(c) $)^{2}$ MA Available online through www.ijma.info ISSN 2229-5046

SUPER EDGE TRIMAGIC TOTAL LABELING OF GRAPHS
M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$
1Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakavilai-629153, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil-629003, Tamilnadu, India.

(Received on: 29-11-13; Revised \& Accepted on: 31-12-13)

Abstract

An edge magic total labeling of a (p, q) graph is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for each edge $u v \in E(G)$, the value of $f(u)+f(u v)+f(v)$ is a constant k. If there exists two constants k_{1} and k_{2} such that $f(u)+f(u v)+f(v)$ is either k_{1} or k_{2}, it is said to be an edge bimagic total labeling. An edge trimagic total labeling of a (p, q) graph is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for each edge $u v \in E(G)$, the value of $f(u)+f(u v)+f(v)$ is either k_{1} or k_{2} or k_{3}. In this paper, we prove that the corona graph $C_{n} \odot K_{2}$, double ladder $P_{n} \times P_{3}$, quadrilateral snake Q_{n} and alternate triangular snake $A\left(T S_{n}\right)$ are edge trimagic total and super edge trimagic total.

Keywords: Function, Bijection, Labeling, Magic, Trimagic.
AMS Subject Classification: $05 C 78$.

1. INTRODUCTION

We begin with simple, finite and undirected graph $G=(V, E)$. A graph labeling is an assignment of integers to elements of graph, the vertices or edges or both subject to certain conditions. The concept of graph labeling was introduced by Rosa in 1967. In 1970 Kotzig and Rosa[6] defined, magic labeling of graph G is a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow$ $\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ such that, for each edge $u v \in \mathrm{E}(\mathrm{G}), \mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{uv})+\mathrm{f}(\mathrm{v})$ is a magic constant. In 1996, Ringel and Llado called this labeling as edge magic. In 2001, Wallis introduced this as edge magic total labeling. In 2004, J. Baskar Babujee [1,2] introduced the edge bimagic labeling of graphs.

In 2013, C. Jayasekaran, M. Regees and C. Davidraj [3] introduced the edge trimagic total labeling of graphs. An edge trimagic total labeling of a (p, q) graph G is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for each edge uv $\in E$, the value of $f(u)+f(u v)+f(v)$ is equal to any of the distinct constant k_{1} or k_{2} or k_{3}. A graph G is said to be edge trimagic total if it admits an edge trimagic total labeling. An edge trimagic total labeling is called super edge trimagic total labeling if G has the additional property that the vertices are labeled with the smallest positive integers.

An alternate triangular snake $A\left(T S S_{n}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} alternatively to a new vertex v_{i}. That is every alternate edge of a path is replaced by C_{3}. If G is of order n, the Corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and n copies of H and joining the $i^{\text {th }}$ vertex of G with an edge to every vertex in the $i^{\text {th }}$ copy of H. A Quadrilateral snake Q_{n} is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i}, u_{i+1} to new vertices v_{i}, w_{i} respectively and joining v_{i} and w_{i}. That is, every edge of a path is replaced by a cycle C_{4}. A ladder L_{n} is a graph $P_{n} \times P_{2}$ with $V\left(L_{n}\right)=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} / 1 \leq i \leq n\right\}$. A double ladder L_{n} is a graph $P_{n} \times P_{3}$ with $V\left(L_{n}\right)=\left\{u_{i}, v_{i}, w_{i} / 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, w_{i} w_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, v_{i} w_{i} / 1 \leq i \leq\right.$ n\}.

For further references, we use dynamic survey of graph labeling by J. A. Gallian [5]. In [3], we introduced the concept edge trimagic and super edge trimagic total labeling and proved that, some family and classes of graphs are edge trimagic total and super edge trimagic total [3, 4, 7]. In this paper, we prove that the corona graph $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{2}$, double ladder $\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{3}$, quadrilateral snake Q_{n} and alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ are trimagic total and super edge trimagic total graphs.

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$ / Super Edge Trimagic Total Labeling Of Graphs/IJMA- 4(12), Dec.-2013.

2. SUPER EDGE TRIMAGIC LABELING OF $C_{n} \odot K_{2}, P_{n} x P_{3}, Q_{n}$ and $A\left(T_{n}\right)$.

In this section we prove that the corona graph $C_{n} \odot K_{2}$, double ladder $P_{n} \times P_{3}$, quadrilateral snake Q_{n} and alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ are edge trimagic total and super edge trimagic total. And give examples for super edge trimagic total labeling for each of the above graphs.

Theorem: 2.1 The graph $C_{n} \odot K_{2}$ has an edge trimagic total labeling for positive integer n.
Proof: Let $V=\left\{u_{i}, v_{i}, w_{i} / 1 \leq i \leq n\right\}$ be the vertex set and $E=\left\{u_{i} v_{i}, u_{i} W_{i}, v_{i} W_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\}$ be the edge set of the graph $C_{n} \odot K_{2}$. Then $C_{n} \odot K_{2}$ has $3 n$ vertices and $4 n$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 7 \mathrm{n}\}$ such that
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ;$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=7 \mathrm{n}-2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=7 \mathrm{n}-2 \mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=5 \mathrm{n}-2 \mathrm{i}+2,1 \leq \mathrm{i} \leq \mathrm{n} ;$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=5 \mathrm{n}-2 \mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}$ and $\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)=7 \mathrm{n}$.
Now we prove the above labeling is an edge trimagic total.
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i}+7 \mathrm{n}-2 \mathrm{i}+\mathrm{i}+1=7 \mathrm{n}+1=\lambda_{1}$ (say).
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+7 \mathrm{n}-2 \mathrm{i}+1+\mathrm{n}+\mathrm{i}=8 \mathrm{n}+1=\lambda_{2}($ say $)$.
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{i}+5 \mathrm{n}-2 \mathrm{i}+2+2 \mathrm{n}+\mathrm{i}=7 \mathrm{n}+2=\lambda_{3}$ (say).
For the edges $v_{i} w_{i}, 1 \leq i \leq n ;$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+5 \mathrm{n}-2 \mathrm{i}+1+2 \mathrm{n}+\mathrm{i}=8 \mathrm{n}+1=\lambda_{2}$.
For the edge $\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}, \mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}\right)+\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{n}+7 \mathrm{n}+1=8 \mathrm{n}+1=\lambda_{2}$.
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=7 n+1, \lambda_{2}=8 n+1$ and $\lambda_{3}=$ $7 n+2$.

Therefore, the graph $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{2}$ admits an edge trimagic total labeling for all positive integer n .
Theorem: 2.2 The graph $C_{n} \odot K_{2}$ has a super edge trimagic total labeling.
Proof: We proved that the graph $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{2}$ admits an edge trimagic total labeling. The labeling given in the proof of Theorem 2.1, the vertices get labels $1,2, \ldots, 3 n$. Since the graph $C_{n} \odot K_{2}$ has $3 n$ vertices and the $3 n$ vertices have labels $1,2, \ldots, 3 n$, the graph $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{2}$ admits a super edge trimagic total labeling.

Example: 2.3 A super edge trimagic total labeling of the graph $\mathrm{C}_{6} \odot \mathrm{~K}_{2}$ is given in figure1.

Figure 1: $\mathrm{C}_{6} \odot \mathrm{~K}_{2}$ with $\lambda_{1}=43, \lambda_{2}=49$ and $\lambda_{3}=44$.

Theorem: 2.4 The double ladder $P_{n} \times P_{3}$ admits an edge trimagic total labeling for odd n.
Proof: Let $V=\left\{u_{i}, v_{i}, w_{i} / 1 \leq i \leq n\right\}$ be the vertex set and $E=\left\{u_{i} v_{i}, v_{i} W_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, W_{i} W_{i+1} / 1 \leq i \leq n-1\right\}$ be the edge set of $P_{n} \times P_{3}$. Then the doble ladder $P_{n} \times P_{3}$ has $3 n$ vertices and $5 n-3$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 8 \mathrm{n}-3\}$ such that
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is odd } \\ \frac{\mathrm{n}+\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is even }\end{array}\right.$
$f\left(v_{i}\right)=\left\{\begin{array}{c}2 n+\frac{n+i}{2}, 1 \leq i \leq n \text { and } i \text { is odd } \\ 2 n+\frac{i}{2}, 1 \leq i \leq n \text { and } i \text { is even }\end{array}\right.$
$f\left(w_{i}\right)=\left\{\begin{array}{l}n+\frac{i+1}{2}, 1 \leq i \leq n \text { and } i \text { is odd } \\ n+\frac{n+i+1}{2}, 1 \leq i \leq n \text { and } i \text { is even }\end{array}\right.$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=6 \mathrm{n}-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=5 \mathrm{n}-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=8 \mathrm{n}-\mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}-1 ;$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=4 \mathrm{n}-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$ and $\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}\right)=7 \mathrm{n}-\mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Now we prove the above labeling is an edge trimagic total.
Consider the edges $u_{i} v_{i}, 1 \leq i \leq n ;$
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{i}+1}{2}+6 \mathrm{n}-\mathrm{i}+2 \mathrm{n}+\frac{\mathrm{n}+\mathrm{i}}{2}=\frac{17 \mathrm{n}+1}{2}=\lambda_{1}($ say $)$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\frac{\mathrm{n}+\mathrm{i}+1}{2}+6 \mathrm{n}-\mathrm{i}+2 \mathrm{n}+\frac{\mathrm{i}}{2}=\frac{17 \mathrm{n}+1}{2}=\lambda_{1}$.
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$;
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{n}+\frac{\mathrm{n}+\mathrm{i}}{2}+5 \mathrm{n}-\mathrm{i}+\mathrm{n}+\frac{\mathrm{i}+1}{2}=\frac{17 \mathrm{n}+1}{2}=\lambda_{1}$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{n}+\frac{\mathrm{i}}{2}+5 \mathrm{n}-\mathrm{i}+\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+1}{2}=\frac{17 \mathrm{n}+1}{2}=\lambda_{1}$.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+8 \mathrm{n}-\mathrm{i}-2+\frac{\mathrm{n}+\mathrm{i}+1+1}{2}=\frac{17 \mathrm{n}-1}{2}=\lambda_{2}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{n}+\mathrm{i}+1}{2}+8 \mathrm{n}-\mathrm{i}-2+\frac{\mathrm{i}+1+1}{2}=\frac{17 \mathrm{n}-1}{2}=\lambda_{2}$.
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\frac{\mathrm{n}+\mathrm{i}}{2}+4 \mathrm{n}-\mathrm{i}+2 \mathrm{n}+\frac{\mathrm{i}+1}{2}=\frac{17 \mathrm{n}+1}{2}=\lambda_{1}$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\frac{\mathrm{i}}{2}+4 \mathrm{n}-\mathrm{i}+2 \mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+1}{2}=\frac{17 \mathrm{n}+1}{2}=\lambda_{1}$.
Consider the edges $\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}+1}\right)=\mathrm{n}+\frac{\mathrm{i}+1}{2}+7 \mathrm{n}-\mathrm{i}-1+\mathrm{n}+\frac{\mathrm{n}+1+\mathrm{i}+1}{2}=\frac{19 \mathrm{n}+1}{2}=\lambda_{3}($ say $)$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}+1}\right)=\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+1}{2}+7 \mathrm{n}-\mathrm{i}-1+\mathrm{n}+\frac{\mathrm{i}+1+1}{2}=\frac{19 \mathrm{n}+1}{2}=\lambda_{3}$.

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the constant
$\lambda_{1}=\frac{17 \mathrm{n}+1}{2}, \lambda_{2}=\frac{17 \mathrm{n}-1}{2}$ and $\lambda_{3}=\frac{19 \mathrm{n}+1}{2}$.
Therefore, the double ladder $\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{3}$ admits an edge trimagic total labeling for odd n .
Theorem: 2.5 The double ladder $\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{3}$ has a super edge trimagic total labeling for odd n .
Proof: We proved that the double ladder $\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{3}$ admits an edge trimagic total labeling. The labeling given in the proof of Theorem 2.4, the vertices get labels 1, 2, ... 3n. Since the double ladder $P_{n} \times P_{3}$ has $3 n$ vertices and the $3 n$ vertices have labels $1,2, \ldots, 3 n$, the double ladder $\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{3}$ admits a super edge trimagic total labeling.

Example: 2.6 A super edge trimagic total labeling of the double ladder $\mathrm{P}_{7} \times \mathrm{P}_{3}$ is given in figure 2 .

Figure 2: $\mathrm{P}_{7} \times \mathrm{P}_{3}$ with $\lambda_{1}=60, \lambda_{2}=59$ and $\lambda_{3}=67$.
Theorem: 2.7 The Quadrilateral Snake Q_{n} admits an edge trimagic total labeling.
Proof: Let $V=\left\{u_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{i}, W_{i} / 1 \leq i \leq n-1\right\}$ be the vertex set and $E=\left\{u_{i} v_{i}, v_{i} W_{i}, u_{i} u_{i+1}, u_{i+1} W_{i} / 1 \leq i \leq n-1\right\}$ be the edge set of the Quadrilateral Snake Q_{n}. Then Q_{n} has $3 n-2$ vertices and $4 n-4$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 7 \mathrm{n}-6\}$ such that $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 ; \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}-1,1 \leq \mathrm{i}$ $\leq n-1 ; f\left(u_{i} u_{i+1}\right)=7 n-2 i-4,1 \leq i \leq n-1 ; f\left(u_{i} v_{i}\right)=7 n-2 i-5,1 \leq i \leq n-1 ; f\left(u_{i+1} w_{i}\right)=5 n-2 i-3,1 \leq i \leq n-1$ and $f\left(v_{i} w_{i}\right)=5 n-2 i-$ $2,1 \leq \mathrm{i} \leq \mathrm{n}-1$.

Now we prove the above labeling is an edge trimagic total.
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i}+7 \mathrm{n}-2 \mathrm{i}-4+\mathrm{i}+1=7 \mathrm{n}-3=\lambda_{1}($ say $)$.
For the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+7 \mathrm{n}-2 \mathrm{i}-5+\mathrm{n}+\mathrm{i}=8 \mathrm{n}-5=\lambda_{2}($ say $)$.
For the edges $\mathrm{u}_{\mathrm{i}+1} \mathrm{w}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{i}+1+5 \mathrm{n}-2 \mathrm{i}-3+2 \mathrm{n}+\mathrm{i}-1=7 \mathrm{n}-3=\lambda_{1}$.
For the edges $\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+5 \mathrm{n}-2 \mathrm{i}-2+2 \mathrm{n}+\mathrm{i}-1=8 \mathrm{n}-3=\lambda_{3}$ (say).
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the constants $\lambda_{1}=7 n-3, \lambda_{2}=8 n-5$ and $\lambda_{3}=8 n-3$.
Therefore, the Quadrilateral snake Q_{n} admits an edge trimagic total labeling.
Theorem: 2.8 The Quadrilateral snake Q_{n} admits a super edge trimagic total labeling.
Proof: We proved that the Quadrilateral snake Q_{n} has an edge trimagic total labeling. The labeling given in the proof of Theorem 2.7, the vertices get labels $1,2, \ldots, 3 n-2$. Since the Quadrilateral snake Q_{n} has 3nvertices and the $3 n-2$ vertices have labels $1,2, \ldots, 3 n-2$ for all integer n, the Quadrilateral snake Q_{n} admits a super edge trimagic total labeling.

Example: 2.9 A super edge trimagic total labeling of Quadrilateral snake Q_{6} is given in figure 3.

Figure 3: Q_{6} with $\lambda_{1}=39, \lambda_{2}=43$ and $\lambda_{3}=45$.
Theorem: 2.10 The Alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits an edge trimagic total labeling for even n .
Proof: We consider the following two cases.
Case: 1 Triangle starts from u_{1}.
Let $V=\left\{u_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{j} / 1 \leq j \leq \frac{n}{2}\right\}$ be the vertex set and $E=\left\{v_{j} u_{2 j-1}, v_{j} u_{2 j} / 1 \leq j \leq \frac{n}{2}\right\} \cup\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\}$ be the edge set of the alternate triangular snake $A\left(T S_{n}\right)$. Since the triangle starts from u_{1}, the alternate triangular snake $A\left(T S_{n}\right)$ has $n+\frac{n}{2}$ vertices and $2 n-1$ edges. Define a bijection $f: V \cup E \rightarrow\left\{1,2, \ldots, 3 n+\frac{n}{2}-1\right\}$ such that
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is odd } \\ \frac{\mathrm{n}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n} \text { and } \mathrm{i} \text { is even } ;\end{array}\right.$
$f\left(v_{j}\right)=n+j, 1 \leq j \leq \frac{n}{2} ; f\left(u_{i} u_{i+1}\right)=3 n+\frac{n}{2}-i, 1 \leq i \leq n-1 ; f\left(v_{j} u_{2 j-1}\right)=2 n+\frac{n}{2}-2 j+1,1 \leq j \leq \frac{n}{2} ;$
$f\left(v_{j} u_{2 j}\right)=2 n+\frac{n}{2}-2 j+2,1 \leq j \leq \frac{n}{2}$.
Now we prove the above labeling is an edge trimagic total.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
For odd i, $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{n}}{2}-\mathrm{i}+\frac{\mathrm{n}+\mathrm{i}+1}{2}=4 \mathrm{n}+1=\lambda_{1}($ say $)$.
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{n}+\mathrm{i}}{2}+3 \mathrm{n}+\frac{\mathrm{n}}{2}-\mathrm{i}+\frac{\mathrm{i}+1+1}{2}=4 \mathrm{n}+1=\lambda_{1}$.
For the edges $\mathrm{u}_{2 \mathrm{j}-1} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}}{2}$;
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}-1}\right)+\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}-1} \mathrm{v}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=\frac{1+2 \mathrm{j}-1}{2}+2 \mathrm{n}+\frac{\mathrm{n}}{2}-2 \mathrm{j}+1+\mathrm{n}+\mathrm{j}=\frac{7 \mathrm{n}+2}{2}=\lambda_{2}$ (say).
For the edges $\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}}{2}$;
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=\frac{\mathrm{n}+2 \mathrm{j}}{2}+2 \mathrm{n}+\frac{\mathrm{n}}{2}-2 \mathrm{j}+2+\mathrm{n}+\mathrm{j}=4 \mathrm{n}+2=\lambda_{3}$ (say).
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=4 n+1, \lambda_{2}=\frac{7 \mathrm{n}+2}{2}$ and $\lambda_{3}=$ $4 n+2$. Therefore, the alternate triangular snake graph $A\left(T S_{n}\right)$ admits an edge trimagic total labeling when the triangle starts from u_{1}.

Case: 2 Triangle starts from u_{2}.
Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \frac{\mathrm{n}}{2}-1\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}, \mathrm{u}_{2 \mathrm{j}+1} \mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \frac{\mathrm{n}}{2}-1\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$ be the edge set of the alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$. Since the triangle starts from u_{2}, the alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ has $\mathrm{n}+\frac{\mathrm{n}}{2}-1$ vertices and $2 \mathrm{n}-3$ edges. Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\left\{1,2, \ldots, 3 \mathrm{n}+\frac{\mathrm{n}}{2}-4\right\}$ such that
$f\left(u_{j}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, 1 \leq i \leq n \text { and } i \text { is odd } \\ \frac{n+i}{2}, 1 \leq i \leq n \text { and } i \text { is even ; }\end{array}\right.$
$f\left(v_{j}\right)=n+j, 1 \leq j \leq \frac{n}{2}-1 ; f\left(u_{i} u_{i+1}\right)=3 n+\frac{n}{2}-i-3,1 \leq i \leq n-1 ;$
$f\left(u_{2 j+1} v_{j}\right)=2 n+\frac{n}{2}-2 j-2,1 \leq j \leq \frac{n}{2}-1 ; f\left(u_{2 j} v_{j}\right)=2 n+\frac{n}{2}-2 j-1,1 \leq j \leq \frac{n}{2}-1$.
Now we prove the above labeling is an edge trimagic total.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{n}}{2}-\mathrm{i}-3+\frac{\mathrm{n}+\mathrm{i}+1}{2}=4 \mathrm{n}-2=\lambda_{1}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{n}+\mathrm{i}}{2}+3 \mathrm{n}+\frac{\mathrm{n}}{2}-\mathrm{i}-3+\frac{\mathrm{i}+1+1}{2}=4 \mathrm{n}-2=\lambda_{1}$.
For the edges $\mathrm{u}_{2 \mathrm{j}+1} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}}{2}-1$;
$f\left(u_{2 j+1}\right)+f\left(u_{2 j+1} v_{j}\right)+f\left(v_{j}\right)=\frac{1+2 j+1}{2}+2 n+\frac{n}{2}-2 j-2+n+j=\frac{7 n-2}{2}=\lambda_{2}$ (say).
For the edges $\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}}{2}-1$;
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}}\right)+\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=\frac{\mathrm{n}+2 \mathrm{j}}{2}+2 \mathrm{n}+\frac{\mathrm{n}}{2}-2 \mathrm{j}-1+\mathrm{n}+\mathrm{j}=4 \mathrm{n}-1=\lambda_{3}$ (say).
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=4 n-2, \lambda_{2}=\frac{7 \mathrm{n}-2}{2}$ and $\lambda_{3}=4 \mathrm{n}-1$. Therefore, the alternate triangular snake graph $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits an edge trimagic total labeling when the triangle starts from u_{2}.

Hence the theorem follows from case 1 and case 2.
Theorem: 2.11 The Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits a super edge trimagic total labeling for even n .
Proof: We proved that the Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ has an edge trimagic total labeling. The labeling given in the proof of Theorem 2.10, the vertices get labels $1,2, \ldots, n+\frac{n}{2}$. Since the Alternate Triangular Snake $A\left(T_{n}\right)$ has $n+\frac{n}{2}$ vertices and the vertices have labels $1,2, \ldots, n+\frac{n}{2}$ for even integer n, the Alternate Triangular Snake $A\left(T_{n}\right)$ admits a super edge trimagic total labeling for even n.

Example: 2.12 A super edge trimagic total labeling of the Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{10}\right)$ of the triangle starts from u_{1} and triangle starts from u_{2} are given in figure 4 and figure 5 respectively.

Figure 4: $\mathrm{A}\left(\mathrm{TS}_{10}\right)$ with $\lambda_{1}=41, \lambda_{2}=36$ and $\lambda_{3}=42$.

Figure 5: $\mathrm{A}\left(\mathrm{TS}_{10}\right)$ with $\lambda_{1}=38, \lambda_{2}=34$ and $\lambda_{3}=39$.

Theorem: 2.13 The Alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits an edge trimagic total labeling for odd n .
Proof: We consider the following two cases.
Case: 1 Triangle starts from u_{1}.
Let $V=\left\{\mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{2 \mathrm{j}-1} \mathrm{v}_{\mathrm{j}}, \mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$ be the edge set of the alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{n}\right)$. Since the triangle starts from u_{1}, the alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ has $\mathrm{n}+\frac{\mathrm{n}-1}{2}$ vertices and $2 \mathrm{n}-2$ edges.

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\left\{1,2, \ldots, 3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-2\right\}$ such that
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, 1 \leq i \leq n \text { and } i \text { is odd } \\ \frac{n+i+1}{2}, 1 \leq i \leq n \text { and } i \text { is even } ;\end{array}\right.$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{n}+\mathrm{j}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-\mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1 ;$
$f\left(u_{2 j-1} v_{j}\right)=2 n+\frac{n-1}{2}-2 j, 1 \leq j \leq \frac{n-1}{2} ; f\left(u_{2 j} v_{j}\right)=2 n+\frac{n-1}{2}-2 j+1,1 \leq j \leq \frac{n-1}{2}$.
Now we prove the above labeling is an edge trimagic total.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
For odd i, $\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-\mathrm{j}-1+\frac{\mathrm{n}+\mathrm{i}+1+1}{2}=4 \mathrm{n}=\lambda_{1}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{n}+\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-\mathrm{i}-1+\frac{\mathrm{i}+1+1}{2}=4 \mathrm{n}=\lambda_{1}$.
For the edges $\mathrm{u}_{2 \mathrm{j}-1} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}$;
$f\left(u_{2 j-1}\right)+f\left(u_{2 j-1} v_{j}\right)+f\left(v_{j}\right)=\frac{2 j-1+1}{2}+2 n+\frac{n-1}{2}-2 j+n+j=\frac{7 n-1}{2}=\lambda_{2}($ say $)$.
For the edges $\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}$;
$f\left(u_{2 j}\right)+f\left(u_{2 j} v_{j}\right)+f\left(v_{j}\right)=\frac{n+2 j+1}{2}+2 n+\frac{n-1}{2}-2 j+1+n+j=4 n+1=\lambda_{3}($ say $)$.

Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=4 n, \lambda_{2}=\frac{7 \mathrm{n}-1}{2}$ and $\lambda_{3}=4 \mathrm{n}+1$. Therefore, the alternate triangular snake graph $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits an edge trimagic total labeling when the triangle starts from u_{1}.

Case: 2 Triangle starts from u_{2}.

Let $\mathrm{V}=\left\{\mathrm{u}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}\right\}$ be the vertex set and $\mathrm{E}=\left\{\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}, \mathrm{u}_{2 \mathrm{j}+1} \mathrm{v}_{\mathrm{j}} / 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$ be the edge set of the alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{n}\right)$. Since the triangle starts from u_{2}, the alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ has $\mathrm{n}+\frac{\mathrm{n}-1}{2}$ vertices and $2 \mathrm{n}-2$ edges. Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\left\{1,2, \ldots, 3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-2\right\}$ such that
$f\left(u_{i}\right)=\left\{\begin{array}{l}\frac{i+1}{2}, 1 \leq i \leq n \text { and } i \text { is odd } \\ \frac{n+i+1}{2}, 1 \leq i \leq n \text { and } i \text { is even ; }\end{array}\right.$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=\mathrm{n}+\mathrm{j}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)=3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-\mathrm{j}-1,1 \leq \mathrm{j} \leq \mathrm{n}-1 ;$
$f\left(u_{2 j} v_{j}\right)=2 n+\frac{n-1}{2}-2 j+1,1 \leq j \leq \frac{n-1}{2} ; f\left(u_{2 j+1} v_{j}\right)=2 n+\frac{n-1}{2}-2 j, 1 \leq j \leq \frac{n-1}{2} ;$

Now we prove the above labeling is an edge trimagic total.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$;
For odd $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-\mathrm{i}-1+\frac{\mathrm{n}+\mathrm{i}+1+1}{2}=4 \mathrm{n}=\lambda_{1}$ (say).
For even $\mathrm{i}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)=\frac{\mathrm{n}+\mathrm{i}+1}{2}+3 \mathrm{n}+\frac{\mathrm{n}-1}{2}-\mathrm{i}-1+\frac{\mathrm{i}+1+1}{2}=4 \mathrm{n}=\lambda_{1}$.
For the edges $\mathrm{u}_{2 \mathrm{j}+1} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}$;
$\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}+1}\right)+\mathrm{f}\left(\mathrm{u}_{2 \mathrm{j}+1} \mathrm{v}_{\mathrm{j}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)=\frac{2 \mathrm{j}+1+1}{2}+2 \mathrm{n}+\frac{\mathrm{n}-1}{2}-2 \mathrm{j}+\mathrm{n}+\mathrm{j}=\frac{7 \mathrm{n}+1}{2}=\lambda_{2}($ say $)$.
For the edges $\mathrm{u}_{2 \mathrm{j}} \mathrm{v}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \frac{\mathrm{n}-1}{2}$;
$f\left(u_{2 j}\right)+f\left(u_{2 j} v_{j}\right)+f\left(v_{j}\right)=\frac{n+2 j+1}{2}+2 n+\frac{n-1}{2}-2 j+1+n+j=4 n+1=\lambda_{3}$ (say).
Hence for each edge $u v \in E, f(u)+f(u v)+f(v)$ yields any one of the trimagic constants $\lambda_{1}=4 n, \lambda_{2}=\frac{7 \mathrm{n}+1}{2}$ and $\lambda_{3}=4 \mathrm{n}+1$. Therefore, the alternate triangular snake graph $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits an edge trimagic total labeling when the triangle starts from u_{2}.

Hence the theorem follows from case 1 and case 2.
Theorem: 2.14 The Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits a super edge trimagic total labeling for odd n .
Proof: We proved that the Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ has an edge trimagic total labeling. The labeling given in the proof of Theorem 2.13, the vertices get labels $1,2, \ldots, n+\frac{\mathrm{n}-1}{2}$. Since the Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ has $\mathrm{n}+\frac{\mathrm{n}-1}{2}$ vertices and the vertices have labels $1,2, \ldots, \mathrm{n}+\frac{\mathrm{n}-1}{2}$ for odd integer n , the Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ admits a super edge trimagic total labeling for odd n.

Example: 2.15 A super edge trimagic total labeling of the Alternate Triangular Snake $\mathrm{A}\left(\mathrm{TS}_{9}\right)$ of the triangle starts from u_{1} and triangle starts from u_{2} are given in figure 6 and figure 7, respectively.

Figure 6: $\mathrm{A}\left(\mathrm{TS}_{9}\right)$ with $\lambda_{1}=36, \lambda_{2}=31$ and $\lambda_{3}=37$.

4
Figure 7: $\mathrm{A}\left(\mathrm{TS}_{9}\right)$ with $\lambda_{1}=36, \lambda_{2}=32$ and $\lambda_{3}=37$.

CONCLUSION

In this paper we proved that the corona graph $C_{n} \odot K_{2}$, double ladder $P_{n} x P_{3}$, quadrilateral snake Q_{n}, alternate triangular snake $\mathrm{A}\left(\mathrm{TS}_{\mathrm{n}}\right)$ are edge trimagic total and super edge trimagic total graphs. There may be many interesting trimagic graphs can be constructed in future.

M. Regees ${ }^{1}$ and C. Jayasekaran ${ }^{2 *}$ / Super Edge Trimagic Total Labeling Of Graphs/IJMA- 4(12), Dec.-2013.

REFERENCES

[1] J. Baskar Babujee, "On Edge Bimagic Labeling", Journal of Combinatorics Information \& System Sciences, Vol.28-29, Nos. 1-4, pages. 239-244 (2004).
[2] J. Baskar Babujee, "Bimagic Labeling on Path Graphs" Journal of the Mathematics Education, Vol. 38 (1) PP. 1216, 2004.
[3] C. Jayasekaran, M. Regees and C. Davidraj, "Edge Trimagic Labeling of Some Graphs", Accepted for publication, International Journal for Combinatorial Graph theory and applications (2013).
[4] C. Jayasekaran and M. Regees, "Edge Trimagic Total Labeling of Graphs", International Journal of Mathematical Sciences \& Applications, Vol. 3, No.1, pp. 295-320, 2013.
[5] Joseph A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics, 19 (2012), \#DS6.
[6] A. Kotzig and A. Rosa, "Magic Valuations of finite graphs", Canad. Math. Bull., Vol. 13, pages. 415-416 (1970).
[7] M. Regees and C. Jayasekaran, "More Results on Edge Trimagic Labeling of Graphs", Accepted for publication in the, International Journal of Mathematical Archive- 4(11), 2013, 247-255.

Source of support: Nil, Conflict of interest: None Declared

