International Journal of Mathematical Archive-4(12), 2013, 235-240

AN IDEAL BASED ZERO DIVISOR GRAPH OF GAMMA NEAR-RINGS

¹R. Rajeswari, ²N. Meena Kumari* and ³T. Tamizh Chelvam

1&2 Department of Mathematics, A. P. C. Mahalaxmi College for Women, Thoothukudi, India.

³Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India.

(Received on: 07-11-13; Revised & Accepted on: 08-12-13)

ABSTRACT

In this paper, we study the notion of ideal based zero divisor graph structure of Gamma Near- ring M with respect to reflexive ideal I of M denoted by $\Gamma_{I}(M)$ whose vertices are the set $\{x \in M - I/\text{there exists } y \in M \text{-}I \text{ such that } x \Gamma y \subseteq I\}$ with distinct vertices x and y are adjacent if and only if $x \Gamma y \subseteq I$.

Keywords: ideal, graph, zero-divisor, diameter, cycle, Girth, clique.

INTRODUCTION

The concept of a Gamma near –rings [9] was introduced by Satyanarayana and the ideal theory in Gamma near-rings was studied by Bh. Satyanarayana and G.L.Booth.

Let (M, +) be a group (not necessarily abelian) and Γ be a nonempty set. Then M is said to be a Γ - near ring if there exists a mapping $M \times \Gamma \times M \to M$ (denote the image of (m_1, α_1, m_2) by $m_1\alpha_1m_2$ for $m_1, m_2 \in M$ and $\alpha_1 \in \Gamma$) satisfying the following conditions.

1. $(m_1 + m_2)\alpha_1m_3 = m_1\alpha_1m_3 + m_2\alpha_1m_3$ and

2. $(m_1\alpha_1m_2)\alpha_2m_3 = m_1\alpha_1(m_2\alpha_2m_3)$ for all $m_1, m_2, m_3 \in M$ and $\alpha_1, \alpha_2 \in \Gamma$.

Furthermore, M is said to be a zero symmetric Γ - near ring if $m\alpha 0 = 0$ for all $m \in M$ and $\alpha \in \Gamma$ (where 0 is an additive identity in M.)

A normal subgroup L of M is called a left (resp right) ideal of M if $u \alpha(x + v) - u \alpha v \in L$ (resp $x \alpha u \in L$) for all $x \in L, \alpha \in \Gamma$ and $u, v \in M$. A normal subgroup I of M is called an ideal if I is a both left and right ideal of M. An ideal I of M is said to be reflexive if $a\gamma b \in I =>b\gamma a \in I$ for $a, b \in M$ and $\gamma \in \Gamma$. A proper ideal P of M is said to be prime if for any ideals A, B of M such that $A \Gamma B \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$. An ideal P is called completely prime if $a \Gamma b \subseteq P$ implies $a \in P$ or $b \in P$. It is clear that if I is a reflexive ideal of M then I is prime iff I is completely prime. For any two nonempty subsets A, B of M, we write the set (A: B) = { $m \in M/m \Gamma B \subseteq A$ }. We denote by I(a) the ideal of M generated by a. In [3], Beck introduced the concept of a zero divisor graph of a commutative ring with identity, but this work was mostly concerned with coloring of rings. In[2], Anderson and Livingston associate to a commutative ring with identity a (simple) graph $\Gamma(R)$, whose vertex set is $Z(R)^* = Z(R) - \{0\}$, the set of non zero divisor of R, in which two distinct x, $y \in Z(R)^*$ are joined by an edge if and only if xy = 0. They investigated the interplay between the ring theoretic properties of R and the graph theoretic properties of $\Gamma(R)$. Let I be a completely reflexive ideal ((ie.,)) ab $\in I$ implies ba $\in I$ for a, b $\in R$ then the ideal based zero divisor graph, denoted by $\Gamma_I(R)$, is the graph whose vertices are the set { $x \in R - I/x \Gamma y \in I$ for some $y \in R - I$ } with distinct vertices x and y are adjacent if and only if $x \gamma y \in I$, $\gamma \in \Gamma$.

In this paper, we study the undirected graph $\Gamma_I(M)$ of Gamma near rings for any completely reflexive ideal I of M. Throughout this paper M stands for a non zero Gamma near -ring with zero element and I is a completely reflexive ideal of M. For distinct vertices x and y of a Graph G, let d(x, y) be the length of the shortest path from x to y. The diameter of a connected graph is the supremum of the distances between vertices. For any graph G, the girth of G is the length of a shortest cycle in G and is denoted by gr(G). If G has no cycle, we define the girth of G to be infinite. A clique of a graph is a maximal complete subgraph and the number of graph vertices in the largest clique or graph G, denoted by $\omega(G)$ is called the clique number of G. A graph G is bipartite with vertex classes V_1 , V_2 if the set of all vertices of G is $V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, and edge of G joins a vertex from V_1 to a vertex of V_2 .

A complete bipartite graph is a bipartite graph containing all edges joining the vertices of V_1 and V_2 . A complete bipartite graph on vertex sets of size m an n is denoted by $K^{m,n}$ for any positive integer, $K^{1,n}$ is called a star graph.

Theorem: 1

a) If I = (0) then $\Gamma_I(M) = \Gamma(M)$

b) Let I be a nonzero completely reflexive ideal of M. Then $\Gamma_I(M) = \Phi$ if and only if I is a completely prime ideal of M.

Proof:

- a) Proof is Obivious.
- b) Suppose that I is a completely prime ideal of M. For $\alpha \in \Gamma$, Then $x \alpha y \in I \Longrightarrow x \in I$ or $y \in I$. Hence the vertex set $\Gamma_I(M)$ is empty.

Conversely suppose that $\Gamma_I(M) = \Phi$. Therefore if $x \in M - I$ and $x \alpha y \in I$, $\alpha \in \Gamma$ for some $y \in M$. We must have $y \in I$. (otherwise x is a vertex of $\Gamma_I(M)$). Hence I is a completely prime ideal of M.

Theorem: 2 Let I be a completely reflexive ideal of a gamma near-ring M. Then $\Gamma_I(M)$ is connected with diam $(\Gamma_I(M)) \le 3$. Furthermore if $\Gamma_I(M)$ contains a cycle, then $gr(\Gamma_I(M)) \le 7$.

Proof: Let x and y be distinct vertices of $\Gamma_I(M)$. Then there exists $z \in M - I$ and $w \in M - I$ with $x \Gamma z \subseteq I$ and $w \Gamma y \subseteq I$. If $x \Gamma y \subseteq I$ then x – y is a path of length 1. If $x \Gamma y \not\subseteq I$ and $z \Gamma w \subseteq I$, then x-z-w-y is a path of length 3. If $x \Gamma y \not\subseteq I$ and $z \Gamma w \not\subseteq I$ then there exists $\gamma \in \Gamma$ such that x-z γ w-y is a path of length 2. Thus $\Gamma_I(M)$ is connected and diam $(\Gamma_I(M)) \leq 3$.

For any undirected graph G, $gr(G) \le 2diam(G) + 1$, if G contains a cycle. Thus $gr(G) \le 2(3) + 1 = 7$.

Therefore $gr(\Gamma_I(M)) \leq 7$.

Theorem: 3 Let I be a completely reflexive ideal of M. For any x, $y \in \Gamma_I(M)$, if x-y is an edge in $\Gamma_I(M)$, then for each $m \in M - I$, either m-y or x-y' is an edge in $\Gamma_I(M)$ for some $y' \in \langle y \rangle - I$

Proof: Let $x, y \in M - I$, with x-y be an edge in $\Gamma_I(M)$ and suppose that m-y is not an edge in $\Gamma_I(M)$ for some $m \in M - I$. Then $x_1 \Gamma y_1 \in I$ for some $x_1 \in \langle x \rangle - I$, $y_1 \in \langle y \rangle - I$ and $m \Gamma y_1 \notin I$. But $m \Gamma y_1 \Gamma x_1 \in I$. So x-y ' is an edge in $\Gamma_I(M)$ for some y' $\in \langle y \rangle - I$

Theorem: 4 Let I be a completely reflexive ideal of M and if a-x-b is a path in $\Gamma_I(M)$, then either IU $\{x_1\}$ is an ideal of M for some $x_1 \in \langle x \rangle - I$ or a-x-b is contained in a cycle of length ≤ 4 .

Proof: Let a-x-b be a path in $\Gamma_I(M)$. Then there exists $x_1, x_2 \in \langle x \rangle - I, a_1 \in \langle a \rangle - I$ and $b_1 \in \langle b \rangle - I$ such that $a_1 \Gamma x_1 \in I$ and $b_1 \Gamma x_2 \in I$. If $a' \Gamma b' \in I$ for some $a' \in \langle a \rangle - I$ and $b' \in \langle b \rangle - I$. Then a-x-b-a is contained in a cycle of length ≤ 4 . So let us assume that $a_1 \Gamma b_1 \notin I$ for all $a_1 \in \langle a \rangle - I$ and $b_1 \in \langle b \rangle - I$.

Case: (i) Let $x_1 = x_2$ then either $I_{a_1} \cap I_{b_1} = I \cup \{x_1\}$ or there exists $c \in I_{a_1} \cap I_{b_1}$ such that $c \notin I \cup \{x_1\}$. Then $c \cap a_1, c \cap b_1 \in I$. In the first case, $I \cup \{x_1\}$ is an ideal. In the second case a-x-b-c-a is contained in a cycle of length ≤ 4 .

Case: (ii) Let $x_1 \neq x_2$, then clearly $\langle a_1 \rangle \cap \langle b_1 \rangle \not\subseteq I$. Then for each $z \in \langle a_1 \rangle \cap \langle b_1 \rangle - I$. We have, $z \Gamma x_1 \in \langle a_1 \rangle \langle x_1 \rangle \subseteq I$ and $z \Gamma x_2 \in I$. Clearly either $x_1 \neq x$ or $x_2 \neq x$. Say $x_1 \neq x$. Then we have a path a- x_1 -b and hence a-x-b- x_1 -a is contained in a cycle of length ≤ 4

Theorem: 5 Let I be a completely reflexive ideal of M. Then $\Gamma_I(M)$ can be neither a pentagon nor a hexagon

Proof: Suppose that $\Gamma_I(M)$ is a-b-c-d-e-a a pentagon. Then by theorem:4, For one of the vertices say (b_1) , $I \cup \{b_1\}$ is an ideal of M for some $b_1 \in \langle b \rangle - I$. Then in the pentagon, there exists $d_1 \in \langle d \rangle - I$ and $e_1 \in \langle e \rangle - I$ such that $d_1 \Gamma e_1 \subseteq I$. Since $I \cup \{b_1\}$ is an ideal, $b_1 \gamma d_1 = b_1 = b_1 \gamma_1 e_1$ for some γ , $\gamma_1 \in \Gamma$. But $b_1 \gamma (d_1 \gamma_1 e_1) \in I$, $\gamma_1 \in \Gamma$. Then $b_1 = b_1 \gamma_1 e_1 = (b_1 \gamma d_1) \gamma_1 e_1 = b_1 \gamma (d_1 \gamma_1 e_1) \in I$. (ie)., $b_1 \in I$ which is a contradiction. The proof for the hexagon is the same

Theorem: 6 Let I be an reflexive ideal of a Gamma near ring M and let x, $y \in M - I$ Then

- 1. If x+I is adjacent to y+I in $\Gamma\left(\frac{M}{I}\right)$ then x is adjacent to y in $\Gamma_I(M)$
- 2. If x is adjacent to y in $\Gamma_I(M)$ and x+I \neq y+I then x+I is adjacent to y+I in $\Gamma\left(\frac{M}{T}\right)$
- 3. If x is adjacent to y in $\Gamma_I(M)$ and x+I = y+I then $x^2, y^2 \in I$

Clearly there is a strong relationship between $\Gamma_I(M)$ and $\Gamma\left(\frac{M}{I}\right)$

Let I be an ideal of a gamma near-ring M. One can verify that the following method can be used to construct a graph $\Gamma_I(M)$. Let $\{a_\lambda\}_{\lambda\in\Lambda} \subseteq \mathbb{R}$ be a set of coset representatives of the vertices of $\Gamma\left(\frac{M}{I}\right)$. For each $i \in I$, define a graph G_i with vertices $\{a_\lambda + i/\lambda \in \Lambda\}$ where edges are defined by the relationship $a_\lambda + i$ is adjacent to $a_\beta + i$ in $G_i iff a_\lambda + I$ is adjacent to $a_\beta + I$ in $\Gamma\left(\frac{M}{I}\right)$ ((ie.,) $a_\lambda \Gamma a_\beta \in I$)

Theorem: 7 Let I be a completely reflexive ideal of M. Then the following are hold

- i. If M has identity, then $\Gamma_I(M)$ has no cut vertices.
- ii. If M has no identity and if I is a nonzero completely reflexive ideal of M then $\Gamma_I(M)$ has no cut vertices.

Proof: Suppose that the vertex x of $\Gamma_I(M)$ is cut vertex. Let u-x-w be a path in $\Gamma_I(M)$. Since x is a cut vertex, x lies in every path from u to w.

i) Assume that M is Gamma near ring with identity. For any $u, v \in \Gamma_I(M)$, there exists a path u-1-w which shows $x(\neq 1)$ in $\Gamma_I(M)$ is not a cut vertex. Suppose x = 1. Then there exists $u_1 \in \langle u \rangle - I, w_1 \in \langle w \rangle - I, \gamma \in \Gamma$ and $t_1, t_2 \in M - I$ such that $u_1\gamma t_1, w_1\gamma t_2 \in I$ which implies $u_1, w_1 \in \Gamma_I(M)$. Since $\Gamma_I(M)$ is connected, there exists $m, m_1 \in M - I \cup \{x\}$ such that $u_1 - m - w_1(or)u_1 - m - m_1 - w_1$ is a path in $\Gamma_I(M)$ which implies u - m - w - 1 - u (or) $u - m - m_1 - w - 1 - u$ is a cycle in $\Gamma_I(M)$ contradicting x=1 is a cut vertex

ii) Let M be a Γ -near-ring without identity and I be a non zero completely reflexive ideal of M. Since u - x - w is a path from u - w, then there exists $u_1 \in \langle u \rangle - I$, $w_1 \in \langle w \rangle - I$ and $x_1, x_2 \in \langle x \rangle - I$, $\gamma \in \Gamma$ such that $u_1\gamma x_1 \in I$ and $w_1\gamma x_2 \in I$.

Case: (i) $x_1 = x_2$

If $u_1 + I = x_1 + I$ then $u_1\gamma w_1 \in I \implies u$ is adjacent to w. Similarly, If $x_2 + I = w_1 + I$, u is adjacent to w. So assume that $u_1 + I \neq x_1 + I$ and $x_2 + I \neq w_1 + I$. Let $0 \neq i \in I$. Then $u_1\gamma w_1 \in I$ and $w_1\gamma x_2 \in I$ which implies $u_1\gamma(x_1 + i, w_1\gamma x_1 + i\in I)$. If $x = x_1 + i$ then $x \neq x_1 \implies u$ - x_1 -w is path in ΓIM . otherwise, $u - x_1 + i$ -w is a path in ΓIM . Thus there exists a path from u to w not passing through x which is a contradiction.

Case: (ii) Either x_1 or x_2 equal to x.

Without loss of generality, let us assume that $x_1 = x$ and $x_2 \neq x$. Then $u_1\gamma x \in I$ and $x_2\gamma w_1 \in I => u_1\gamma x_1 \in I$ and $x_2\gamma w_1 \in I$. Also we have a path u- x_2 -w which is a contradiction

Case: (iii) Neither x_1 nor x_2 equal to x.

If $x_1\gamma x_2 \in I$ then we have a path u- $x_1 - x_2$ -which is a contradiction. So assume that $x_1\gamma x_2 \neq x$, then we have a path u- $x_1\gamma x_2$ -w which is a contradiction.

Thus x cannot be a cut vertex.

Definition: 8 Using the notation as in the above construction, we call the subset $a_{\lambda} + I$ a column of $\Gamma_{I}(M)$. If $a_{\lambda}^{2} \in I$ then we call $a_{\lambda} + I$ a connected column of $\Gamma_{I}(M)$.

Lemma: 9 Let I be an reflexive ideal of a Gamma near- ring M. Then $\operatorname{gr}(\Gamma_{I}(M)) \leq \operatorname{gr}(\Gamma(\frac{M}{I}))$. Inparticular if $\Gamma(\frac{M}{I})$ contains a cycle then so does $\Gamma_{I}(M)$ and therefore $\operatorname{gr}(\Gamma_{I}(M)) \leq \operatorname{gr}(\Gamma(\frac{M}{I})) \leq 4$.

Proof: If $gr(\Gamma(\frac{M}{l})) = \infty$ we are done. So suppose $gr(\Gamma(\frac{M}{l})) = n < \infty$.

Let $x_1 + I - x_2 + I - \dots - x_n + I - x_1 + I$ be a cycle in $\Gamma(\frac{M}{I})$ through n distinct vertices

Then $x_1 - x_2 - \dots - x_n - x_1$ is a cycle in $\Gamma_I(M)$ of length n. Hence $gr(\Gamma_I(M)) \le n$.

Lemma: 10 Let I be an reflexive ideal of a gamma near ring M. If $|I| \ge 3$ and $\Gamma_I(M)$ contains a connected column, then $gr(\Gamma_I(M)) = 3$

Proof: Let x +I be a connected column of $\Gamma_I(M)$. Then $x^2 \in I$. Let i, $j \in I - \{0\}$. Then $x \cdot (x+i) \cdot (x+j) \cdot x$ is a cycle of length 3 in $\Gamma_I(M)$.

Lemma: 11 Let I be a reflexive ideal of a gamma near ring M. If $I \neq 0$ and $\Gamma(\frac{M}{I})$ has only one vertex, then $\operatorname{gr}\Gamma_{I}(M) = \begin{cases} 3if|I| \geq 3\\ \infty \ if|I| = 2 \end{cases}$

Proof: If $\Gamma(\frac{M}{I})$ has only one vertex then $\Gamma_I(M)$ consist of a single connected column. Thus $\Gamma_I(M)$ is a complete graph, and therefore has a cycle of length 3 unless $\Gamma_I(M)$ has only two vertices.

Lemma: 12 Let I be a reflexive ideal of a gamma near ring M. If I has two elements, $\Gamma(\frac{M}{I})$ has at least two vertices and $\Gamma_I(M)$ has at least two vertices, and $\Gamma_I(M)$ has at least one connected column, then $\operatorname{gr}(\Gamma_I(M)) = 3$

Proof: Let x+I be a connected column of $\Gamma_I(M)$. Then $x^2 \in I$. Let y+I be a vertex adjacent to x+I in $\Gamma(\frac{M}{I})$. Write I = {0,i}. Then y-x-x+i-y is a cycle of length 3 in $\Gamma_I(M)$

Theorem: 13 Let I be a nonzero reflexive ideal of a gamma near ring M that is not a completely prime ideal. Then $\operatorname{Gr}(\Gamma_I(M) = \infty if \Gamma\left(\frac{M}{I}\right)$ has only one cut vertex &|I| = 2

 $\begin{cases} 4 \text{ if } gr(\Gamma(\frac{M}{l}) > 3 \text{ and } \Gamma_{l}(M) \text{ has no connected columns} \\ 3 \text{ otherwise} \end{cases}$

Proof: The only remaining case is $I \neq (0)$, $\Gamma_I(M)$ has no connected columns, and $gr((\Gamma(\frac{M}{I}))>3)$.

Since $\Gamma_I(M)$ has no connected columns, $\Gamma\left(\frac{M}{I}\right)$ must have at least two vertices. By lemma 9, $\operatorname{Gr}(\Gamma_I(M)) \leq 4$. Assume x-y-z-x is a cycle in $\Gamma_I(M)$ of length 3 and we provide a contradiction. Since $\operatorname{gr}\left(\Gamma\left(\frac{M}{I}\right)\right) > 3, x+I-y+I-z+I-x+I$ cannot be a cycle in $\Gamma\left(\frac{M}{I}\right)$. Therefore we have either x+I=y+I, y+I =z+I (or) z+I=x+I. If x+I =y+I, then $(x + I)^2 = (x + 1)(y + I = 0 + I)$ and so x+I is a connected column of Γ/M . But this is a contradiction. We get a similar contradiction if y+I=z+I (or) z+I=x+I. Hence $\operatorname{gr}(\Gamma_I(M)) = 4$

Theorem: 14 Let I be a nonzero reflexive ideal of a gamma near ring M. Then $\Gamma_I(M)$ is bipartite if and only if either a) $gr(\Gamma_I(M)) = \infty$ (*or*)

b) $gr(\Gamma_I(M)) = 4$ and $\Gamma\left(\frac{M}{I}\right)$ is bipartite.

Proof: Suppose that $\Gamma_I(M)$ is bipartite. Since $\Gamma\left(\frac{M}{I}\right)$ is isomorphic to a subgraph (or) $\Gamma_I(M)$, $\Gamma\left(\frac{M}{I}\right)$ is bipartite (or a single vertex). By theorem 13, $\operatorname{gr}(\Gamma_I(M))$ is 3,4, ∞ . By theorem 1 of sec1.2 of Bollobas (1979), a graph is bipartite if and only if it does not contain an odd cycle. Hence $\operatorname{gr}(\Gamma_I(M)) \neq 3$.

If $\operatorname{gr}(\Gamma_{I}(M)) = \infty$, then by theorem: 13, $\Gamma_{I}(M)$ is a graph on two vertices and therefore bipartite. Suppose $\operatorname{gr}(\Gamma_{I}(M)) = 4$ and $\Gamma\left(\frac{M}{I}\right)$ is bipartite. Let W_{1}, W_{2} be the two vertex classes of $\Gamma\left(\frac{M}{I}\right)$. Define $V_{j} = \{x + i/i \in I, x + I \in W_{j}\}$ for j = 1, 2. Then $V_{1} \cap V_{2} = \varphi$ and the vertex set of $\Gamma_{I}(M)$ is $V_{1} \cup V_{2}$.

Let x and y be adjacent vertices of $\Gamma_I(M)$. Without loss of generality, say $x \in V_1$ By theorem: 13, $\Gamma_I(M)$ has no connected columns. Thus x+I \neq y+I. Hence x+I-y+I is an edge in $\Gamma\left(\frac{M}{I}\right)$ (By theorem: 6, Since x+I $\in W_1$,y+I $\in W_2$. Therefore y $\in V_2$. Hence all edges of $\Gamma_I(M)$ join vertices from V_1 to those of V_2 . Thus $\Gamma_I(M)$ is bipartite.

Theorem: 15 Let I be a reflexive ideal of M and let S be a clique in $\Gamma_I(M)$ such that $x^2 = 0$ for all $x \in S$. Then $S \cup I$ is a reflexive ideal of M.

Proof: Suppose that $x, y \in S \cup I$. consider the following three cases

Case: (i) If x, $y \in I$ then $x \alpha y \in S \cup I$, $\alpha \in \Gamma$

Case: (ii) If x, $y \in S$ with $x\alpha y \notin I$ then for all $c \in S$ $c\Gamma(x\alpha y) \in I$ and hence $S \cup \{x\alpha y\}$ is a clique. Now since S is a clique, $x\alpha y \in S$

Case: (iii) If $x \in I$ and $y \in S$ then $x\alpha y \notin I$ and hence for any $c \in S c\Gamma(x\alpha y) \in I$. Therefore $x\alpha y \in S$. Now let $x \in S \cup I$ and $r \in M$. Suppose that $r, x \notin I, \alpha \in \Gamma$. If $r\Gamma x \subseteq I$ then $r\Gamma x \subseteq S \cup I$. If $r\Gamma x \notin I$. Since for any $c \in S$, $(r\Gamma x) \Gamma c \subseteq I$. We have $r\Gamma x \in S$

Theorem: 16 Let I be a nonzero reflexive ideal of M and $a \in \Gamma_I(M)$ adjacent to every vertex of $\Gamma_I(M)$. Then (I: a) is a maximal element of the set {(I: x)/ x $\in M$ }. Moreover (I: a) is a completely prime ideal.

Proof: Let $V = V(\Gamma_I(M))$. Choose $0 \neq x \in I$. It is easy to see that $a \neq a + x \in \Gamma_I(M)$. Thus $a\Gamma(a + x) \in I$ and hence $a^2 \in I$.

Therefore $V \cup I = (I: a)$ and so for any $x \in M, (I:x)$ is contained in $V \cup I = (I: a)$. Thus the first assertion holds.

Now we prove that (I: a) is a completely prime ideal. Let $x\alpha y \in (I:a)$ and x, $y \notin (I:a)$. Therefore $x\alpha y \Gamma a \in I$. If $y\Gamma a \nsubseteq I$ then $x \in (I: y\Gamma a)$. We know that (I: a) $\subseteq (I: y\Gamma a)$. And therefore (I: a) $= (I: y\Gamma a)$. Hence $x \in (I:a)$ which is a contradiction.

Theorem: 17 Let I be a non-zero reflexive ideal of M. Then the followings are hold.

- a) If P_1 and P_2 are completely prime ideals of M and $I = P_1 \cap P_2 \neq \varphi$ Then $\Gamma_I(M)$ is a complete bipartite graph
- b) If $I \neq 0$ is a reflexive ideal of M for which $I = \sqrt{I}$ then $\Gamma_I(M)$ is a complete bipartite graph if and only if there exists prime ideals P_1 and P_2 of M such that $I = P_1 \cap P_2$

Proof:

a) Let a, $b \in M - I$ with $a\alpha b \in I$. Then $a\alpha b \in P_1$ and $a\alpha b \in P_2$. Since P_1 and P_2 are completely prime, we have $a \in P_1$ or $b \in P_1$ and $a \in P_2$ (or) $b \in P_2$. Therefore suppose $a \in \frac{P_1}{P_2}$ and $b \in \frac{P_2}{P_1}$. Thus $\Gamma_I(M)$ is a complete bipartite graph with parts $\frac{P_1}{P_2}$ and $\frac{P_2}{P_1}$

b) Suppose that the parts of $\Gamma_I(M)$ are V_1 and V_2 . Set $P_1 = V_1 \cup I$ and $P_2 = V_2 \cup I$. It is clear that $I = P_1 \cap P_2$. We now prove that P_1 is a reflexive ideal of M

To show this let $a, b \in P_1$

Case: (i) If $a, b \in I, \gamma \in \Gamma$ then $a \gamma b \in I$ and so $a \gamma b \in P_1$

Case: (ii) If $a, b \in V_1, \gamma \in \Gamma$ then there is $c \in V_2$ such that $c \gamma a \in I$ and $c \gamma b \in I$. So $c \Gamma(a \gamma b) \in I$. If $a \gamma b \in I$ then $a \gamma b \in P_1$. Otherwise $a \gamma b \subset V_1 => a \gamma b \in P_1$

Case: (iii) If $a \in V_1$ and $b \in I$ then $a \gamma b \notin I$. So there is $c \in V_2$ such that $c \Gamma(a \gamma b) \in I \Rightarrow a \gamma b \in V_1$ and so $a \gamma b \in P_1$. Now let $r \in M$ and $a \in P_1$

Case: (1) If $a \in I$ then $r \gamma a \in I$ and so $r \gamma a \in P_1$

Case: (2) If $a \in V_1$ then there exists $c \in V_2$ such that $c \gamma a \in I$. So, $c \Gamma(r \gamma a) \in I$. If $r \gamma a \in I$ then $r \gamma a \in P_1$. And so $r\gamma a \notin I$ then $r \gamma a \in V_1 \Rightarrow r \gamma a \in P_1 \Rightarrow P_1 \trianglelefteq M$. We now prove P_1 is prime. For proving this let $a \gamma b \in P_1$ and $a, b \notin P_1$. Since $P_1 = V_1 \cup Ia \gamma b \in I$ or $a \gamma b \in V_1$ and so in any case there exists $c \in V_2$ such that $c \Gamma(r \gamma a) \in I$. Thus $a\Gamma(c \gamma b) \in I$. If $c \gamma b \in I$ then by the definition of $\Gamma_I(M)$ we have $b \in V_1$ which is a contradiction. Hence $c \gamma b \notin I$ and $c \gamma b \in V_1$. Therefore $c^2 \gamma b \in I$. Since $I = \sqrt{I}$, $c^2 \notin I$. Hence $c^2 \in V_2$ so $b \in V_1$ which is a contradiction. Therefore P_1 is a completely prime ideal of M.

REFERENCES

- 1. D. Anderson, M.Naseer, Beck's coloring of a commutative ring. J. Algebra. 159 (1993), 500-514.
- 2. D.F.Anderson, P.S.Livingston., The zero-divisor graph of a commutative ring. J. Algebra.217 (1999), 434-447.
- 3. I.Beck., Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
- 4. J.A.Bondy and U.S.R.Murty., Graph Theory with Applications, North-Holland. Amsterdam (1976).

- 5. F.RDemayer, T.McKenzie, K.Schneider., The zero-divisor graph of a commutative semigroup, Semigroup Forum.65(2002), 206-214.
- 6. Pachirajulu Dheena and Balasubramanian Elavarasan, A., Generalized ideal based zero divisor graphs of Nearrings 24(2009), No.2, pp.161-169.
- 7. G.Pilz., Near-Rings, North-Holland, Amsterdam, 1983.
- 8. S.P.Redmond., An ideal-based zero-divisor graph of a commutative ring, comm.Algebra, 31, No.9 (2003), 4425-4443.
- 9. Bh.Satyanarayana., Contributions to Near-ring Theory., Doctoral Thesis, Nagarjuna University, India, 1984.

Source of support: Nil, Conflict of interest: None Declared