International Journal of Mathematical Archive-4(12), 2013, 230-234

Fuzzy Soft ideals of K-algebras

*C. Parameswari and *N. Meenakumari

*Department Of Mathematics, A. P. C. Mahalaxmi College for Women, Thoothukudi-628 002, India.

(Received on: 24-11-13; Revised & Accepted on: 29-12-13)

ABSTRACT

In this paper, we introduce the concept of fuzzy soft ideals of K-algebras and investigate some of their properties. We discuss about fuzzy soft inverse images of fuzzy soft ideals. Also we introduce the notion of $(\varepsilon, \varepsilon \lor q)$ -fuzzy soft ideals of K – algebra and obtain it's characterization.

Keywords: K-algebras, fuzzy soft ideals of *K*-algebras, $(\varepsilon, \varepsilon \lor q)$ - fuzzy soft ideals.

1. INTRODUCTION

The notion of a K-algebra (G, \cdot, \bigcirc, e) was first introduced by Dar & Akram[3] in 2003. A K-algebra is an algebra built on a group (G, ., e) by adjoining an induced binary operation \bigcirc on G which is attached to an abstract K-algebra (G, \cdot, \bigcirc, e) . This system is in general non commutative and non associative with a right identity e if (G, \cdot, e) is non commutative. Fuzzy sets and soft sets are two different computing models for representing uncertainty & vagueness. In this paper we apply these models in combination to study uncertainty & vagueness in fuzzy soft ideals of K-algebras.

2. PRELIMINARIES

In this section, we recall some basic concepts that are necessary for subsequent discussion.

Definition: 2.1 Let (G, \cdot, e) be a group in which each non identity element is not of order 2. Then a K-algebra is a structure $\mathcal{K} = (G, \cdot, \odot, e)$ on a group G in which induced binary operation $\odot: G \times G \to G$ is defined by $\odot(x, y) = x y^{-1}$ and satisfies the following axioms $(K1) (x \odot y) \odot (x \odot z) = (x \odot (e \odot z) \odot (e \odot y)) \odot x$

 $(K1) (X \odot y) \odot (X \odot z) = (X \odot (e \odot z)) \odot (e \odot y)) \odot (K2) x \odot (x \odot y) = (x \odot (e \odot y)) \odot x$ $(K3) x \odot x = e$ $(K4) x \odot e = x$ $(K5) e \odot x = x^{-1} \text{ for all } x, y, z \in G$

Definition: 2.2 Let X be a non-empty set. A fuzzy subset of X is defined as a mapping from X into [0, 1].

Definition: 2.3 A fuzzy set μ in a set X of the form $\mu(y) = \begin{cases} t \in (0, 1] \text{ if } y = x \\ 0 & \text{ if } y \neq x \end{cases}$ is said to be a fuzzy point with support x & value t and is denoted by x_t . For a fuzzy point x_t and a fuzzy set μ in a set X the symbol $x_t \alpha \mu$ where $\alpha \in \{\epsilon, q, \epsilon \lor q, \epsilon \land q\}$. A fuzzy point x_t is called belong to a fuzzy set μ written as $x_t \epsilon \mu$ if $\mu(x) \ge t$. A fuzzy point x_t is called delong to a fuzzy set μ written as $x_t \epsilon \mu$ if $\mu(x) \ge t$. A fuzzy point x_t is called quasi coincident with a fuzzy set μ written as $x_t q \mu$ if $\mu(x) + t > 1$. $x_t \epsilon \lor q \mu$ (respectively $x_t \epsilon \land q \mu$) means that $x_t \epsilon \mu$ or $x_t q \mu$ (respectively $x_t \epsilon \land q \mu$).

Definition: 2.4 A non-empty subset H of a K-algebra \mathcal{K} is called a sub-algebra [6] of the K-algebra \mathcal{K} if a \odot b \in H for all a, b \in H. We note that every sub algebra of a K-algebra \mathcal{K} contains the identity e of the group.

Definition: 2.5 A fuzzy set μ on a K- algebra \mathcal{K} is a fuzzy ideal if $\mu: G \to [0, 1]$ is such that $\mu(e) \ge \mu(x)$ for all $x \in G$ and $\mu(x) \ge \min \{ \mu(x \odot y), \mu(y \odot (y \odot x)) \}$ for all $x, y \in G$.

Definition: 2.6 A fuzzy set μ in K is called a (ε , $\varepsilon \lor q$) – fuzzy ideal of \mathcal{K} if it satisfies the following conditions: $x_t \varepsilon \mu \Rightarrow e_t \varepsilon \lor q \mu$ for all $x \in G$ and for all $t \in (0, 1]$, $(x \odot y)_t \varepsilon \mu$, $(y \odot (y \odot x))_s \varepsilon \mu \Rightarrow x_{\min(s, t)} \varepsilon \lor q \mu$

^{*}C. Parameswari and ^{*}N. Meenakumari/ Fuzzy Soft ideals of K-algebras/ IJMA- 4(12), Dec.-2013.

Molodtsov [5] defined the notion of soft set in the following way: Let U be an initial Universe and E be the set of parameters. Let $P(U) = I^U$ denote the power set of U and let A be a non-empty subset of E. A pair (f, A) is called a soft set over U where f is a mapping given by f: $A \rightarrow P(U)$. In other words a soft set over U is parameterized family of subsets of U. For $\xi \in A$, $f(\xi)$ may be considered as the set of ξ - approximate elements of the soft set (f, A). Let f: $A \rightarrow I^U$, I = [0, 1] then (f, A) is called a fuzzy soft set over U. In general for all $\xi \in A$, $f(\xi) = f_{\xi}$ is a fuzzy set of U and it is called fuzzy value set of parameter x.

t- LEVEL SOFT SETS OF FUZZY SOFT SET

Definition: 2.7 Let (f, A) be a fuzzy soft set over U. For each $t \in [0, 1]$ the set $(f, A)^t = (f^t, A)$ is called a t-level soft set of (f, A) where $f_{\xi}^{t} = \{x \in U \mid f_{\xi}(x) \ge t \text{ for all } \xi \in A\}$. Clearly $(f, A)^t$ is a soft set over U.

Definition: 2.8 Let (f, A) and (g, B) be two fuzzy soft sets over U. We say that (f, A) is a fuzzy soft subset of (g, B) and write (f, A) \subset (g, B) if A \subseteq B and for all $\xi \in A$, $f(\xi) \subseteq g(\xi)$.

Definition: 2.9 Let (f, A) and (g, B) be two fuzzy soft sets over U. Then their extended intersection is a fuzzy soft set denoted by (h, C) where $C = A \cup B$ and

 $h(\xi) = \begin{cases} f_{\xi} & \text{if } \xi \in A - B \\ g_{\xi} & \text{if } \xi \in B - A \\ f_{\xi} \cap g_{\xi} & \text{if } \xi \in A \cap B \end{cases} \text{ for all } \xi \in C.$

Definition: 2.10 Extended Union of two fuzzy soft sets (f, A) and (g, B) is denoted by (h, C) where $C = A \cup B$ and $\int_{\xi} if \xi \in A - B$

С

$$h(\xi) = \begin{cases} g_{\xi} & \text{if } \xi \in B - A \\ f_{\xi} \cup g_{\xi} & \text{if } \xi \in A \cap B \end{cases} \text{ for all } \xi \in A \cap B$$

Definition: 2.11 Let $\phi : X \to Y$ and $\psi : A \to B$ be two functions, A and B are parametric sets from the crisp sets X and Y. Then the pair (ϕ, ψ) is called a fuzzy soft function from X to Y.

Definition: 2.12 Let (f, A) and (g, B) be two fuzzy soft sets over G_1 and G_2 respectively. Let (ϕ, ψ) be a fuzzy soft function from $G_1 \rightarrow G_2$. Then

(i) The image of (f, A) under the fuzzy soft function (ϕ, ψ) denoted by $(\phi, \psi)(f, A)$ is the fuzzy soft set on K₂ defined by $(\phi, \psi)(f, A) = (\phi(f), \psi(A))$ where for all $k \in \psi(A)$, $y \in G_2$

 $\varphi(\mathbf{f})_{k}(\mathbf{y}) = \begin{cases} \mathsf{V}_{\varphi(\mathbf{x})=\mathbf{y}} \ \mathsf{V}_{\psi(\mathbf{a})=\mathbf{k}} & f_{a}(\mathbf{x}) \text{ if } \mathbf{x} \in \psi^{-1}(\mathbf{y}) \\ \mathbf{0} & \text{otherwise} \end{cases}$

(ii) The preimage of (g, B) under the fuzzy soft function (ϕ, ψ) denoted by $(\phi, \psi)^{-1}(g, B)$ is the fuzzy soft set over K_1 defined by $(\phi, \psi)^{-1}(g, B) = (\phi^{-1}(g), \psi^{-1}(B))$ where $\phi^{-1}(g)_a(x) = g_{\psi(a)}(\phi(x))$ for all $a \in \psi^{-1}(B)$, $x \in G_1$.

Definition: 2.13 Let (ϕ, ψ) be a fuzzy soft function from $\mathcal{K}_1 \rightarrow \mathcal{K}_2$. If ϕ is a homomorphism from \mathcal{K}_1 to \mathcal{K}_2 then (ϕ, ψ) is said to be a fuzzy soft homomorphism, if ϕ is a isomorphism from \mathcal{K}_1 to \mathcal{K}_2 and ψ is one-one mapping from A onto B then (ϕ, ψ) is said to be a fuzzy soft isomorphism.

3. FUZZY SOFT IDEALS OF K-ALGEBRA

In this section we introduce fuzzy soft ideals of K-algebras and study about their properties.

Definition: 3.1 Let (f, A) be a soft set over a K-algebra \mathcal{K} . Then (f, A) is called a soft ideal over \mathcal{K} if f(t) is an ideal of K for all $t \in A$. (i.e.,)

- i. $e \in f(t)$
- ii. $x \odot y \in f(t) \& (y \odot (y \odot x)) \in f(t) \Rightarrow x \in f(t)$

_

Example: 3.2 Consider the K-algebra $\mathcal{K} = (S_3, \cdot, \odot, e)$ on the symmetric group $S_3 = \{e, a, b, x, y, z\}$ where e = (1), $a = (1 \ 2 \ 3)$, $b = (1 \ 3 \ 2)$, $x = (1 \ 2)$, $y = (1 \ 3)$ and $z = (2 \ 3)$ & \odot is given by the Cayley table:

\odot	e	х	у	z b a e y x	а	b
e	e	Х	у	Z	b	a
Х	Х	e	а	b	Ζ	У
у	у	b	e	а	Х	Z
Z	Z	а	b	e	У	Х
а	а	Z	Х	У	e	b
b	b	у	Z	Х	а	e

^{*}C. Parameswari and ^{*}N. Meenakumari/ Fuzzy Soft ideals of K-algebras/ IJMA- 4(12), Dec.-2013.

Let (f, A) be a soft set over \mathcal{K} where A = \mathcal{K} and f: A \rightarrow P(\mathcal{K}) is a set valued function.

Then $f(e) = \{e\}$, $f(a) = f(b) = \{e, a, b\}$, $f(x) = \{e, x\}$, $f(y) = \{e, y\}$, $f(z) = \{e, z\}$ are ideals of K. Then (f, A) is a soft ideal of \mathcal{K} .

Definition: 3.3 Let (f, A) be a soft set over a K-algebra \mathcal{K} . Therefore (f, A) is said to be a fuzzy soft ideal over \mathcal{K} if f_{ξ} is a fuzzy ideal of \mathcal{K} for all $\xi \in A$. (i.e.,)

- i. $f_{\xi}(\mathbf{e}) \ge f_{\xi}(\mathbf{x})$ for all $\mathbf{x} \in \mathbf{G}$
- ii. $f_{\xi}(\mathbf{x}) \ge \min \{ f_{\xi}(\mathbf{x} \odot \mathbf{y}), f_{\xi}(\mathbf{y} \odot (\mathbf{y} \odot \mathbf{x})) \} \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbf{G}.$

Example: 3.4 Consider the K-algebra $\mathcal{K} = (G, \cdot, \Theta, e)$ where $G = \{e, a, a^2, a^3\}$ is the cyclic group of order 4 and Θ is given by the following Cayley table:

\odot	e	а	a^2	a ³
e	e	a^3	a^2	a
a	a	e	a^3	a^2
$a a^2 a^3$	$a a^2 a^3$	a a ²	e	a^3
a^3	a^3	a^2	а	e

Let $A = \{e_1, e_2, e_3\}$ & f: $A \rightarrow P(G)$ be a set valued function defined by

 $f(e_1) = \{(e, .7), (a, .3), (a^2, .6), (a^3, .3)\};$

 $f(e_2) = \{(e, .6), (a, .2), (a^2, .5), (a^3, .2)\}$ and $f(e_3) = \{(e, .7), (a, .1), (a^2, .3), (a^3, .1)\}$

Let $B = \{e_2, e_3\}$ & $g : B \to P(G)$ be a set valued function defined by

 $g(e_2) = \{(e, .5), (a, .2), (a^2, .4), (a^3, .2)\}$ and $g(e_3) = \{(e, .6), (a, .1), (a^2, .3), (a^3, .1)\}.$

Clearly (f, A) and (g, B) be two fuzzy soft sets over \mathcal{K} . By routine calculation we see that they are fuzzy soft ideals of \mathcal{K} .

Definition: 3.5 Let (f, A) and (g, B) be two fuzzy soft ideals of \mathcal{K} . Then (f, A) is a fuzzy soft subideal of (g, B) if (i) $A \subset B$ (ii) f(x) is a fuzzy subideal of g(x) for all $x \in A$. (i.e.,) if $f(x) \le g(x)$ for all $x \in A$. From Example 3.4, we see that (g, B) is a fuzzy soft subideal of (f, A).

Proposition: 3.6 Let (f, A) and (g, B) be two fuzzy soft ideals of \mathcal{K} . Then $(f, A) \land (g, B)$ is a fuzzy soft ideal over K.

Proposition: 3.7 Let (f, A) and (g, B) be two fuzzy soft ideals of \mathcal{K} . If $A \cap B = \Phi$ then (f, A) $\widetilde{\mathcal{U}}$ (g, B) is a fuzzy soft ideal over \mathcal{K} .

Theorem: 3.8 Let (f, A) be a soft set over a K-algebra \mathcal{K} . Then (f, A) is a fuzzy soft ideal of \mathcal{K} if and only if $(f, A)^t$ is a soft ideal of K for all $t \in [0, 1]$

Proof: Suppose that (f, A) is a fuzzy soft ideal of \mathcal{K} . Then f_{ξ} is a fuzzy ideal of \mathcal{K} for every $\xi \in A$. Then $f_{\xi}(e) \ge f_{\xi}(x)$ for all $x \in G$. Therefore $f_{\xi}(e) \ge t$. Hence $e \in (f, A)^t$. Now let $x \odot y \in (f, A)^t$ & $(y \odot (y \odot x)) \in (f, A)^t$. This implies $f_{\xi}(x \odot y) \ge t$ & $f_{\xi}(y \odot (y \odot x)) \ge t$. Since (f, A) is a fuzzy soft ideal $f_{\xi}(x) \ge \min \{f_{\xi}(x \odot y), f_{\xi}(y \odot (y \odot x))\} \ge t$ $\Rightarrow x \in (f, A)^t$.

Conversely let $t = \min \{ f_{\xi}(x \odot y), f_{\xi}(y \odot (y \odot x)) \}$. Then $x \odot y \in (f, A)^t \& (y \odot (y \odot x)) \in (f, A)^t$. Since $(f, A)^t$ is a soft ideal of \mathcal{K} this implies that $x \in (f, A)^t$ which implies $f_{\xi}(x) \ge t$. Thus $f_{\xi}(x) \ge t = \min \{ f_{\xi}(x \odot y), f_{\xi}(y \odot (y \odot x)) \}$.

Since $(f, A)^t$ is a soft ideal of \mathcal{K} for all $t \in [0, 1]$, $e \in (f, A)^t$ for all $t \in [0, 1] \Rightarrow f_{\mathcal{E}}(e) \ge t$ for all $t \in [0, 1]$

 $\Rightarrow f_{\xi}(e) \ge f_{\xi}(x)$ for all $x \in G$. Thus (f, A) is a fuzzy soft ideal of \mathcal{K} .

Theorem: 3.9 Let (g, B) be a fuzzy soft ideal of \mathcal{K}_2 . Let (ϕ, ψ) be a fuzzy soft homomorphism from \mathcal{K}_1 to \mathcal{K}_2 . Then $(\phi, \psi)^{-1}$ (g, B) is a fuzzy soft ideal of \mathcal{K}_1 .

Proof: Since (g, B) is a fuzzy soft ideal of \mathcal{K}_2 , (i) $g_{\psi(\xi)}(e_2) \ge g_{\psi(\xi)}(y)$ for all $y \in G_2$ $g_{\psi(\xi)}\phi(e_1) \ge g_{\psi(\xi)}\phi(x)$ where $x \in G_1$

 $\varphi^{-1} g_{\psi(\xi)}(e_1) \ge \varphi^{-1} g_{\psi(\xi)}(x)$ for all $x \in G_1$

ii) $g_{\psi(\xi)}(y) \ge \min \{ g_{\psi(\xi)}(y \odot z), g_{\psi(\xi)}((z \odot (z \odot y))) \}$

 $= \min \{ g_{\psi(\xi)}(\phi(x) \odot \phi(x')), g_{\psi(\xi)}(\phi(x') \odot (\phi(x') \odot \phi(x)) \}$

where $y = \phi(x)$,

 $z = \varphi(x') = \min \{ g_{\psi(\xi)} \varphi(x \odot x'), \}$

 $g_{\psi(\xi)} \phi(\mathbf{x}' \odot (\mathbf{x}' \odot \mathbf{x})) = \min \{ \phi^{-1} g_{\psi(\xi)} (\mathbf{x} \odot \mathbf{x}'), \phi^{-1} g_{\psi(\xi)} (\mathbf{x}' \odot (\mathbf{x}' \odot \mathbf{x})) \}$

Then $\phi^{-1}g_{\psi(\xi)}(x) \ge \min \{ \phi^{-1}g_{\psi(\xi)}(x \odot x'), \phi^{-1}g_{\psi(\xi)}(x' \odot (x' \odot x)) \}$ which implies $(\phi, \psi)^{-1}(g, B)$ is a fuzzy soft ideal of \mathcal{K}_1 .

4. ($\epsilon, \epsilon \lor q$)-FUZZY SOFT IDEALS OF THE K-ALGEBRA $\mathcal K$

Definition: 4.1 Given a fuzzy set μ in \mathcal{K} and $A \subseteq [0, 1]$, we define two set valued functions f: $A \rightarrow P(\mathcal{K})$ and fq: $A \rightarrow P(\mathcal{K})$ by $f(t) = \{x \in G / x_t \in \mu\}$ and $f_q(t) = \{x \in G / x_t q \mu\}$ for all $t \in A$. Then (f, A) is called ε - soft set and (f_q, A) is called q-soft set over \mathcal{K} .

Example: 4.2 Consider the K-algebra $\mathcal{K} = \{G, \cdot, \odot, e\}$ where $G = \{e, a, a^2, a^3, a^4\}$ is the cyclic group of order 5 & \odot is given by the following Cayley table:

0	e	а	a ²	a ³	a^4
e	e	a^4 e a^2 a^3	a^3 a^4	a^2 a^3 a^4	a
a	a a^2 a^3 a^4	e	a^4	a	a a2 a3 a4
a^2	a^2	a	e	a^4	a
a	a	a^2	$a a^2$	e	
a^4	a^4	a^3	a^2	а	e

Let μ be a fuzzy set in G defined by $\mu(e) = .7$, $\mu(a) = .8$, $\mu(a^2) = .8$, $\mu(a^3) = \mu(a^4) = .4$. Then μ is an $(\varepsilon, \varepsilon \lor q)$ – fuzzy ideal of \mathcal{K} .

Proposition: 4.3 Let μ be a fuzzy set in a K-algebra \mathcal{K} . Let (f, A) be an ε - soft set on \mathcal{K} with A = (0, 1]. Then (f, A) is a soft ideal of \mathcal{K} if and only if μ is a fuzzy ideal of \mathcal{K} .

Proof: Assume that (f, A) is a soft ideal of \mathcal{K} . Then f(t) is an ideal of \mathcal{K} for all $t \in A$. If μ is not a fuzzy ideal of \mathcal{K} then there exists x, y $\in G$ such that $\mu(x) < \min \{\mu(x \odot y), \mu(y \odot (y \odot x))\}$. Take $t \in A$ such that $\mu(x) < t \le \min \{\mu(x \odot y), \mu(y \odot (y \odot x))\}$ and $\mu(x \odot y) \ge t \& \mu(y \odot (y \odot x)) \ge t \Rightarrow x \odot y \in f(t) \& (y \odot (y \odot x)) \in f(t)$ implies $x \in f(t)$ (i.e.,) $\mu(x) \ge t$ which is a contradiction.

Conversely suppose μ is a fuzzy ideal of \mathcal{K} . Take $t \in A$, $x \odot y \in f(t)$ and $(y \odot (y \odot x)) \in f(t)$ implies $\mu(x \odot y) \ge t \& \mu(y \odot (y \odot x)) \ge t$. Since $\mu(x) \ge \min \{\mu(x \odot y), \mu(y \odot (y \odot x))\} \ge t \Rightarrow x \in f(t)$. Now $\mu(e) \ge \mu(x)$ for all $x \in G$, $\mu(e) \ge t \Rightarrow e \in f(t)$. Hence f(t) is an ideal for all $t \in (0, 1]$. Thus (f, A) is a soft ideal of \mathcal{K} .

Proposition: 4.4 Let μ be a fuzzy set in a K-algebra \mathcal{K} and let (f_q, A) be a q-soft set over \mathcal{K} with A = (0, 1]. Then (f_q, A) is a soft ideal of \mathcal{K} if and only if μ is a fuzzy ideal of \mathcal{K} .

Proof: Suppose that μ is a fuzzy ideal of \mathcal{K} . Let $t \in A \& x, y \in G$ be such that $\mu(x \odot y) + t > 1 \& \mu(y \odot (y \odot x)) + t > 1$. We have

 $\mu(x) \ge \min \{\mu(x \odot y), \mu(y \odot (y \odot x))\}$

 $\Rightarrow \mu(x) + t \ge \min \{\mu(x \odot y), \mu(y \odot (y \odot x))\} + t$ = min { $\mu(x \odot y) + t, \mu(y \odot (y \odot x)) + t$ } > 1

implies $x \in f_q(t)$.

Since $\mu(e) \ge \mu(x)$ for all $x \in G$, in particular $\mu(e) \ge \mu(x)$ for all $x \in f_q(t)$. Therefore $\mu(e) \ge \mu(x) > 1 - t \Rightarrow \mu(e) + t > 1 \Rightarrow e \in fq(t)$.

Conversely if μ is not a fuzzy ideal of \mathcal{K} then there exists $t \in A$ such that $\mu(x) < 1 - t \le \min \{\mu(x \odot y), \mu(y \odot (y \odot x))\} \Rightarrow \mu(x \odot y) \ge 1 - t \& \mu(y \odot (y \odot x)) \ge 1 - t \Rightarrow \mu(x \odot y) + t > 1 \& \mu(y \odot (y \odot x)) + t > 1 \Rightarrow x \in f_q(t) \text{ (i.e.,) } \mu(x) + t > 1 \Rightarrow \mu(x) > 1 - t \text{ a contradiction.}$

Theorem: 4.5 Let μ be a fuzzy set in a K-algebra \mathcal{K} . Let (f, A) be an ε - soft set on K with A = (0.5, 1]. Then the following assertions are equivalent:

i. (f, A) is a soft ideal of \mathcal{K}

ii. max $(\mu(x), .5) \ge \min \{ \mu(x \odot y), \mu(y \odot (y \odot x)) \}$

Proof:

(i) \Rightarrow (ii): Let (f, A) be a soft ideal of \mathcal{K} . If one of $\mu(x \odot y)$ or $\mu(y \odot (y \odot x))$ or both $\leq .5$, then min { $\mu(x \odot y), \mu(y \odot (y \odot x))$ } $\leq .5$.

If $\mu(x) \leq .5$ then max{ $\mu(x), .5$ } \geq min { $\mu(x \odot y), \mu(y \odot (y \odot x))$ }.

If $\mu(x) > .5$ then max{ $\mu(x), .5$ } = $\mu(x)$ then max{ $\mu(x), .5$ } $\geq \min \{ \mu(x \odot y), \mu(y \odot (y \odot x)) \}$.

If $\mu(x \odot y) > .5 \& \mu(y \odot (y \odot x)) > .5$ then $\min\{\mu(x \odot y), \mu(y \odot (y \odot x))\} > .5$.

Suppose $\mu(x) < t \le \min\{\mu(x \odot y), \mu(y \odot (y \odot x))\}\$ for all t > .5. Hence $(x \odot y)_t \in \mu$, $(y \odot (y \odot x))_t \in \mu \Rightarrow x_t \in \mu$. (i.e.,) $\mu(x) \ge t$ which is a contradiction. Thus max $(\mu(x), .5) \ge \min\{\mu(x \odot y), \mu(y \odot (y \odot x))\}\$.

(ii) \Rightarrow (i): To prove (f, A) is a soft ideal where A = (.5, 1], it is enough to prove that μ is a fuzzy ideal of \mathcal{K} . If not there exists t \in A such that $\mu(x) < t \le \min\{\mu(x \odot y), \mu(y \odot (y \odot x))\}$.

Now $\max(\mu(x), .5) \ge \min \{\mu(x \odot y), \mu(y \odot (y \odot x))\} \ge t$ where $t \in (.5, 1] \Rightarrow \mu(x) \ge t$ a contradiction. Thus (f, A) is a soft ideal of \mathcal{K} .

Definition: 4.6 Let (f, A) be a fuzzy soft set over \mathcal{K} . Then (f, A) is said to be an (ε , $\varepsilon \lor q$)-fuzzy soft ideal of \mathcal{K} if f_{ξ} is an (ε , $\varepsilon \lor q$)-fuzzy ideal of \mathcal{K} for all $\xi \in A$.

Lemma: 4.7 A fuzzy soft set μ in a K-algebra is an ($\epsilon, \epsilon \lor q$)-fuzzy soft ideal of \mathcal{K} if and only if

- i. $\mu(e) \ge \min \{ \mu(x), .5 \}$
- ii. $\mu(x) \ge \min \{ \mu(x \odot y), \mu(y \odot (y \odot x)), .5 \}$ for all x, y \in G.

Proposition: 4.8 Let μ be a fuzzy set in a K-algebra K. Let (f, A) be an ε - soft set on \mathcal{K} with A = (0.5, 1]. Then the following assertions are equivalent:

- (i) μ is an (ϵ , $\epsilon \lor q$)-fuzzy soft ideal of \mathcal{K}
- (ii) (f, A) is a soft ideal of \mathcal{K} .

Proof:

(i) \Rightarrow (ii) Let $t \in A$, $x \odot y \in f(t)$ & $y \odot (y \odot x) \in f(t)$. Therefore $\mu(x \odot y) \ge t$ & $\mu(y \odot (y \odot x)) \ge t$ where $t \in (0, .5)$. Now $x_t \in \forall q \mu \Rightarrow \mu(x) \ge t$ or $\mu(x) + t > 1 \Rightarrow \mu(x) \ge min \{ \mu(x \odot y), \mu(y \odot (y \odot x)), .5\} \ge min\{t, .5\} = t \Rightarrow x_t \in \mu$. Similarly $e \in f(t)$. Hence (f, A) is a soft ideal of \mathcal{K} for all $t \in A$.

(ii) \Rightarrow (i): If there exists $x \odot y \in G \& y \odot (y \odot x) \in G$ such that $\mu(x) < \min \{\mu(x \odot y), \mu(y \odot (y \odot x)), .5\}$, Take $t \in (0, .5)$ such that $\mu(x) < t \le \min \{\mu(x \odot y), \mu(y \odot (y \odot x)), .5\}$. Thus $t \le .5 \& (x \odot y)_t \in \mu$, $(y \odot (y \odot x))_t \in \mu \Rightarrow x_t \in \mu$ (since f(t) is an ideal for all $t \le .5$. (i.e.,) $\mu(x) \ge t$ which is a contradiction. Thus $\mu(x) \ge \min \{\mu(x \odot y), \mu(y \odot (y \odot x)), .5\}$ for all $x, y \in G$. Likewise $\mu(e) \ge \min \{\mu(x), .5\}$ for all $x \in G$. Hence μ is an $(\varepsilon, \varepsilon \lor q)$ -fuzzy soft ideal of \mathcal{K} .

REFERENCES

- 1. M.Akram and K.H.Dar., Generalized fuzzy K-algebras, VDM verlag, 2010.
- M.Akram and K.H.Dar., Fuzzy ideals of K- algebras, Annals of University of Craiova, Math.comp.Sci.Ser 34(2007) 3 – 12.
- 3. K.H.Dar and M.Akram., On a K-algebra built on a group, Southeast Asian Bulletin Of Mathematics 29(1) (2005) 41-49.
- 4. P.K.Maji, R.Biswas and R.Roy., Sift set theory, Comput. Math. Appl. 45 (2003) 555-562.
- 5. D.Molodsov., Soft set theory first results, Comput.Math. Appl. 37 (1999) 19-31.
- 6. Muhammed Akram., Fuzzy soft K-algebras, Utilitas Mathematica 90 (2013), pp. 307-325.
- 7. L.A.Zadeh., Fuzzy sets, Inform. And control 8 (1965) 338-353.

Source of support: Nil, Conflict of interest: None Declared