International Journal of Mathematical Archive-4(12), 2013, 147-152 IMA Available online through www.ijma.info ISSN 2229-5046

ON VALUE SHARING OF MEROMORPHIC FUNCTIONS

Dibyendu Banerjee*1 and Biswajit Mandal ${ }^{2}$
${ }^{1}$ Department of Mathematics, Visva -Bharati, Santiniketan-731235, West Bengal, India.
${ }^{2}$ Bunia Dangal High School, P.O. -Bunia, Labpur-731303, West Bengal, India.
(Received on: 21-10-13;Revised \& Accepted on: 17-12-13)

Abstract

In this paper, we introduce a new concept of value sharing called additive sharing to prove some uniqueness theorems for meromorphic functions.

Key words: Meromorphic functions, Order, Additive sharing.
AMS Subject Classification: 32A20.

1. INTRODUCTION AND DEFINITIONS

Let f and g be two non-constant meromorphic functions defined in the open complex plane C and let $a \in \mathrm{C} \cup\{\infty\}$. We say that f and g share the value $a \mathrm{CM}$ (counting multiplicities) or IM (ignoring multiplicities) provided $f-a$ and $g-a$ have same zeros CM or IM respectively and f, g share ∞ CM or IM provided that $\frac{1}{f}$ and $\frac{1}{g}$ share 0 CM or IM.

It is assumed that the reader is familiar with the standard notations and definitions of Nevanlinna's theory as found in [5].

In 1979, Gundersen [4] proved the following theorems.
Theorem: A [4] If f and g share four values $\left\{a_{i}\right\}_{1}^{4}$ IM and $f \neq g$, then outside a set E of finite linear measure:
(a) $\lim _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)}=1$;
(b) $\lim _{r \rightarrow \infty} \sum_{i=1}^{4} \frac{\bar{N}\left(r, a_{i}\right)}{T(r, f)}=\lim _{r \rightarrow \infty} \sum_{i=1}^{4} \frac{\bar{N}\left(r, a_{i}\right)}{T(r, g)}=2$,
where $\bar{N}\left(r, a_{i}\right)=\bar{N}\left(r, a_{i} ; f\right)=\bar{N}\left(r, a_{i} ; g\right)$ for $i=1,2,3,4$.
Theorem: B [4] If f and g share three values IM, then outside a set E of finite measure,

$$
\lim \sup _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)} \leq 3 \text { and } \lim \sup _{r \rightarrow \infty} \frac{T(r, g)}{T(r, f)} \leq 3 .
$$

[^0]In 1989, Brosch [3] improved Theorem B by proving the following result.
Theorem: C [3] If f and g share three values CM, then

$$
\frac{3}{8} T(r, g)(1+o(1)) \leq T(r, f) \leq \frac{8}{3} T(r, g)(1+o(1)) \text { as } r \rightarrow \infty(r \notin E)
$$

Recently Banerjee and Dutta [1] introduced a new idea of value sharing known as relative sharing which runs as follows.

Let f and g be two non-constant meromorphic functions and $a \in \mathrm{C} \cup\{\infty\}$. We say that f, g share a CM(IM) relatively with respect to a meromorphic function h, provided the functions F and G share $a \mathrm{CM}(\mathrm{IM})$ respectively where $F=\frac{f}{h}$ and $G=\frac{g}{h}$.

Using this idea of relative sharing of values of meromorphic functions Banerjee and Dutta proved the followings.
Theorem: \mathbf{D} [2] Let f and g be two meromorphic functions. If there is a function h with $T(r, h)=o(T(r, f))$ and $T(r, h)=o(T(r, g))$ such that F, G share four values $\left\{a_{i}\right\}_{1}^{4}$ IM, then outside a set E of finite linear measure, (a) $\lim _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)}=1$;
(b) $\lim _{r \rightarrow \infty} \sum_{i=1}^{4} \frac{\bar{N}\left(r, a_{i}\right)}{T(r, f)}=\lim _{r \rightarrow \infty} \sum_{i=1}^{4} \frac{\bar{N}\left(r, a_{i}\right)}{T(r, g)}=2$,
where $\bar{N}\left(r, a_{i}\right)=\bar{N}\left(r, a_{i} ; F\right)=\bar{N}\left(r, a_{i} ; G\right)$ for $i=1,2,3,4$.

Theorem: E [2] Let f and g be two meromorphic functions. If there is a function h with $T(r, h)=o(T(r, f))$ and $T(r, h)=o(T(r, g))$ such that F, G share three values IM, then outside a set E of finite measure,

$$
\limsup \operatorname{rin}_{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)} \leq 3 \text { and } \lim \sup _{r \rightarrow \infty} \frac{T(r, g)}{T(r, f)} \leq 3
$$

Theorem: F [1] Let f and g be two non-constant meromorphic functions. If there is a function h with $T(r, h)=o(T(r, f))$ and $T(r, h)=o(T(r, g))$ such that F, G share $\left\{a_{i}\right\}_{1}^{3} \mathrm{IM}$, then $\rho_{f}=\rho_{g}$ where $F=\frac{f}{h}$ and $G=\frac{g}{h}$ and ρ_{f} denotes the order of f.

In this paper, we introduce another notion of value sharing called `additive sharing' and prove parallel results of Banerjee and Dutta $\{[1],[2]\}$ using the idea of additive sharing.

First we introduce the following definition.
Definition: 1 Let f and g be two non-constant meromorphic functions and $a \in C \cup\{\infty\}$. We say that f, g share $a \mathrm{CM}(\mathrm{IM})$ additively with respect to a meromorphic function h, provided that F and G share $a \mathrm{CM}(\mathrm{IM})$ respectively where $F=f+h$ and $G=g+h$.

Throughout the paper we assume f, g etc. are non-constant meromorphic functions defined in the open complex plane C and $S(r, f)$ any quantity satisfying

$$
S(r, f)=o(T(r, f))(r \rightarrow \infty, r \notin E) .
$$

2. THEOREMS

In this section we prove the main results of the paper.
Theorem: 1 Let f and g be two non-constant meromorphic functions. If there is a function h with $T(r, h)=o(T(r, f))$ and $T(r, h)=o(T(r, g))$ such that F, G share three values IM then $\rho_{f}=\rho_{g}$ where $F=f+h$ and $G=g+h$.

Proof: We have $T(r, h)=S(r, f)=o(T(r, f))$ as $r \rightarrow \infty, r \notin E$ (a set of finite linear measure).
Now $F=f+h$, so $T(r, F) \leq T(r, f)+T(r, h)+O(1)=[1+o(1)] T(r, f)$.

On the other hand, $f=F-h$ gives

$$
\begin{equation*}
T(r, f) \leq T(r, F)+T(r, h)+O(1)=(1+o(1)) T(r, F) \tag{2}
\end{equation*}
$$

i.e., $(1+o(1)) T(r, f) \leq T(r, F)$.

Hence from (1) and (2), $(1+o(1)) T(r, f)=T(r, F)$.

Consequently, $\rho_{f}=\rho_{F}$.

Applying similar arguments we can also prove that $\rho_{g}=\rho_{G}$.
Further since F, G share three values IM, by Theorem B

$$
\begin{equation*}
\frac{1}{3}(1+o(1)) T(r, G) \leq T(r, F) \leq 3(1+o(1)) T(r, G) \tag{6}
\end{equation*}
$$

So, $\rho_{F}=\rho_{G}$.
Combining (4), (5) and (6), we get the result.
Example: 1 Let $f(z)=e^{z}-e^{-z}, g(z)=3-3 e^{-z}$ and $h(z)=e^{-z}$. Then $F(z)=e^{z}$ and $G(z)=3-2 e^{-z}$ share $1,2, \infty$ CM. Here $T(r, h) \neq o(T(r, f))$ and $T(r, h) \neq o(T(r, g))$ but $\rho_{f}=\rho_{g}$.

Example: 2 Let $f(z)=z, g(z)=e^{-z}-e^{z}+z$ and $h(z)=e^{z}-z$. Then $F(z)=e^{z}$ and $G(z)=e^{-z}$ share $0,1,-1, \infty$ CM. Here $T(r, h) \neq o(T(r, f))$ and $T(r, h) \neq o(T(r, g))$ and $\rho_{f} \neq \rho_{g}$.

Theorem: 2 Let f and g be two non-constant meromorphic functions. If there is a function h with $T(r, h)=o(T(r, f))$ and $T(r, h)=o(T(r, g))$ such that F, G share four values $\left\{a_{i}\right\}_{1}^{4}$ IM, then outside a set E of finite linear measure,
(a) $\lim _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)}=1$;
(b) $\lim _{r \rightarrow \infty} \sum_{i=1}^{4} \frac{\bar{N}\left(r, a_{i}\right)}{T(r, f)}=\lim _{r \rightarrow \infty} \sum_{i=1}^{4} \frac{\bar{N}\left(r, a_{i}\right)}{T(r, g)}=2$,
where $\bar{N}\left(r, a_{i}\right)=\bar{N}\left(r, a_{i} ; F\right)=\bar{N}\left(r, a_{i} ; G\right)$ for $i=1,2,3,4$ and $F=f+h$ and $G=g+h$.
Proof: By Second Fundamental theorem, as $r \rightarrow \infty$ outside a set of finite linear measure,

$$
(3+o(1)) T(r, F) \leq \sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)+\bar{N}(r, F)
$$

Using (3) and $\bar{N}(r, F) \leq T(r, F)$, we get at once

$$
\begin{array}{r}
\quad(2+o(1)) T(r, f) \leq \sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right) \\
\text { or, } T(r, f) \leq\left(\frac{1}{2}+o(1)\right) \sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right) . \tag{7}
\end{array}
$$

Similarly for g,

$$
\begin{equation*}
T(r, g) \leq\left(\frac{1}{2}+o(1)\right) \sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right) . \tag{8}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right) & \leq \sum_{i=1}^{4} \bar{N}(r, 0 ; F-G) \\
& =\bar{N}\left(r, \frac{1}{F-G}\right) \\
& \leq T\left(r, \frac{1}{F-G}\right) \\
& \leq T(r, F)+T(r, G)+O(1) \\
& =[1+o(1)](T(r, f)+T(r, g)), \text { using (3) } \tag{9}\\
& \leq(1+o(1)) \sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right), \text { using (7) and (8). }
\end{align*}
$$

So outside a set E of finite measure,

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)+T(r, g)}{\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)}=1
$$

Let there is a sequence $r_{n} \rightarrow \infty$ such that

$$
\frac{T\left(r_{n}, f\right)}{\sum_{i=1}^{4} \bar{N}\left(r_{n}, a_{i}\right)} \rightarrow c<\frac{1}{2} \text { and } \frac{T\left(r_{n}, g\right)}{\sum_{i=1}^{4} \bar{N}\left(r_{n}, a_{i}\right)} \rightarrow 1-c
$$

where C is a constant.

Then

$$
\frac{\sum_{i=1}^{4} \bar{N}\left(r_{n}, a_{i}\right)}{T\left(r_{n}, g\right)} \rightarrow \frac{1}{1-c}<2
$$

which contradicts (8).

Hence

$$
\lim _{r \rightarrow \infty} \frac{\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)}{T(r, f)}=\lim _{r \rightarrow \infty} \frac{\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)}{T(r, g)}=2
$$

This proves (b).
From (9), we have

$$
\begin{aligned}
& \quad \sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right) \leq[1+o(1)](T(r, f)+T(r, g)) \leq(1+o(1)) \sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right) \\
& \text { i.e., } \frac{\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)}{T(r, g)} \leq[1+o(1)]\left[1+\frac{T(r, f)}{T(r, g)}\right] \leq[1+o(1)] \frac{\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)}{T(r, g)} \\
& \text { i.e., } \lim _{r \rightarrow \infty} \frac{\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)}{T(r, g)} \leq 1+\lim _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)} \leq \lim _{r \rightarrow \infty} \frac{\sum_{i=1}^{4} \bar{N}\left(r, a_{i}\right)}{T(r, g)}
\end{aligned}
$$

i.e., $2 \leq 1+\lim _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)} \leq 2$
i.e., $\lim _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)}=1$.

This proves (a).
This completes the proof of the Theorem 2.
Example: 3 Let $f(z)=e^{z}-z, g(z)=e^{-z}-z$ and $h(z)=z$. Then F, G share $0,-1,1, \infty$. Again $T(r, h)=o(T(r, f))$ and $T(r, h)=o(T(r, g))$. Also $T(r, f) \sim T(r, g)$.

Example: 4 Let $f(z)=z, g(z)=e^{-z}-e^{z}+z$ and $h(z)=e^{z}-z$. Then F, G share $0,-1,1, \infty$. Again $T(r, h) \neq o(T(r, f))$. Also $T(r, f) \sim / \sim T(r, g)$.

Theorem: 3 Let f and g be two non-constant meromorphic functions. If there is a function h with $T(r, h)=o(T(r, f))$ and $T(r, h)=o(T(r, g))$ such that F, G share three values IM, then outside a set E of finite measure,
$\lim \sup _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)} \leq 3$ and $\lim \sup _{r \rightarrow \infty} \frac{T(r, g)}{T(r, f)} \leq 3$, where $F=f+h$ and $G=g+h$.
Proof: Since F, G share three values IM, so from Theorem B , outside a set E of finite measure,
$\limsup \sup _{r \rightarrow \infty} \frac{T(r, F)}{T(r, G)} \leq 3$ and $\limsup _{r \rightarrow \infty} \frac{T(r, G)}{T(r, F)} \leq 3$.
i.e., $T(r, F)<3[1+o(1)] T(r, G)$ and $T(r, G)<3[1+o(1)] T(r, F)$.

Now using (3), $T(r, f)<3[1+o(1)] T(r, g)$
i.e., $\frac{T(r, f)}{T(r, g)}<3+o(1)$
and hence $\quad \lim \sup _{r \rightarrow \infty} \frac{T(r, f)}{T(r, g)} \leq 3$.
Similarly $\underset{r \rightarrow \infty}{\limsup } \frac{T(r, g)}{T(r, f)} \leq 3$.
This proves the Theorem 3.
Example: 5 Let $f(z)=\frac{e^{3 z}-3 e^{2 z}+3}{1-3 e^{z}}, g(z)=\frac{e^{z}}{1-3 e^{z}}$ and $h(z)=\frac{3}{3 e^{z}-1}$. Then F, G share three values 0 , ∞ CM and 1 IM. Again $T(r, h) \neq o(T(r, g))$ but $T(r, f) \sim 3 T(r, g)$.

REFERENCES

1. Banerjee, D. and Dutta, R. K., Relative sharing and order of meromorphic functions, J. Indian Acad. Math., 29(2) (2007), pp.425-431.
2. Banerjee, D. and Dutta, R. K., On relative sharing of Meromorphic functions, accepted in The Mathematics Education.
3. Brosch, G., Eindeutigkeitssätze für meromorphic funktionen, Thesis, Techincal University of Aachen, 1989.
4. Gundersen, G. G., Meromorphic functions that share three or four values, J. London Math. Soc. 20(2) (1979), pp.457-466.
5. Hayman, W. K., Meromorphic Functions, The Clarendon Press, Oxford, 1964.

Source of support: Nil, Conflict of interest: None Declared

[^0]: Corresponding author: Dibyendu Banerjee ${ }^{*_{1}}$ and Biswajit Mandal ${ }^{2}$
 ${ }^{1}$ Department of Mathematics, Visva -Bharati, Santiniketan-731235, West Bengal, India.

