}$ / Characterization of a Partial order relation on Pre A*-Algebra / IJMA- 4(11), Nov.-2013.
$\Rightarrow\left(x \wedge x^{\sim}\right) \vee y=y$
Now $y \wedge(x \vee y)=\left[\left(x \wedge x^{\sim}\right) \vee y\right] \vee(x \vee y)$

$$
\begin{aligned}
& =\left[\left(x \wedge x^{\sim}\right) \vee x\right] \vee y \\
& =\left(x \wedge x^{\sim}\right) \vee y=y \text { (by supposition) }
\end{aligned}
$$

Therefore absorption law holds hence A is a Boolean algebra.
2.8. Theorem: Let A be a pre A^{*}-algebra $\mathrm{x} \vee \mathrm{x}^{\sim}$ is the greatest element in (A, \leq) for every $\mathrm{x} \in \mathrm{A}$ then A is a Boolean algebra.

Proof: Suppose $x \vee x^{\sim}$ is the greatest element in (A, \leq) then

$$
\mathrm{y} \leq \mathrm{x} \vee \mathrm{x}^{\sim} \text { for any } \mathrm{y} \in \mathrm{~A}
$$

$\Rightarrow\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right) \vee \mathrm{y}=\mathrm{x} \vee \mathrm{x}^{\sim}$
Now $x \vee(x \wedge y)=\left[x \wedge\left(x^{\sim} \vee x\right)\right] \vee(x \wedge y)$

$$
\begin{aligned}
& =x \wedge\left[\left(x \vee x^{\sim}\right) \vee y\right] \\
& =x \wedge\left(x \vee x^{\sim}\right) \quad \text { (by supposition) } \\
& =x
\end{aligned}
$$

Therefore $\mathrm{x} \vee(\mathrm{x} \wedge \mathrm{y})=\mathrm{x}$, absorption law holds.
Hence A is a Boolean algebra.
2.9. Theorem: Let A be a Pre A^{*}-algebra and $a \in \mathrm{~A}$. Let $A_{a}=\{\mathrm{x} \in \mathrm{A} / \mathrm{a} \vee \mathrm{x}=\mathrm{x}\}$.Then A_{a} is closed under the operations \wedge and \vee. Also for any $\mathrm{x} \in A_{a}$ define, $x^{a}=\mathrm{a} \vee \mathrm{x}^{\sim}$. Then $\left(A_{a}, \wedge, \vee,{ }^{\mathrm{a}}\right.$) is a Pre A^{*}-algebra with 1(here a is itself is the identity for \vee in A_{a}; that is 1 in A_{a}).

Proof: Let $x, y \in A_{a}$. Then $\mathrm{a} \vee \mathrm{x}=\mathrm{x}$ and $\mathrm{a} \vee \mathrm{y}=\mathrm{y}$.

Now $a \vee(x \wedge y)=(a \vee x) \wedge(a \vee y)=x \wedge y \Rightarrow x \wedge y \in A_{a}$

Also $a \vee(x \vee y)=(a \vee x) \vee y=x \vee y \Rightarrow x \vee y \in A_{a}$
Therefore A_{a} is closed under the operation \wedge and \vee.
$\mathrm{a} \vee x^{a}=\mathrm{a} \vee\left(\mathrm{a} \vee \mathrm{x}^{\sim}\right)=\mathrm{a} \vee \mathrm{x}^{\sim}=\mathrm{x}^{a} \Rightarrow \mathrm{x}^{a} \in A_{a}$

Thus A_{a} is closed under ${ }^{\text {a }}$.
Now for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in A_{a}$
(1) $x^{a a}=\left(a \vee x^{\sim}\right)^{a}=a \vee\left(a \vee x^{\sim}\right)^{\sim}=a \vee\left(a^{\sim} \wedge x\right)=a \vee x=x$
(2) $x \wedge x=(a \vee x) \wedge(a \vee x)=x \wedge x=x$
(3) $x \wedge y=(a \vee x) \wedge(a \vee y)=(a \vee y) \wedge(a \vee x)=y \wedge x$
(4) $(x \wedge y)^{a}=a \vee(x \wedge y)^{\sim}=a \vee\left(x^{\sim} \vee y^{\sim}\right)$

$$
=\left(a \vee x^{\sim}\right) \vee\left(a \vee y^{\sim}\right)
$$

D. Kalyani $i^{\text {i }}$, B. Rami Reddy ${ }^{2}$, J. Venkateswara Rao ${ }^{3}$ and A. Satyanarayana ${ }^{4}$ / Characterization of a Partial order relation on Pre A*-Algebra / IJMA- 4(11), Nov.-2013.

$$
=x^{\mathrm{a}} \vee \mathrm{y}^{\mathrm{b}}
$$

(5) $\mathrm{x} \wedge(\mathrm{y} \wedge \mathrm{z})=(\mathrm{a} \vee \mathrm{x}) \wedge\{(\mathrm{a} \vee \mathrm{y}) \wedge(\mathrm{a} \vee \mathrm{z})\}$

$$
\begin{aligned}
& =a \vee\{x \wedge(y \wedge z)\} \\
& =a \vee\{(x \wedge y) \wedge z\}(\text { since } x, y, z \in A) \\
& =(x \wedge y) \wedge z
\end{aligned}
$$

(6) $x \wedge(y \vee z)=(a \vee x) \wedge\{(a \vee y) \vee(a \vee z)\}$

$$
\begin{aligned}
& =\{(a \vee x) \wedge(a \vee y)\} \vee\{(a \vee x) \wedge(a \vee z)\} \\
& =\{a \vee(x \wedge y)\} \vee\{(a \vee(x \wedge z)\} \\
& =(x \wedge y) \vee(x \wedge z)
\end{aligned}
$$

(7) $x \wedge\left(x^{a} \vee y\right)=x \wedge\left\{\left(a \vee x^{\sim}\right) \vee y\right\}$

$$
\begin{aligned}
& =\left\{x \wedge\left(a \vee x^{\sim}\right)\right\} \vee(x \wedge y) \\
& =\left(x \wedge x^{\sim}\right) \vee(x \wedge y)(\text { since } a \vee x=x) \\
& =x \wedge\left(x^{\sim} \vee y\right) \\
& =x \wedge y
\end{aligned}
$$

Finally $\mathrm{x} \in A_{a}$ implies that $\mathrm{a} \vee \mathrm{x}=\mathrm{x}=\mathrm{x} \vee \mathrm{a}$. Thus $\left(A_{a}, \wedge, \vee,{ }^{\mathrm{a}}\right)$ is a Pre A -algebra with a as identity for \vee.
2.10. Theorem: Let a , b be elements in a Pre A^{*}-algebra A such that $a \leq b$.Then the following hold.
(1) $a \vee b=b$
(2) The map $\alpha_{a, b}: A_{a} \rightarrow A_{b}$ defined by $\alpha_{a, b}(\mathrm{x})=\mathrm{b} \vee \mathrm{x}$ for all $\mathrm{x} \in A_{a}$ is a homomorphism of Pre A*-algebras.
(3) $\alpha_{a, b}\left(\mathrm{~B}\left(A_{a}\right)\right) \subseteq \mathrm{B}\left(A_{b}\right)$
(4) If $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$ then $\alpha_{a, b} O \alpha_{b, c}=\alpha_{a, c}$
(5) $\alpha_{a, a}$ is the identity map on A_{a}

Proof: Suppose that $a \leq b$
(1) We have $a \leq b \Rightarrow \mathrm{a} \vee \mathrm{b}=\mathrm{b}$
(2) Let $\mathrm{x}, \mathrm{y} \in A_{a}$.Then $\alpha_{a, b}(\mathrm{x} \wedge \mathrm{y})=\mathrm{b} \vee(\mathrm{x} \wedge \mathrm{y})$

$$
\begin{aligned}
& =(\mathrm{b} \vee \mathrm{x}) \wedge(\mathrm{b} \vee \mathrm{y}) \\
& =\alpha_{a, b}(\mathrm{x}) \wedge \alpha_{a, b}(\mathrm{y})
\end{aligned}
$$

and $\alpha_{a, b}(\mathrm{x} \vee \mathrm{y})=\mathrm{b} \vee(\mathrm{x} \vee \mathrm{y})$

$$
\begin{aligned}
& =(\mathrm{b} \vee \mathrm{x}) \vee(\mathrm{b} \vee \mathrm{y}) \\
& =\alpha_{a, b}(\mathrm{x}) \vee \alpha_{a, b}(\mathrm{y})
\end{aligned}
$$

$$
\text { Also } \begin{aligned}
\alpha_{a, b}\left(\mathrm{x}^{\mathrm{a}}\right) & =\mathrm{b} \vee \mathrm{x}^{\mathrm{a}} \\
& =\mathrm{b} \vee\left(\mathrm{a} \vee \mathrm{x}^{\sim}\right) \\
& =(\mathrm{b} \vee \mathrm{a}) \vee \mathrm{x}^{\sim} \\
& =\mathrm{b} \vee \mathrm{x}^{\sim} \\
& =\mathrm{b} \vee\left(\mathrm{~b}^{\sim} \wedge \mathrm{x}^{\sim}\right) \\
& =\mathrm{b} \vee(\mathrm{~b} \vee \mathrm{x})^{\sim} \\
& =(\mathrm{b} \vee \mathrm{x})^{\mathrm{b}} \\
& =\left(\alpha_{a, b}(\mathrm{x})\right)^{\mathrm{b}}
\end{aligned}
$$

Therefore $\alpha_{a, b}$ is a homomorphism of Pre A*-algebras.
(3) Let $\mathrm{x} \in \mathrm{B}\left(A_{a}\right)$.

Then $\mathrm{x} \vee \mathrm{x}^{\mathrm{a}}=\mathrm{a}$ (since a is identity in $\left.A_{a}\right)$ and therefore $\mathrm{a}=\mathrm{x} \vee\left(\mathrm{a} \vee \mathrm{x}^{\sim}\right)$

$$
\text { Now } \begin{aligned}
\alpha_{a, b}(\mathrm{x}) \vee\left[\alpha_{a, b}(\mathrm{x})\right]^{\mathrm{b}} & =(\mathrm{b} \vee \mathrm{x}) \vee(\mathrm{b} \vee \mathrm{x})^{\mathrm{b}} \\
& =(\mathrm{b} \vee \mathrm{x}) \vee\left[\mathrm{b} \vee(\mathrm{~b} \vee \mathrm{x})^{\sim}\right] \\
& =(\mathrm{b} \vee \mathrm{x}) \vee\left[\mathrm{b} \vee\left(\mathrm{~b}^{\sim} \wedge \mathrm{x}^{\sim}\right)\right] \\
& =(\mathrm{b} \vee \mathrm{x}) \vee\left(\mathrm{b} \vee \mathrm{x}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{b} \vee\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right) \\
& =(\mathrm{a} \vee \mathrm{~b}) \vee\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right) \\
& =\mathrm{b} \vee\left[\mathrm{a} \vee\left(\mathrm{x} \vee \mathrm{x}^{\sim}\right)\right] \\
& =\mathrm{b} \vee \mathrm{a}(\mathrm{by}(\mathrm{i})) \\
& =\mathrm{b} \text {, which is } 1 \text { in } A_{b}
\end{aligned}
$$

Therefore $\alpha_{a, b}(\mathrm{x}) \in \mathrm{B}\left(A_{b}\right)$

Thus $\alpha_{a, b}\left(\mathrm{~B}\left(A_{a}\right)\right) \subseteq \mathrm{B}\left(A_{b}\right)$
(4) Let $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$

$$
\begin{aligned}
{\left[\alpha_{a, b} O \alpha_{b, c}\right](\mathrm{x}) } & =\alpha_{a, b}\left[\alpha_{b, c}(\mathrm{x})\right] \\
& =\alpha_{a, b}[\mathrm{c} \vee \mathrm{x}] \\
& =\mathrm{b} \vee \mathrm{c} \vee \mathrm{x} \\
& =\mathrm{c} \vee \mathrm{x} \\
& =\alpha_{a, c}(\mathrm{x})
\end{aligned}
$$

Therefore $\alpha_{a, b}$ o $\alpha_{b, c}=\alpha_{a, c}$
(5) $\alpha_{a, a}(\mathrm{x})=\mathrm{a} \vee \mathrm{x}=\mathrm{x}$ for all $\mathrm{x} \in A_{a}$

Then $\alpha_{a, a}$ is identity map on A_{a}.

CONCLUSION

This manuscript point ups the character of the Pre-A*-algebra like a partially ordered set. With respect to binary operation \vee, able to define a relation \leq on a Pre-A*-algebra and observed that such a Pre-A*-algebra as a partially ordered set with respect to the relation \leq and derived corresponding results. It has been observed a necessary condition a Pre-A*-algebra to become a lattice. We also present a equivalent condition for a Pre A*-algebra become a Boolean algebra. For any $\mathrm{a} \in \mathrm{A}$ defined a set $A_{a}=\{\mathrm{x} \in \mathrm{A} / \mathrm{a} \vee \mathrm{x}=\mathrm{x}\}, x^{a}=\mathrm{a} \vee \mathrm{x}^{\sim}$ and observed that $\left(A_{a}, \wedge, \vee,{ }^{a}\right)$ is a Pre A*algebra. Also defined a mapping $\alpha_{a, b}$ from A_{a} to A_{b} by $\alpha_{a, b}(\mathrm{x})=\mathrm{b} \vee \mathrm{x}$ for all $\mathrm{x} \in A_{a}$ and confirmed a homomorphism of Pre A*-algebras.

REFERENCES

1. Fernando Guzman and Craig C.Squir (1990): The Algebra of Conditional logic, Algebra Universalis 27, 88-110.
2. Koteswara Rao. P (1994), A*-Algebra, an If-Then-Else structures (Doctoral Thesis) Nagarjuna University, A.P., India.
3. Manes E.G (1989): The Equational Theory of Disjoint Alternatives, Personal Communication to Prof. N. V. Subrahmanyam.
4. Manes E.G (1993): Ada and the Equational Theory of If-Then-Else, Algebra Universalis 30, 373-394.
5. Venkateswara Rao.J.(2000), On A*-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.
6. Venkateswara Rao.J, Praroopa.Y (2006) "Boolean algebras and Pre A*-Algebras", Acta Ciencia Indica (Mathematics), (ISSN: 0970-0455), 32: pp 71-76.
7. Satyanarayana.A, (2012), Algebraic Study of Certain Classes of Pre A*-Algebras and C-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.

Source of support: Nil, Conflict of interest: None Declared

