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ABSTRACT 
Necessary and sufficient conditions are determined for a sum of polynomial con-EP matrices to be polynomial con-EP 
and it is shown that the sum and parallel sum of parallel summable polynomial con-EP matrices are polynomial con-
EP. 
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INTRODUCTION 
 
In this paper we shall study the question of when of polynomial conjugate EP (polynomial con-EP) matrices is 
polynomial con-EP. We give necessary and sufficient conditions for sum of polynomial con-EP matrices to be 
polynomial con-EP. We also show that sum and parallel sum of parallel summable (p.s) [7], polynomial con-EP 
matrices are polynomial con-EP.  The results of this paper for polynomial con-EP matrices are analogous to that of EP 
matrices, studied in [4]. 

 
Throughout we shall deal with n n× complex polynomial matrices. An n-square matrix A(λ)   which is a polynomial 

in the scalar variable λ from a field C represented by m m-1
m m-1 1 0A(λ) = A λ + A λ + ...... + A λ + A  where the leading 

coefficient mA 0≠ , ,
iA s  are square matrices in n nv ×  is defined a polynomial matrix.  Let A , TA , *A  and A−  

denote the conjugate, transpose, conjugate transpose and generalized inverse (A A− A=A) of A respectively.  †A  
denotes the Moore-penrose inverse satisfying the following four equations: AXA=A, XAX=X, *(AX) =AX and 

*(XA)  =XA of [7].  Any matrix A is called polynomial con-EP if R(A)=R(A T ) or N(A)=N(A T )  or † †AA A A=  
and is called polynomial con-EP, if A is polynomial con-EP and rk(A)=r, where N(A), R(A) and rk(A) denote the null 
space, range space and rank of A respectively[5].  Any two matrices A and B are said to be p.s. if ( ) BA )BN N(⊆+  and 

( )* *A BN N(B)⊆+  or equivalently ( ) AA )BN N(⊆+ and ( )* *A BN N(A)⊆+  .  If A and B are p.s. then parallel sum 

of A and B denoted by A:B and defined as A : B = ( )A A B B−+  of [7],  if A and B are p.s. then the following hold 
[7] 
(1) A : B B: A=  

(2) A *  and B *  are p.s. and (A:B) * =A * : B *  
(3) If U is nonsingular them UA and UB are p.s. and UA:UB=U(A:B) 
(4) R(A:B)=R(A) ∩R(B) 
(5) (A: B):E= A:(B:E) if all the parallel sum operations involved are defined. 
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Let M= A B
C D
 
 
 

 be an n n×  matrix.  Then the schur complement of A in M, denoted by M / A  is defined as D-CA

− B [3]. For further properties of schur complements one may refer [1] and [2].  
 
Theorem: 1 Let jA (i=1 to n) be polynomial con-EP matrices. Then n

j
i 1

A A
=

=∑  is polynomial con-EP if any one of the 

following equivalent conditions hold. 
(i) N(A) ⊆ N( iA ) for each i. 

(ii) rk 

1

2

3

n

A
A
A
.
.

A

 
 
 
 
 
 
 
 
   

=  rk(A). 

Proof: Equivalence of (i) and (ii) is already proved in [4]   Since each iA  is polynomial con-EP T
i iN(A ) N(A )=  for 

each i. iN(A) N(A )⊆ for each i implies ( ) T T
i i iN(A ) N(A )N A N(A )⊆∩ ∩ ∩= =   and ( ) Trk A rk(A )= . Hence 

TN(A) = N(A ) .  Thus A is polynomial con-EP.  Hence the Theorem. 
 
Remark 1: In the above Theorem if A is nonsingular then the conditions hold automatically and A is polynomial con-

EP.  But, it fails if we relax the condition on the ,
iA s. 

 

Example 1: A=
2λ λ
λ i

 
 
 

 is polynomial con-EP, B= 
3 2

2

λ i
i

 λ +
 λ 

 is not polynomial con-EP then A+B is not 

polynomial con-EP.  However, ( ) ( )N A B N A+ ⊆  
and      ( ) ( )N A B   N B+ ⊆  ; rk

A
B
 
 
 

= rk(A+B). 

 
Remark 2: If rank is additive, that is rk(A) =∑ rk i(A )  then by Theorem 11 of [3], i jR(A ) R(A ) {0}, i j∩ = ≠ , 

which implies ( ) iN A )N(A⊆  for each i, hence A is polynomial con-EP.  That the conditions given in Theorem 1 are 
weaker than the condition of rank additivity can be seen by the following example. 
 

Example 2: Let A=
2λ λ
λ i

 
 
 

 and B=
3 2

2

λ
i

 λ
 λ 

 A, B and A+B are polynomial con-EP 1  matrices.  Conditions (i) 

and (ii) of Theorem 1 hold. But rk(A+B)≠ rk(A)+rk(B). 
 
Theorem 2: Let iA (i=1 to n) be polynomial con-EP 1  matrices such that *

i j
i j

(A ) A 0
≠

=∑ .   Then A= iA∑  is 

polynomial con-EP. 
 
Proof: As in the proof of Theorem 2 in [6], Let *

i j
i j

(A ) A 0
≠

=∑  implies ( ) iN A )N(A⊆  for each i.  Since each 

iA  is polynomial con-EP, A is polynomial con-EP.  By theorem 1 hence the theorem 

Remark: 3

 

Theorem 2 fails if we relax the condition that ,
iA s  are polynomial con-EP.  For instance 
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2

2

0 0 0
A 0 i 0

i 0 0

 
 = λ 
 λ 

and 

2

2

2

0 i 0
B i 0 0

0 i 0

 λ
 = λ 
 λ 

 are not polynomial con-EP, then A+B is also not polynomial con-

EP.  However B * A+A * B=0. 
 
Remark: 4 The condition given in Theorem 2 implies those in Theorem 1, but not conversely.  This can be seen by the 
following. 
 

Example: 3 Let 
2 i

A
i

 λ
=  λ 

 and 
2λ λ

B
λ i

 
=  
 

. A and B are polynomial con-EP matrices.  N(A+B) ⊆ N(A) 

and N(B). 
 

But TA B+B T A = 
4 3 2

3 2

2λ + 2λi λ + λ (i +1) -1
λ + λ (i -1) -1 4λi
 
 
 

 ≠ 0. 

 
Remark: 5 We note that the conditions given in Theorem 1 and Theorem 2 are only sufficient for the sum of 
polynomial con-EP matrices to be polynomial con-EP.  But not necessary and this is illustrated in the following. 
 

Example: 4 Let A= 
2λ i
i 0

 
 − 

 and B= 
2λ λ
λ i

 
 
 

. A and B are con-EP 2 .  Neither the conditions in Theorem 1 nor in 

Theorem 2 hold.  However A+B is polynomial  con-EP. 
 

If A and B are polynomial con-EP matrices by Result 2.1 of  [5].  We get   A * =K1 A , and B * =K 2 B  , where K1  

and K 2  are nonsingular n n×  matrices. If K1 = K 2 , then A+B is polynomial con-EP.  If 1 2(K )K−  is nonsingular 
then the above conditions are also necessary for the sum of polynomial con-EP matrices to be polynomial con-EP.  This 
is given in the following Theorem. 
 

Theorem: 3 Let *A = 1K A and *B = 2K B  such that 1 2(K )K− is a nonsingular matrix. Then A+B is polynomial 

con-EP if and any only if ( ) ( )N A B   N B+ ⊆ . 
 
Proof: *A = 1K A and *B = 2K B by Result 2.1 of [5] A and B are polynomial con-EP matrices. Since 

( ) ( )N A B   N B+ ⊆  We can see that, ( ) ( )N A B   A .N+ ⊆  Hence by Theorem 1, A+B is polynomial con-EP. 
 

Conversely, let us assume that A+B is polynomial con-EP, then by Theorem1 of [5], *A + *B = *(A B)+ =G( A B+ ) 

for some n n× matrix G. Hence K 1 A + K 2 B =G (A B)+ .  This implies K A =H B , where K= 1K -G and H=G - 

2K . 
 

(K+H) A =H (A B)+  and (K+H) B =K (A B)+ . By hypothesis, K+H= 1K - 2K  is nonsingular.

N(A B) N(H (A B) N(K H)A N(A)+ ⊆ + = + = ,which implies N(A B) N(A)+ ⊆ . 
 
Similarly, N(A B) N(K(A B) N(K H)B N(B)+ ⊆ + = + = implies N(A B) N(B)+ ⊆ .  Thus A+B is polynomial 
con-EP implies, N(A B) N(A)+ ⊆  and N(B). Hence the Theorem. 
 
Remark 6: The condition ( 1K - 2K ) to be nonsingular is essential in Theorem 3.  This is illustrated in the following. 
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Example 5: 
2

2

0
A

0 i
 λ

=  λ 
 and B= 

iλ 0
0 0

 
 
 

 are both symmetric, hence con-EP. Here 1K = 2K  and 

( )2

2

i 0
A B

0 i

 λ + λ
+ =  

λ  
 is polynomial con-EP.  But N(A B) N(A)+ ⊆  or N(B).  Thus Theorem 3 fails. 

 
Lemma: 1 Let A and B be polynomial con-EP matrices.  Then A and B are p.s. if and only if N(A B) N(A)+ ⊆ . 
 
Proof: If A and B are p.s. then N(A B) N(A)+ ⊆  follows from definition.   
 
Conversely, if N(A B) N(A)+ ⊆  then N(A B) N(B)+ ⊆ . Since A and B are polynomial con-EP matrices by 
Theorem 1, A+B is polynomial con-EP.   
 
Hence T T TN(A B) N(A B) N(A) N(B) N(A ) N(B )+ = + = ∩ = ∩  which implies, T T TN(A B) N(A ) N(B )+ = ∩  
 

Therefore, ( ) ( )* *N A B   AN⊆+  and ( ) ( )* *N A B   BN⊆+ . By hypothesis N(A B) N(A)+ ⊆ .  Hence A and 
B are p.s. 
 
In the following Theorem we show that sum and parallel sum of p.s. polynomial con-EP matrices is polynomial con-
EP. 
 
Theorem: 4 If A and B are p.s. polynomial con-EP matrices then A: B and A+B are polynomial con-EP. 
 
Proof: Since A and B are p.s. polynomial con-EP matrices, by Lemma 1, N(A B) N(A)+ ⊆  and 
N(A B) N(B)+ ⊆ .  Now, the fact that (A+B) is polynomial    con-EP follows from Theorem 1. 
 
Now,     * * *R(A : B) R(A : B )=    (By (2)) 

    * *R(A ) R(B )= ∩    (By (4)) 

     R(A) R(B)= ∩                   (A and B are polynomial con-EP) 

    R(A : B)=     (By (4)) 

    = R(A : B)  
 
Which implies (A : B)  is polynomial con-EP and hence A: B is polynomial con-EP.  Thus A: B is polynomial con-EP 
whenever A and B are polynomial con-EP.  Hence the Theorem. 
 
Theorem: 5 Let A be polynomial con- EP

1r
 and B be polynomial con- EP

2r  matrices of order n such that N(A B) N(B).+ ⊆   

Then there exists a 2n×2n polynomial con- EPr  matrix M such that the schur complement of C in M is polynomial 

con-EP, where r= 1r + 2r  and C=A+B.   
 
Proof: Since A is polynomial con- EP

1r
 and B is polynomial con- EP

2r , by Result 2.1 of [5] there exist unitary 
matrices U and V of order n such that 

TA U DU= , and B= TV EV, where  

D=  
H 0
0 0
 
 
 

, H is 1 1r r×  nonsingular and  

E=
K 0
0 0

 
 
 

, H is 2 2r r×  nonsingular.  

Let us define P =
V 0
U I
 
 
 

, P is nonsingular. 
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Now,    T E 0
P P

0 D
 
 
 

=
T TV U

0 I
 
 
 

E 0
0 D
 
 
 

V 0
U I
 
 
 

 

                          =
T T TV EV U DU U D

DU D
 +
 
 

 

             =
TA B U D

DU D
 +
 
 

 

             =
*

*

C AU

UA UAU

 
 
  

 =   M. 

 
M is 2n×2n matrix and rk(M) = rk(E)+rk(D)= 1r + 2r = r. 
 

Let us define Q = n
†

n

T 0
UA A I
 
 
 

, Q is nonsingular. 

 

Since A is polynomial con-EP †AA = †A A  and by Result 2.2 of [5] *UAU  is polynomial con-EP. 
 

We can write M as, M= 
*

T B 0
Q Q

0 UAU
 
 
 

.  Since B and *UAU  are polynomial con-EP, Q is nonsingular, M is 

polynomial con-EP.  Since M is of rank r, M is polynomial   con- EPr .  Thus we have proved the existence of the 

polynomial con- EPr  matrix M.  Now C=A+B is polynomial con-EP follows from Theorem 1. Since 

N(C) N(A) N(UA)⊆ =  and * * * *N(C ) N(A ) N(AU )⊆ = .  By the Lemma in [7], A AC C CC A− −= =  

and  *(UA)C (AU )−  is invariant for all choice of C− .  The schur complement of †C  in M is, 
 

        
* *M / C = UAU - UA C  AU−

 
                                                 = * * *UA U U(A B) (A U ) UBC A UC− −− + +                                                                                                                                                                                                   

                                                 * * *UA U UCC A U UBC A U− −= − +
 

                                                 
* * *UA U UA U UBC A U= − +   

                                                 =
*UBC A U−  

                                                 = *U(A : B) U  
 
Since A and B are polynomial con-EP, by Theorem 4, A:B is polynomial con-EP.  By Result 2.2 of [5],  

M/C = *U(A : B) U = P(A:B) TP , where P= U  is unitary, is also polynomial con-EP.  Hence the Theorem. 
 
Remark: 7 In a special case if A and B are polynomial con-EP matrices such that A+B= nI  then AB= A:B =B:A =BA 

is polynomial con-EP. However this fails if we relax the conditions on A and B. For instance, A =
3

3

λ 0
0λ

 
 
 

 is 

olynomial con-
2EP  and B= 0 0

iλ 1
 
 
 

 is not polynomial con-EP.  Here AB=BA is not polynomial con-EP, however 

A+B= 2I . 
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