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ABSTRACT 
In this paper, we introduce a new concept of value sharing called additive sharing to prove some uniqueness theorems 
for meromorphic functions. 
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1. INTRODUCTION AND DEFINITIONS 
 
Let f  and g  be two non-constant meromorphic functions defined in the open complex plane C and let 

}{C ∞∪∈a . We say that f and g  share the value a  CM (counting multiplicities) or IM (ignoring multiplicities) 

provided f a−  and g a−  have same zeros CM or IM respectively and ,f g  share ∞  CM or IM provided that 
1
f

 

and 
1
g

 share 0   CM or IM. 

 
It is assumed that the reader is familiar with the standard notations and definitions of Nevanlinna's theory as found in 
[5]. 
 
In 1979, Gundersen [4] proved the following theorems. 
 

Theorem: A [4] If f  and g   share four values { }4
1ia

 
IM and f g≠ , then outside a set E of finite linear measure: 
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 where );,();,(),( garNfarNarN iii == for .4,3,2,1=i  
  
Theorem: B [4] If f  and g   share three values IM, then outside a set E of finite measure, 
 

( )
( )

,
limsup 3

,r

T r f
T r g→∞

≤  and 
( )
( )

,
limsup 3

,r

T r g
T r f→∞

≤ . 
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In 1989, Brosch [3] improved Theorem B by proving the following result. 
 
Theorem: C [3] If f  and g   share three values CM, then  

( ) ( )( ) ( ) ( ) ( )( )3 8, 1 1 , , 1 1
8 3

T r g o T r f T r g o+ ≤ ≤ + as  ( )r r E→∞ ∉ . 

 
Recently Banerjee and Dutta [1] introduced a new idea of value sharing known as relative sharing which runs as 
follows. 
 
Let f  and g be two non-constant meromorphic functions and }{C ∞∪∈a . We say that ,f g  share a  CM(IM) 
relatively with respect to a meromorphic function h , provided the functions F  and G  share a  CM(IM) respectively 

where 
fF
h

=  and 
gG
h

= . 

 
Using this idea of relative sharing of values of meromorphic functions Banerjee and Dutta proved the followings. 
 
Theorem: D [2] Let f  and g be two meromorphic functions. If there is a function h  with ( ) ( )( ), ,T r h o T r f=  

and ( ) ( )( ), ,T r h o T r g=  such that F , G share four values { }4
1ia IM, then outside a set E of finite linear measure, 
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 where );,();,(),( GarNFarNarN iii == for .4,3,2,1=i  
 
Theorem: E [2] Let f  and g  be two meromorphic functions. If there is a function h  with ( ) ( )( ), ,T r h o T r f=  

and ( ) ( )( ), ,T r h o T r g=  such that F , G  share three values IM, then outside a set E of finite measure, 

( )
( )

,
limsup 3

,r

T r f
T r g→∞

≤  and 
( )
( )

,
limsup 3

,r

T r g
T r f→∞

≤ . 

 
Theorem: F [1] Let f  and g  be two non-constant meromorphic functions. If there is a function h  with 

( ) ( )( ), ,T r h o T r f=  and ( ) ( )( ), ,T r h o T r g=  such that F , G  share { }3
1ia  IM, then gf ρρ =  where 

fF
h

=  and 
gG
h

=  and fρ denotes the order of f . 

 
In this paper, we introduce another notion of value sharing called `additive sharing' and prove parallel results of 
Banerjee and Dutta {[1], [2]} using the idea of additive sharing. 
 
First we introduce the following definition. 
 
Definition: 1 Let f  and g be two non-constant meromorphic functions and }{C ∞∪∈a . We say that ,f g  
share a  CM(IM) additively with respect to a meromorphic function h , provided that F  and G  share a  CM(IM) 
respectively where F f h= +  and G g h= + . 
 
Throughout the paper we assume ,f g  etc. are non-constant meromorphic functions defined in the open complex 

plane C and ( ),S r f  any quantity satisfying                   

( ) ( )( )( ), , ,S r f o T r f r r E= →∞ ∉ . 
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2. THEOREMS  
 
In this section we prove the main results of the paper. 
 
Theorem: 1 Let f  and g  be two non-constant meromorphic functions. If there is a function h  with 

( ) ( )( ), ,T r h o T r f=  and ( ) ( )( ), ,T r h o T r g=  such that F , G  share three values IM then gf ρρ =  where 

F f h= +  and G g h= + . 
 
Proof: We have ( ) ( ) ( )( ), , ,T r h S r f o T r f= =  as ,r r E→∞ ∉  (a set of finite linear measure). 
 
Now F f h= + , so ( ) ( ) ( ) ( ), , , 1T r F T r f T r h O≤ + + = [1 (1)] ( , ).o T r f+                                                    (1) 
 
On the other hand, f F h= −  gives 

       ( ) ( ) ( ) ( ) ( )( ) ( ), , , 1 1 1 ,T r f T r F T r h O o T r F≤ + + = +  

i.e., ( )( ) ( ) ( )1 1 , ,o T r f T r F+ ≤ .                                                                                                                             (2) 
 
Hence from (1) and (2), ( )( ) ( ) ( )1 1 , ,o T r f T r F+ = .                                                                                             (3) 
 
Consequently, Ff ρρ = .                                                                                                                                                (4) 
 
Applying similar arguments we can also prove that Gg ρρ = .                                                                                      (5) 
 
Further since ,F G  share three values IM, by Theorem B 

                                  ( )( ) ( ) ( ) ( )( ) ( )1 1 1 , , 3 1 1 ,
3

o T r G T r F o T r G+ ≤ ≤ + . 

So, GF ρρ = .                                                                                                                                                                  (6) 
 
Combining (4), (5) and (6), we get the result. 
 
Example: 1 Let ( ) ( ), 3 3z z zf z e e g z e− −= − = − and ( ) zh z e−= . Then ( ) zF z e=   and 

( ) 3 2 zG z e−= − share 1, 2,∞  CM. Here ( ) ( )( ), ,T r h o T r f≠ and ( ) ( )( ), ,T r h o T r g≠ but f gρ ρ= .  
 
Example: 2 Let ( ) , ( ) z zf z z g z e e z−= = − +  and ( ) zh z e z= − . Then ( ) zF z e=  and ( ) zG z e−=  share 

0,1, 1,− ∞  CM. Here ( ) ( )( ), ,T r h o T r f≠  and ( ) ( )( ), ,T r h o T r g≠  and f gρ ρ≠  . 
 
Theorem: 2 Let f  and g be two non-constant meromorphic functions. If there is a function h  with 

( ) ( )( ), ,T r h o T r f=  and ( ) ( )( ), ,T r h o T r g=  such that F , G share four values { }4
1ia IM, then outside a set 

E of finite linear measure, 
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 where );,();,(),( GarNFarNarN iii == for 4,3,2,1=i and F f h= +  and G g h= + . 
 
Proof:  By Second Fundamental theorem, as r →∞  outside a set of finite linear measure, 

                                 ( )( ) ( ) ( ) ( )
_ _4

1
3 1 , , ,ii

o T r F N r a N r F
=

+ ≤ +∑ .                        
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Using (3) and ( ) ( )
_

, ,N r F T r F≤ , we get at once 

       
( )( ) ( ) ( )

_4

1
2 1 , , ii

o T r f N r a
=

+ ≤∑  

or, ( ) ( ) ( )
_4

1

1, 1 ,
2 ii

T r f o N r a
=

 ≤ + 
 

∑ .                                                                                                                 (7) 

Similarly for g , 

                               ( ) ( ) ( )
_4

1

1, 1 ,
2 ii

T r g o N r a
=

 ≤ + 
 

∑ .                                                                                        (8) 

Therefore,             ( ) ( )
_ _4 4

1 1
, ,0;ii i

N r a N r F G
= =

≤ −∑ ∑  

                                                        

_ 1,N r
F G

 =  − 
 

                                                        ( )1, F GT r −≤  

                                                        ( ) ( ) ( ), , 1T r F T r G O≤ + +  

                                                        ( ) ( ) ( )[1 1 ]( , , )o T r f T r g= + + , using (3)                                                        (9) 

                                                        
( )( ) ( )

_4

1
1 1 , ii

o N r a
=

≤ + ∑ , using (7) and (8). 

 
So outside a set E  of finite measure, 
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Let there is a sequence nr →∞  such that 
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where c  is a constant. 

Then                                           
( )

( )

_4

1 1
1

,
2

,
n ii

c
n
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T r g
=

−→ <∑
, 

 
which contradicts (8). 
 

Hence                          .2
),(

),(
lim

),(
),(

lim
4

1

4

1 == ∑∑ =

∞→

=

∞→ grT
arN

frT
arN

i i

r

i i

r
               

 
This proves ( )b . 
From (9), we have  

       
( )
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1
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=∑ ( ) ( ) ( )[1 1 ]( , , )o T r f T r g≤ + + ( )( ) ( )
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i.e., 
( )
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i.e.,  
( )
( )

,
2 1 lim 2

,r

T r f
T r g→∞

≤ + ≤  

i.e., 
( )
( )

,
lim 1

,r

T r f
T r g→∞

= . 

 
This proves ( )a . 
 
This completes the proof of the Theorem 2. 
 
Example: 3 Let ( ) ( ),z zf z e z g z e z−= − = −  and ( )h z z= . Then ,F G  share 0,-1,1,∞. Again ( ) ( )( ), ,T r h o T r f=  

and ( ) ( )( ), ,T r h o T r g= . Also ),( frT ~ ).,( grT  
 
Example: 4 Let ( ) ( ), z zf z z g z e e z−= = − +  and ( ) zh z e z= − . Then ,F G  share 0, -1, 1, ∞. Again 

( ) ( )( ), ,T r h o T r f≠ . Also ),( frT ~/~ ).,( grT  
 
Theorem: 3 Let f  and g  be two non-constant meromorphic functions. If there is a function h  with 

( ) ( )( ), ,T r h o T r f=  and ( ) ( )( ), ,T r h o T r g=  such that F , G  share three values IM, then outside a set E of 
finite measure, 
 

( )
( )

,
limsup 3

,r

T r f
T r g→∞

≤  and 
( )
( )

,
limsup 3

,r

T r g
T r f→∞

≤ , where F f h= +  and G g h= +  . 

 
Proof: Since F , G  share three values IM, so from Theorem B , outside a set E of finite measure, 

( )
( )

,
limsup 3

,r

T r F
T r G→∞

≤  and 
( )
( )

,
limsup 3

,r

T r G
T r F→∞

≤ . 

 
i.e., ),()]1(1[3),( GrToFrT +< and ).,()]1(1[3),( FrToGrT +<  
 
Now using (3),   ( ) ( ), 3[1 (1)] ,T r f o T r g< +  

i.e., 
( )
( )

,
3 (1)

,
T r f

o
T r g

< +  

and hence    
( )
( )

,
limsup 3

,r

T r f
T r g→∞

≤ . 

 

Similarly   .3
),(
),(suplim ≤

∞→ frT
grT

r
    

 
This proves the Theorem 3. 
 

Example: 5 Let ( ) ( )
3 23 3 ,

1 3 1 3

z z z

z z

e e ef z g z
e e

− +
= =

− −
 and ( ) 3

3 1zh z
e

=
−

. Then ,F G  share three values 0, 

∞  CM and 1 IM. Again ( ) ( )( ), ,T r h o T r g≠  but ),( frT ~ ).,(3 grT  
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