AN IDEAL BASED ZERO DIVISOR GRAPH OF GAMMA NEAR-RINGS
${ }^{1}$ R. Rajeswari, ${ }^{2}$ N. Meena Kumari* and ${ }^{3}$ T. Tamizh Chelvam
1\&2Department of Mathematics, A. P. C. Mahalaxmi College for Women,Thoothukudi, India.

${ }^{3}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India.
(Received on: 07-11-13; Revised \& Accepted on: 08-12-13)

Abstract

In this paper, we study the notion of ideal based zero divisor graph structure of Gamma Near- ring M with respect to reflexive ideal I of M denoted by $\Gamma_{I}(M)$ whose vertices are the set $\{x \in M-I /$ there exists $y \in M-I$ such that $x \Gamma y \subseteq I\}$ with distinct vertices x and y are adjacent if and only if $x \Gamma y \subseteq I$.

Keywords: ideal, graph, zero-divisor, diameter, cycle, Girth, clique.

INTRODUCTION

The concept of a Gamma near -rings [9] was introduced by Satyanarayana and the ideal theory in Gamma near- rings was studied by Bh. Satyanarayana and G.L.Booth.

Let ($\mathrm{M},+$) be a group (not necessarily abelian) and Γ be a nonempty set. Then M is said to be a Γ - near ring if there exists a mapping $M \times \Gamma \times M \rightarrow M$ (denote the image of $\left(m_{1}, \alpha_{1}, m_{2}\right)$ by $m_{1} \alpha_{1} m_{2}$ for $m_{1}, m_{2} \in M$ and $\alpha_{1} \in \Gamma$) satisfying the following conditions.

1. $\left(m_{1}+m_{2}\right) \alpha_{1} m_{3}=m_{1} \alpha_{1} m_{3}+m_{2} \alpha_{1} m_{3}$ and
2. ($\left.m_{1} \alpha_{1} m_{2}\right) \alpha_{2} m_{3}=m_{1} \alpha_{1}\left(m_{2} \alpha_{2} m_{3}\right)$ for all $m_{1}, m_{2}, m_{3} \in M$ and $\alpha_{1}, \alpha_{2} \in \Gamma$.

Furthermore, M is said to be a zero symmetric Γ - near ring if $\mathrm{m} \alpha 0=0$ for all $m \in M$ and $\alpha \in \Gamma$ (where 0 is an additive identity in M.)

A normal subgroup L of M is called a left (resp right) ideal of M if $u(x+v)-u \alpha v \in L$ (resp $x \alpha u \in L$) for all x $\in L, \alpha \in \Gamma$ and $u, v \in M$. A normal subgroup I of M is called an ideal if I is a both left and right ideal of M . An ideal I of M is said to be reflexive if $a \gamma b \in I=>b \gamma a \in I$ for $a, b \in M$ and $\gamma \in \Gamma$. A proper ideal P of M is said to be prime if for any ideals A , B of M such that $А \Gamma B \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$. An ideal P is called completely prime if a $\Gamma b \subseteq P$ implies $a \in P$ or $b \in P$. It is clear that if I is a reflexive ideal of M then I is prime iff I is completely prime. For any two nonempty subsets A, B of M , we write the set ($\mathrm{A}: \mathrm{B}$) $=\{m \in M / m \Gamma B \subseteq A\}$. We denote by $\mathrm{I}(\mathrm{a})$ the ideal of M generated by a. In [3], Beck introduced the concept of a zero divisor graph of a commutative ring with identity, but this work was mostly concerned with coloring of rings. In[2], Anderson and Livingston associate to a commutative ring with identity a (simple) graph $\Gamma(\mathrm{R})$, whose vertex set is $\mathrm{Z}(\mathrm{R})^{*}=\mathrm{Z}(\mathrm{R})-\{0\}$, the set of non zero divisor of R , in which two distinct $x, y \in Z(R) *$ are joined by an edge if and only if $x y=0$. They investigated the interplay between the ring theoretic properties of R and the graph theoretic properties of $\Gamma(R)$. Let I be a completely reflexive ideal ((ie.,) ab $\in \mathrm{I}$ implies ba $\in \mathrm{I}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{R}$) then the ideal based zero divisor graph, denoted by $\Gamma_{I}(R)$, is the graph whose vertices are the set $\{x \in R-I / x \Gamma y \in I$ for some $y \in R-\mathrm{I}\}$ with distinct vertices x and y are adjacent if and only if $x \gamma y \in I, \gamma \in \Gamma$.

In this paper, we study the undirected graph $\Gamma_{I}(M)$ of Gamma near rings for any completely reflexive ideal I of M. Throughout this paper M stands for a non zero Gamma near -ring with zero element and I is a completely reflexive ideal of M . For distinct vertices x and y of a Graph G , let $\mathrm{d}(\mathrm{x}, \mathrm{y})$ be the length of the shortest path from x to y . The diameter of a connected graph is the supremum of the distances between vertices. For any graph G, the girth of G is the length of a shortest cycle in G and is denoted by $\operatorname{gr}(\mathrm{G})$. If G has no cycle, we define the girth of G to be infinite. A clique of a graph is a maximal complete subgraph and the number of graph vertices in the largest clique or graph G , denoted by $\omega(\mathrm{G})$ is called the clique number of G. A graph G is bipartite with vertex classes V_{1}, V_{2} if the set of all vertices of G is $V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, and edge of G joins a vertex from V_{1} to a vertex of V_{2}.

${ }^{1}$ R. Rajeswari, ${ }^{2}$ N. Meena Kumari* and ${ }^{3}$ T. Tamizh Chelvam/ An Ideal Based Zero Divisor Graph of Gamma Near-Rings/ IJMA- 4(12), Dec.-2013.

A complete bipartite graph is a bipartite graph containing all edges joining the vertices of V_{1} and V_{2}. A complete bipartite graph on vertex sets of size m an n is denoted by $K^{m, n}$ for any positive integer, $K^{1, n}$ is called a star graph.

Theorem: 1

a) If $\mathrm{I}=(0)$ then $\Gamma_{I}(M)=\Gamma(\mathrm{M})$
b) Let I be a nonzero completely reflexive ideal of M . Then $\Gamma_{I}(M)=\Phi$ if and only if I is a completely prime ideal of M .

Proof:

a) Proof is Obivious.
b) Suppose that I is a completely prime ideal of M . For $\alpha \in \Gamma$, Then $x \alpha y \in I=>x \in I$ or $y \in I$. Hence the vertex set $\Gamma_{I}(M)$ is empty.

Conversely suppose that $\Gamma_{I}(M)=\Phi$. Therefore if $x \in M-I$ and $x \alpha y \in I, \alpha \in \Gamma$ for some $y \in M$. We must have $y \in I$. (otherwise x is a vertex of $\Gamma_{I}(M)$). Hence I is a completely prime ideal of M .

Theorem: 2 Let I be a completely reflexive ideal of a gamma near-ring M . Then $\Gamma_{I}(M)$ is connected with $\operatorname{diam}\left(\Gamma_{I}(M)\right) \leq 3$. Furthermore if $\Gamma_{I}(M)$ contains a cycle, then $\operatorname{gr}\left(\Gamma_{I}(M)\right) \leq 7$.

Proof: Let x and y be distinct vertices of $\Gamma_{I}(M)$. Then there exists $z \in M-I$ and $w \in M-I$ with $x \Gamma z \subseteq I$ and $w \Gamma y \subseteq I$. If $x \Gamma y \subseteq I$ then $\mathrm{x}-\mathrm{y}$ is a path of length 1 . If $x \Gamma y \nsubseteq I$ and $z \Gamma w \subseteq I$, then $\mathrm{x}-\mathrm{z}-\mathrm{w}-\mathrm{y}$ is a path of length 3 . If $x \Gamma y \nsubseteq I$ and $z \Gamma w \nsubseteq I$ then there exists $\gamma \in \Gamma$ such that $\mathrm{x}-\mathrm{z} \gamma \mathrm{w}-\mathrm{y}$ is a path of length 2 . Thus $\Gamma_{I}(M)$ is connected and $\operatorname{diam}\left(\Gamma_{I}(M)\right) \leq 3$.

For any undirected graph $G, \operatorname{gr}(G) \leq 2 \operatorname{diam}(G)+1$, if G contains a cycle. Thus $\operatorname{gr}(G) \leq 2(3)+1=7$.
Therefore $\operatorname{gr}\left(\Gamma_{I}(M)\right) \leq 7$.
Theorem: 3 Let I be a completely reflexive ideal of M. For any $\mathrm{x}, \mathrm{y} \in \Gamma_{I}(M)$, if $\mathrm{x}-\mathrm{y}$ is an edge in $\Gamma_{I}(M)$, then for each $\mathrm{m} \in \mathrm{M}-\mathrm{I}$, either $\mathrm{m}-\mathrm{y}$ or $\mathrm{x}-\mathrm{y}^{\prime}$ is an edge in $\Gamma_{I}(M)$ for some $\mathrm{y}^{\prime} \in<\mathrm{y}>-\mathrm{I}$

Proof: Let $x, y \in \mathrm{M}-\mathrm{I}$, with x - y be an edge in $\Gamma_{I}(M)$ and suppose that $\mathrm{m}-\mathrm{y}$ is not an edge in $\Gamma_{I}(M)$ for some $\mathrm{m} \in \mathrm{M}-\mathrm{I}$.Then $x_{1} \Gamma y_{1} \in I$ for some $x_{1} \in<x>-I, y_{1} \in<y>-I$ and $m \Gamma y_{1} \notin I$. But $m \Gamma y_{1} \Gamma x_{1} \in I$. So x-y' is an edge in $\Gamma_{I}(M)$ for some $y^{\prime} \in<y>-I$

Theorem: 4 Let I be a completely reflexive ideal of M and if a-x-b is a path in $\Gamma_{I}(M)$, then either IU $\left\{x_{1}\right\}$ is an ideal of M for some $x_{1} \in<x>-I$ or a-x-b is contained in a cycle of length ≤ 4.

Proof: Let a-x-b be a path in $\Gamma_{I}(M)$. Then there exists $x_{1}, x_{2} \in<x>-I, a_{1} \in<a>-I$ and $b_{1} \in-I$ such that $a_{1} \Gamma x_{1} \in I$ and $b_{1} \Gamma x_{2} \in I$. If $a^{\prime} \Gamma b^{\prime} \in I$ for some $a^{\prime} \in<a>-I$ and $b^{\prime} \in-I$. Then a-x-b-a is contained in a cycle of length ≤ 4. So let us assume that $a_{1} \Gamma b_{1} \notin I$ for all $a_{1} \in<a>-I$ and $b_{1} \in-I$

Case: (i) Let $x_{1}=x_{2}$ then either $I_{a_{1}} \cap I_{b_{1}}=I \cup\left\{x_{1}\right\}$ or there exists $\mathrm{c} \in I_{a_{1}} \cap I_{b_{1}}$ such that $c \notin I \cup\left\{x_{1}\right\}$. Then $\mathrm{c} \Gamma a_{1}, c \Gamma b_{1} \in I$. In the first case, $I \cup\left\{x_{1}\right\}$ is an ideal.In the second case a-x-b-c-a is contained in a cycle of length ≤ 4.

Case: (ii) Let $x_{1} \neq x_{2}$, then clearly $<a_{1}>\cap<b_{1}>\nsubseteq$ I. Then for each $\mathrm{z} \in<a_{1}>\cap<b_{1}>-\mathrm{I}$. We have, $\mathrm{z} \Gamma x_{1} \in<$ $a_{1}><x_{1}>\subseteq I$ and $\mathrm{z} \Gamma x_{2} \in I$. Clearly either $x_{1} \neq x$ or $x_{2} \neq \mathrm{x}$. Say $x_{1} \neq x$. Then we have a path a- x_{1}-b and hence a-x-b- x_{1}-a is contained in a cycle of length ≤ 4

Theorem: 5 Let I be a completely reflexive ideal of M. Then $\Gamma_{I}(M)$ can be neither a pentagon nor a hexagon
Proof: Suppose that $\Gamma_{I}(M)$ is a-b-c-d-e-a a pentagon. Then by theorem:4, For one of the vertices say $\left(b_{1}\right), I \cup\left\{b_{1}\right\}$ is an ideal of M for some $b_{1} \in-I$. Then in the pentagon,there exists $d_{1} \in<d>-I$ and $e_{1} \in<e>-I$ such that $d_{1} \Gamma e_{1} \subseteq I$.Since $I \cup\left\{b_{1}\right\}$ is an ideal, $b_{1} \gamma d_{1}=b_{1}=b_{1} \gamma_{1} e_{1}$ for some $\gamma, \gamma_{1} \in \Gamma$. But $b_{1} \gamma\left(d_{1} \gamma_{1} e_{1}\right) \in I, \gamma_{1} \in \Gamma$. Then $b_{1}=b_{1} \gamma_{1} e_{1}=\left(b_{1} \gamma d_{1}\right) \gamma_{1} e_{1}=b_{1} \gamma\left(d_{1} \gamma_{1} e_{1}\right) \in I$. (ie)., $b_{1} \in I$ which is a contradiction. The proof for the hexagon is the same

Theorem: 6 Let I be an reflexive ideal of a Gamma near ring M and let $\mathrm{x}, \mathrm{y} \in M-I$ Then

1. If $\mathrm{x}+\mathrm{I}$ is adjacent to $\mathrm{y}+\mathrm{I}$ in $\Gamma\left(\frac{M}{I}\right)$ then x is adjacent to y in $\Gamma_{I}(M)$
2. If x is adjacent to y in $\Gamma_{I}(M)$ and $\mathrm{x}+\mathrm{I} \neq \mathrm{y}+\mathrm{I}$ then $\mathrm{x}+\mathrm{I}$ is adjacent to $\mathrm{y}+\mathrm{I}$ in $\Gamma\left(\frac{M}{I}\right)$
3. If x is adjacent to y in $\Gamma_{I}(M)$ and $\mathrm{x}+\mathrm{I}=\mathrm{y}+\mathrm{I}$ then $\mathrm{x}^{2}, \mathrm{y}^{2} \in I$

Clearly there is a strong relationship between $\Gamma_{I}(M)$ and $\Gamma\left(\frac{M}{I}\right)$
Let I be an ideal of a gamma near- ring M . One can verify that the following method can be used to construct a graph $\Gamma_{I}(M)$. Let $\left\{a_{\lambda}\right\}_{\lambda \in \Lambda} \subseteq \mathrm{R}$ be a set of coset representatives of the vertices of $\Gamma\left(\frac{M}{I}\right)$. For each $\mathrm{i} \in I$, define a graph G_{i} with vertices $\left\{a_{\lambda}+i / \lambda \in \wedge\right\}$ where edges are defined by the relationship $a_{\lambda}+i$ is adjacent to $a_{\beta}+i$ in $G_{i} i f f a_{\lambda}+I$ is adjacent to $a_{\beta}+I$ in $\Gamma\left(\frac{M}{I}\right)($ (ie., $\left.) a_{\lambda} \Gamma a_{\beta} \in I\right)$

Theorem: 7 Let I be a completely reflexive ideal of M . Then the following are hold
i. If M has identity, then $\Gamma_{I}(M)$ has no cut vertices.
ii. If M has no identity and if I is a nonzero completely reflexive ideal of M then $\Gamma_{I}(M)$ has no cut vertices.

Proof: Suppose that the vertex x of $\Gamma_{I}(M)$ is cut vertex. Let $\mathrm{u}-\mathrm{x}-\mathrm{w}$ be a path in $\Gamma_{I}(M)$. Since x is a cut vertex, x lies in every path from u to w.
i) Assume that M is Gamma near ring with identity. For any $u, v \in \Gamma_{I}(M)$, there exists a path $u-1-\mathrm{w}$ which shows $\mathrm{x}(\neq 1)$ in $\Gamma_{I}(M)$ is not a cut vertex. Suppose $\mathrm{x}=1$. Then there exists $u_{1} \in<u>-I, w_{1} \in<w>-I, \gamma \in \Gamma$ and $t_{1}, t_{2} \in M-I$ such that $u_{1} \gamma t_{1}, w_{1} \gamma t_{2} \in I$ which implies $u_{1}, w_{1} \in \Gamma_{I}(M)$. Since $\Gamma_{I}(M)$ is connected, there exists $\mathrm{m}, m_{1} \in M-I \cup\{x\}$ such that $u_{1}-m-w_{1}$ (or) $u_{1}-m-m_{1}-w_{1}$ is a path in $\Gamma_{I}(M)$ which implies $u-m-w-1-$ u (or) $u-m-m_{1}-w-1-u$ is a cycle in $\Gamma_{I}(M)$ contradicting $\mathrm{x}=1$ is a cut vertex
ii) Let M be a Γ-near-ring without identity and I be a non zero completely reflexive ideal of M . Since $u-x-w$ is a path from $\mathrm{u}-w$, then there exists $u_{1} \in<u>-I, w_{1} \in<w>-I$ and $x_{1}, x_{2} \in<x>-I, \gamma \in \Gamma$ such that $u_{1} \gamma x_{1} \in I$ and $w_{1} \gamma x_{2} \in I$.

Case: (i) $x_{1}=x_{2}$
If $u_{1}+\mathrm{I}=x_{1}+\mathrm{I}$ then $u_{1} \gamma w_{1} \in \mathrm{I} \Rightarrow \mathrm{u}$ is adjacent to w . Similarly, If $x_{2}+I=w_{1}+\mathrm{I}, \mathrm{u}$ is adjacent to w . So assume that $u_{1}+I \neq x_{1}+\mathrm{I}$ and $x_{2}+\mathrm{I} \neq w_{1}+\mathrm{I}$. Let $0 \neq i \in I$. Then $u_{1} \gamma w_{1} \in \mathrm{I}$ and $w_{1} \gamma x_{2} \in I$ which implies $u_{1} \gamma\left(x_{1}+\right.$ $i, w 1 \gamma x 1+i \in I$. If $\mathrm{x}=x 1+i$ then $\mathrm{x} \neq x 1 \Rightarrow \mathrm{u}-x 1-\mathrm{w}$ is path in $\Gamma I M$. otherwise, $\mathrm{u}-x 1+i-\mathrm{w}$ is a path in $\Gamma I M$. Thus there exists a path from u to w not passing through x which is a contradiction.

Case: (ii) Either x_{1} or x_{2} equal to x .
Without loss of generality, let us assume that $x_{1}=\mathrm{x}$ and $x_{2} \neq x$. Then $u_{1} \gamma x \in I$ and $x_{2} \gamma w_{1} \in I=>u_{1} \gamma x_{1} \in I$ and $x_{2} \gamma w_{1} \in I$. Also we have a path $\mathrm{u}-x_{2}-\mathrm{w}$ which is a contradiction

Case: (iii) Neither x_{1} nor x_{2} equal to x .
If $x_{1} \gamma x_{2} \in I$ then we have a path $\mathrm{u}-x_{1}-x_{2}$-wwhich is a contradiction. So assume that $x_{1} \gamma x_{2} \neq x$, then we have a path $\mathrm{u}-x_{1} \gamma x_{2}-\mathrm{w}$ which is a contradiction.

Thus x cannot be a cut vertex.
Definition: 8 Using the notation as in the above construction, we call the subset $a_{\lambda}+I$ a column of $\Gamma_{I}(M)$. If $a_{\lambda}{ }^{2} \in I$ then we call $a_{\lambda}+I$ a connected column of $\Gamma_{I}(M)$.

Lemma: 9 Let I be an reflexive ideal of a Gamma near- ring M. Then $\operatorname{gr}\left(\Gamma_{I}(M)\right) \leq \operatorname{gr}\left(\Gamma\left(\frac{M}{I}\right)\right.$. Inparticular if $\Gamma\left(\frac{M}{I}\right)$ contains a cycle then so does $\Gamma_{I}(M)$ and therefore $\operatorname{gr}\left(\Gamma_{I}(M)\right) \leq \operatorname{gr}\left(\Gamma\left(\frac{M}{I}\right)\right) \leq 4$.

Proof: If $\operatorname{gr}\left(\Gamma\left(\frac{M}{I}\right)\right)=\infty$ we are done. So suppose $\operatorname{gr}\left(\Gamma\left(\frac{M}{I}\right)\right)=\mathrm{n}<\infty$.
Let $x_{1}+\mathrm{I}-x_{2}+\mathrm{I}-\cdots-x_{\mathrm{n}}+\mathrm{I}-x_{1}+\mathrm{I}$ be a cycle in $\Gamma\left(\frac{M}{I}\right)$ through n distinct vertices
Then $x_{1}-x_{2}-\cdots-x_{\mathrm{n}}-x_{1}$ is a cycle in $\Gamma_{I}(M)$ of length n. Hence $\operatorname{gr}\left(\Gamma_{I}(M)\right) \leq \mathrm{n}$.
Lemma: $\mathbf{1 0}$ Let I be an reflexive ideal of a gamma near ring M. If $|I| \geq 3$ and $\Gamma_{I}(M)$ contains a connected column, then $\operatorname{gr}\left(\Gamma_{I}(M)\right)=3$

Proof: Let $\mathrm{x}+\mathrm{I}$ be a connected column of $\Gamma_{I}(M)$. Then $\mathrm{x}^{2} \in I$. Let $\mathrm{i}, \mathrm{j} \in I-\{0\}$. Then $\mathrm{x}-(\mathrm{x}+\mathrm{i})-(\mathrm{x}+\mathrm{j})-\mathrm{x}$ is a cycle of length 3 in $\Gamma_{I}(M)$.

Lemma: 11 Let I be a reflexive ideal of a gamma near ring M. If $\mathrm{I} \neq 0$ and $\Gamma\left(\frac{M}{I}\right)$ has only one vertex, then $\operatorname{gr} \Gamma_{I}(M)=\left\{\begin{array}{c}3 i f|I| \geq 3 \\ \infty i f|I|=2\end{array}\right.$

Proof: If $\Gamma\left(\frac{M}{I}\right)$ has only one vertex then $\Gamma_{I}(M)$ consist of a single connected column. Thus $\Gamma_{I}(M)$ is a complete graph, and therefore has a cycle of length 3 unless $\Gamma_{I}(M)$ has only two vertices.

Lemma: 12 Let I be a reflexive ideal of a gamma near ring M. If I has two elements, $\Gamma\left(\frac{M}{I}\right)$ has at least two vertices and $\Gamma_{I}(M)$ has at least two vertices, and $\Gamma_{I}(M)$ has at least one connected column, then $\operatorname{gr}\left(\Gamma_{I}(M)\right)=3$

Proof: Let $\mathrm{x}+\mathrm{I}$ be a connected column of $\Gamma_{I}(M)$. Then $x^{2} \in I$. Let $\mathrm{y}+\mathrm{I}$ be a vertex adjacent to $\mathrm{x}+\mathrm{I}$ in $\Gamma\left(\frac{M}{I}\right)$. Write $\mathrm{I}=\{0, \mathrm{i}\}$. Then $\mathrm{y}-\mathrm{x}-\mathrm{x}+\mathrm{i}-\mathrm{y}$ is a cycle of length 3 in $\Gamma_{I}(M)$

Theorem: $\mathbf{1 3}$ Let I be a nonzero reflexive ideal of a gamma near ring M that is not a completely prime ideal. Then $\operatorname{Gr}\left(\Gamma_{I}(M)=\infty\right.$ if $\Gamma\left(\frac{M}{I}\right)$ has only one cut vertex $\&|I|=2$

$$
\left\{\begin{array}{l}
4 \text { if } \operatorname{gr}\left(\Gamma\left(\frac{M}{I}\right)>3 \text { and } \Gamma_{I}(M)\right. \text { has no connected columns } \\
3 \text { otherwise }
\end{array}\right.
$$

Proof: The only remaining case is $\mathrm{I} \neq(0), \Gamma_{I}(M)$ has no connected columns, and $\operatorname{gr}\left(\left(\Gamma\left(\frac{M}{I}\right)\right)>3\right.$.
Since $\Gamma_{I}(M)$ has no connected columns, $\Gamma\left(\frac{M}{I}\right)$ must have at least two vertices. By lemma $9, \operatorname{Gr}\left(\Gamma_{I}(M)\right) \leq 4$. Assume $\mathrm{x}-\mathrm{y}-\mathrm{z}-\mathrm{x}$ is a cycle in $\Gamma_{I}(M)$ of length 3 and we provide a contradiction. Since $\mathrm{gr}\left(\Gamma\left(\frac{M}{I}\right)\right)>3, \mathrm{x}+\mathrm{I}-\mathrm{y}+\mathrm{I}-\mathrm{z}+\mathrm{I}-\mathrm{x}+\mathrm{I}$ cannot be a cycle in $\Gamma\left(\frac{M}{I}\right)$.Therefore we have either $\mathrm{x}+\mathrm{I}=\mathrm{y}+\mathrm{I}, \mathrm{y}+\mathrm{I}=\mathrm{z}+\mathrm{I}$ (or) $\mathrm{z}+\mathrm{I}=\mathrm{x}+\mathrm{I}$. If $\mathrm{x}+\mathrm{I}=\mathrm{y}+\mathrm{I}$, then $(x+I)^{2}=(x+1)(y+$ $I=O+I$ and so $\mathrm{x}+\mathrm{I}$ is a connected column of $\Gamma I M$. But this is a contradiction. We get a similar contradiction if $\mathrm{y}+\mathrm{I}=\mathrm{z}+\mathrm{I}$ (or) $\mathrm{z}+\mathrm{I}=\mathrm{x}+\mathrm{I}$. Hence $\operatorname{gr}\left(\Gamma_{I}(M)\right)=4$

Theorem: $\mathbf{1 4}$ Let I be a nonzero reflexive ideal of a gamma near ring M. Then $\Gamma_{I}(M)$ is bipartite if and only if either
a) $\operatorname{gr}\left(\Gamma_{I}(M)\right)=\infty($ or $)$
b) $\operatorname{gr}\left(\Gamma_{I}(M)\right)=4$ and $\Gamma\left(\frac{M}{I}\right)$ is bipartite.

Proof: Suppose that $\Gamma_{I}(M)$ is bipartite.Since $\Gamma\left(\frac{M}{I}\right)$ is isomorphic to a subgraph (or) $\Gamma_{I}(M), \Gamma\left(\frac{M}{I}\right)$ is bipartite (or a single vertex). By theorem 13, $\operatorname{gr}\left(\Gamma_{I}(M)\right.$) is 3,4, ∞. By theorem 1 of sec1.2 of Bollobas (1979), a graph is bipartite if and only if it does not contain an odd cycle. Hence $\operatorname{gr}\left(\Gamma_{I}(M)\right) \neq 3$.

If $\operatorname{gr}\left(\Gamma_{I}(M)\right)=\infty$, then by theorem:13, $\Gamma_{I}(M)$ is a graph on two vertices and therefore bipartite. Suppose $\operatorname{gr}\left(\Gamma_{I}(M)\right)=4$ and $\Gamma\left(\frac{M}{I}\right)$ is bipartite. Let W_{1}, W_{2} be the two vertex classes of $\Gamma\left(\frac{M}{I}\right)$. Define $V_{j}=\left\{x+i / i \in I, x+I \in W_{j}\right\}$ for $\mathrm{j}=1$, 2 . Then $V_{1} \cap V_{2}=\varphi$ and the vertex set of $\Gamma_{I}(M)$ is $V_{1} \cup V_{2}$.

Let x and y be adjacent vertices of $\Gamma_{I}(M)$. Without loss of generality, say $x \in V_{1}$ By theorem: $13, \Gamma_{I}(M)$ has no connected columns. Thus $\mathrm{x}+\mathrm{I} \neq \mathrm{y}+\mathrm{I}$. Hence $\mathrm{x}+\mathrm{I}-\mathrm{y}+\mathrm{I}$ is an edge in $\Gamma\left(\frac{M}{I}\right)\left(\right.$ By theorem: 6 , Since $\mathrm{x}+\mathrm{I} \in W_{1}, \mathrm{y}+\mathrm{I} \in W_{2}$. Therefore $\mathrm{y} \in V_{2}$. Hence all edges of $\Gamma_{I}(M)$ join vertices from V_{1} to those of V_{2}. Thus $\Gamma_{I}(M)$ is bipartite.

Theorem: 15 Let I be a reflexive ideal of M and let S be a clique in $\Gamma_{I}(M)$ such that $\mathrm{x}^{2}=0$ for all $\mathrm{x} \in \mathrm{S}$. Then $\mathrm{S} U I$ is a reflexive ideal of M .

Proof: Suppose that $\mathrm{x}, \mathrm{y} \in \mathrm{S} \cup I$. consider the following three cases
Case: (i) If $\mathrm{x}, \mathrm{y} \in I$ then $x \alpha y \in \mathrm{~S} \cup I, \alpha \in \Gamma$

${ }^{1}$ R. Rajeswari, ${ }^{2}$ N. Meena Kumari* and ${ }^{3}$ T. Tamizh Chelvam/ An Ideal Based Zero Divisor Graph of Gamma Near-Rings/ IJMA- 4(12), Dec.-2013.

Case: (ii) If $\mathrm{x}, \mathrm{y} \in \mathrm{S}$ with $x \alpha y \notin I$ then for all $\mathrm{c} \in \mathrm{S} \mathrm{c} \Gamma(x \alpha y) \in I$ and hence $\mathrm{S} \cup\{x \alpha y\}$ is a clique. Now since S is a clique, $x \alpha y \in S$

Case: (iii) If $\mathrm{x} \in I$ and $\mathrm{y} \in S$ then $x \alpha y \notin I$ and hence for any $\mathrm{c} \in \mathrm{S} c \Gamma(x \alpha y) \in I$. Therefore $x \alpha y \in S$. Now let $x \in \mathrm{~S} \cup I$ and $r \in M$.Suppose that $\mathrm{r}, \mathrm{x} \notin I, \alpha \in \Gamma$.If $\mathrm{r} \Gamma \mathrm{x} \subseteq I$ then $\mathrm{r} \Gamma \mathrm{x} \subseteq \mathrm{S} \cup I$. If $\mathrm{r} \Gamma \mathrm{x} \nsubseteq \mathrm{I}$. Since for any $\mathrm{c} \in \mathrm{S}$, $(\mathrm{r} \Gamma \mathrm{x}) \Gamma \mathrm{c} \subseteq I$. We have $r \Gamma x \in S$

Theorem: 16 Let I be a nonzero reflexive ideal of M and $\mathrm{a} \in \Gamma_{I}(M)$ adjacent to every vertex of $\Gamma_{I}(M)$. Then (I: a) is a maximal element of the set $\{(\mathrm{I}: \mathrm{x}) / \mathrm{x} \in M\}$.Moreover ($\mathrm{I}: ~ \mathrm{a}$) is a completely prime ideal.

Proof: Let $\mathrm{V}=\mathrm{V}\left(\Gamma_{I}(M)\right)$. Choose $0 \neq \mathrm{x} \in I$.It is easy to see that $\mathrm{a} \neq \mathrm{a}+\mathrm{x} \in \Gamma_{I}(M)$. Thus $\mathrm{a} \Gamma(\mathrm{a}+\mathrm{x}) \in I$ and hence $\mathrm{a}^{2} \in I$.
Therefore $\mathrm{V} \cup I=(\mathrm{I}:$ a) and so for any $\mathrm{x} \in M$,($\mathrm{I}: \mathrm{x})$ is contained in $\mathrm{V} \cup I=(\mathrm{I}:$ a). Thus the first assertion holds.
Now we prove that (I: a) is a completely prime ideal. Let $x \alpha y \in(I: a)$ and $\mathrm{x}, \mathrm{y} \notin(\mathrm{I}: \mathrm{a})$. Therefore $\mathrm{x} \alpha y\lceil\mathrm{a} \in I$. If $y\lceil a \nsubseteq \mathrm{I}$ then $\mathrm{x} \in(I: y \Gamma a)$. We know that ($\mathrm{I}: \mathrm{a}) \subseteq(I: y \Gamma \mathrm{a})$. And therefore (I: a) $=(I: y \Gamma a)$. Hence $\mathrm{x} \in(I: a)$ which is a contradiction.

Theorem: $\mathbf{1 7}$ Let I be a non-zero reflexive ideal of M. Then the followings are hold.
a) If P_{1} and P_{2} are completely prime ideals of M and $\mathrm{I}=\mathrm{P}_{1} \cap \mathrm{P}_{2} \neq \varphi$

Then $\Gamma_{I}(M)$ is a complete bipartite graph
b) If $\mathrm{I} \neq 0$ is a reflexive ideal of M for which $\mathrm{I}=\sqrt{I}$ then $\Gamma_{I}(M)$ is a complete bipartite graph if and only if there exists prime ideals P_{1} and P_{2} of M such that $I=P_{1} \cap P_{2}$

Proof:

a) Let $\mathrm{a}, \mathrm{b} \in \mathrm{M}-\mathrm{I}$ with $a \alpha b \in I$. Then $a \alpha b \in \mathrm{P}_{1}$ and $a \alpha b \in \mathrm{P}_{2}$. Since P_{1} and P_{2} are completely prime, we have $a \in \mathrm{P}_{1}$ or $b \in \mathrm{P}_{1}$ and $a \in \mathrm{P}_{2}$ (or) $b \in \mathrm{P}_{2}$. Therefore suppose $a \in \frac{P_{1}}{P_{2}}$ and $b \in \frac{P_{2}}{P_{1}}$. Thus $\Gamma_{I}(M)$ is a complete bipartite graph with parts $\frac{P_{1}}{P_{2}}$ and $\frac{P_{2}}{P_{1}}$
b) Suppose that the parts of $\Gamma_{I}(M)$ are V_{1} and V_{2}. Set $\mathrm{P}_{1}=\mathrm{V}_{1} \cup I$ and $\mathrm{P}_{2}=\mathrm{V}_{2} \cup I$. It is clear that $\mathrm{I}=\mathrm{P}_{1} \cap \mathrm{P}_{2}$. We now prove that P_{1} is a reflexive ideal of M

To show this let $a, b \in \mathrm{P}_{1}$
Case: (i) If $\mathrm{a}, \mathrm{b} \in \mathrm{I}, \gamma \in \Gamma$ then $\mathrm{a} \gamma \mathrm{b} \in \mathrm{I}$ andso $\mathrm{a} \gamma \mathrm{b} \in \mathrm{P}_{1}$
Case: (ii) If $\mathrm{a}, \mathrm{b} \in \mathrm{V}_{1}, \gamma \in \Gamma$ then there is $\mathrm{c} \in \mathrm{V}_{2}$ such that $\mathrm{c} \gamma \mathrm{a} \in \mathrm{I}$ and $\mathrm{c} \gamma \mathrm{b} \in \mathrm{I}$. So c Γ (a $\left.\gamma \mathrm{b}\right) \in \mathrm{I}$. If a $\gamma \mathrm{b} \in \mathrm{I}$ then $\mathrm{a} \gamma \mathrm{b} \in \mathrm{P}_{1}$. Otherwise a $\gamma \mathrm{b} \subset \mathrm{V}_{1}=>\mathrm{a} \gamma \mathrm{b} \in \mathrm{P}_{1}$

Case: (iii) If $\mathrm{a} \in \mathrm{V}_{1}$ and $\mathrm{b} \in \mathrm{I}$ then $\mathrm{a} \gamma \mathrm{b} \notin \mathrm{I}$. So there is $\mathrm{c} \in \mathrm{V}_{2}$ such that $\mathrm{c} \Gamma(\mathrm{a} \gamma \mathrm{b}) \in \mathrm{I}=>\mathrm{a} \gamma \mathrm{b} \in \mathrm{V}_{1}$ and so $\mathrm{a} \gamma \mathrm{b} \in \mathrm{P}_{1}$. Now let $r \in M$ and a $\in \mathrm{P}_{1}$

Case: (1) If $\mathrm{a} \in I$ then $\mathrm{r} \gamma \mathrm{a} \in I$ andso $\mathrm{r} \gamma \mathrm{a} \in \mathrm{P}_{1}$
Case: (2) If $\mathrm{a} \in \mathrm{V}_{1}$ then there exists $\mathrm{c} \in \mathrm{V}_{2}$ such that $\mathrm{c} \gamma \mathrm{a} \in I$. So, $\mathrm{c} \Gamma(\mathrm{r} \gamma \mathrm{a}) \in \mathrm{I}$. If $\mathrm{r} \gamma \mathrm{a} \in \mathrm{I}$ then $\mathrm{r} \gamma \mathrm{a} \in \mathrm{P}_{1}$. And so $\mathrm{r} \gamma \mathrm{a} \notin I$ then $\mathrm{r} \gamma \mathrm{a} \in \mathrm{V}_{1} \Rightarrow \mathrm{r} \gamma \mathrm{a} \in \mathrm{P}_{1} \Rightarrow \mathrm{P}_{1} \unlhd \mathrm{M}$. We now prove P_{1} is prime. For proving this let a $\gamma \mathrm{b} \in \mathrm{P}_{1}$ and $\mathrm{a}, \mathrm{b} \notin \mathrm{P}_{1}$. Since $\mathrm{P}_{1}=\mathrm{V}_{1} \cup I \mathrm{a} \gamma \mathrm{b} \in I$ or $\mathrm{a} \gamma \mathrm{b} \in \mathrm{V}_{1}$ andso in any case there exists c $\in \mathrm{V}_{2}$ such that $\mathrm{c} \Gamma(\mathrm{r} \gamma \mathrm{a}) \in \mathrm{I}$. Thus $\mathrm{a} \Gamma$ ($\mathrm{c} \gamma \mathrm{b}) \in \mathrm{I}$. If $\mathrm{c} \gamma \mathrm{b} \in \mathrm{I}$ then by the definition of $\Gamma_{I}(M)$ we have $b \in V_{1}$ which is a contradiction. Hence $\mathrm{c} \gamma \mathrm{b} \notin I$ and $\mathrm{c} \gamma \mathrm{b} \in V_{1}$. Therefore $c^{2} \gamma \mathrm{~b} \in \mathrm{I}$. Since $\mathrm{I}=\sqrt{I}, c^{2} \notin I$. Hence $c^{2} \in V_{2}$ so $\mathrm{b} \in V_{1}$ which is a contradiction. Therefore P_{1} is a completely prime ideal of M.

REFERENCES

1. D. Anderson, M.Naseer, Beck’s coloring of a commutative ring. J. Algebra. 159 (1993), 500-514.
2. D.F.Anderson, P.S.Livingston., The zero-divisor graph of a commutative ring. J. Algebra. 217 (1999), 434-447.
3. I.Beck., Coloring of commutative rings, J. Algebra,.116(1988), 208-226.
4. J.A.Bondy and U.S.R.Murty., Graph Theory with Applications, North-Holland. Amsterdam (1976).
${ }^{1}$ R. Rajeswari, ${ }^{2}$ N. Meena Kumari* and ${ }^{3}$ T. Tamizh Chelvam/ An Ideal Based Zero Divisor Graph of Gamma Near-Rings/ IJMA- 4(12), Dec.-2013.
5. F.RDemayer, T.McKenzie, K.Schneider., The zero-divisor graph of a commutative semigroup, Semigroup Forum.65(2002), 206-214.
6. Pachirajulu Dheena and Balasubramanian Elavarasan,A., Generalized ideal based - zero divisor graphs of Nearrings 24(2009), No.2, pp.161-169.
7. G.Pilz., Near-Rings, North-Holland, Amsterdam,1983.
8. S.P.Redmond., An ideal-based zero-divisor graph of a commutative ring, comm.Algebra, 31, No. 9 (2003), 44254443.
9. Bh.Satyanarayana., Contributions to Near-ring Theory., Doctoral Thesis, Nagarjuna University, India, 1984.

Source of support: Nil, Conflict of interest: None Declared

