International Journal of Mathematical Archive-4(12), 2013, 250-252

Igg-Closed sets

K. Bhavani*

Department of Mathematics, RMK College of Engineering and Technology, Puduvoyal - 601206, TamilNadu, India.

(Received on: 16-11-13; Revised & Accepted on: 11-12-13)

ABSTRACT

We define I_{gg} -closed sets in an ideal topological space and discuss their properties.

Keywords and Phrases: I_g -closed set, I_g -open set, g-closed set, g-open set and g-local function.

AMS 2010 Subject classification: 54 A 05, 54 A 10.

1. INTRODUCTION AND PRELIMINARIES

A nonempty collection I of subsets of a given set X is said to be an ideal on X if (i). $A \in I$ and $B \subset A$ implies $B \in I$ (finite additivity). If (X, τ) is a topological space and I is an ideal on X, then (X, τ, I) is called an ideal topological space [4]. For each subset A of X, $A^*(I, \tau) = \{x \in X: U_x \cap A \notin I, for every open set U_x containing x\}$, is called the local function of A [4] with respect to I and τ . We simply write A^* instead of $A^*(I, \tau)$ in case there is no chance for confusion. We often use the properties of the local function stated in Theorem 2.3 of [3] without mentioning it. Moreover, $cl^*(A) = A \cup A^*[6]$ defines a Kuratowski closure operator for a topology τ^* on X which is finer than τ . A subset A of an ideal topological space (X, τ) is said to be I_g -closed [2], if $cl^*(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a g-closed set is called a g-open set [5]. A subset A of an ideal space (X, τ, I) is said to be I_g -closed [2], if $cl^*(A) \subset U$ whenever $A \subset U$ and U is open set [2]. The collection of all g-open sets in a topological space (X, τ) is denoted by $cl_g(A)[1]$ is the intersection of all g-closed sets containing A and the the g-interior of A denoted by $int_g(A)[1]$ is the union of all g-open sets contained in A.

For each subset A of X, $A_g^*(\mathbf{I}, \tau) = \{x \in X: U_x \cap A \notin \mathbf{I}, \text{ for every g-open set } U_x \text{ containing } x\}$, is called the g-local function of A [1] with respect to \mathbf{I} and τ_g and is denoted by A_g^* . Also, $cl_g^*(A) = A \cup A_g^*$ [1] is a Kurotowski closure operator for a topology $\tau_g^* = \{X - A: cl_g^*(A) = A\}$ [1] on X which is finer than τ_g .

2. Igg -CLOSED SETS

Definition: 2.1 A subset A of an ideal topological space (X, τ, I) is said to be an I_{gg} -closed set if $A_{g^*} \subset U$ whenever $A \subset U$ where U is a g-open set in X, equivalently, $cl_{g^*}(A) \subset U$ whenever $A \subset U$ where U is a g-open set in X. A is said to be an I_{gg} -open set if X-A is an I_{gg} -closed set.

Theorem: 2.2 Let (X, τ, I) be an ideal topological space and A \subset X. Then the following are equivalent.

- (a) A is \mathbf{I}_{gg} -closed.
- (b) For all $x \in cl_g^*(A)$, $cl_g({x}) \cap A \neq \emptyset$
- (c) $cl_{g^{\star}}(A) A$ contains no nonempty g-closed set.
- (d) A_{g^*} -A contains no nonempty g-closed set.

Proof:

(a) \Rightarrow (b). Suppose that $x \in cl_g^*$ (A). If $cl_g(\{x\}) \cap A = \emptyset$, then $A \subset X - cl_g(\{x\})$. Since A is I_{gg} -closed, $cl_g^*(A) \subset X - cl_g(\{x\})$ which is a contradiction to the fact that $x \in cl_g^*(A)$. This proves (b).

Corresponding author: K. Bhavani*

Department of Mathematics, RMK College of Engineering and Technology, Puduvoyal - 601206, TamilNadu, India.

K. Bhavani*/ Igg-Closed sets/ IJMA- 4(12), Dec.-2013.

(b) \Rightarrow (c): Suppose $F \subset cl_g^*(A) - A$, F is a g-closed set and $x \in F$. Since $F \subset X - A$ and F is g-closed, $cl_g(\{x\}) \cap A \subset cl_g(F) \cap A = F \cap A = \emptyset$. Since $x \in cl_g^*(A)$, by (b), $cl_g(\{x\}) \cap A \neq \emptyset$, a contradiction which proves (c).

(c) \Rightarrow (a): Let U be a g-open set containing A. Since $cl_g^*(A)$ is closed, X-U is g-closed, $cl_g^*(A) \cap (X-U)$ is g-closed and $cl_g^*(A) \cap (X-U) \subset cl_g^*(A) \cap (X-A) = cl_g^*(A) - A$. By hypothesis, $cl_g^*(A) \cap (X-U) = \emptyset$, and so $cl_g^*(A) \subset U$. Thus, A is I_{gg} -closed.

The equivalence of (c) and (d) follows from the fact that $cl_g^{\star}(A)-A = A_g^{\star}-A$.

Theorem: 2.3 Let (X, τ, I) be a topological space and $A \subset X$. Then the following are equivalent. (a) A is I_{gg} -closed.

- (b) $A \cup (X-cl_g^*(A))$ is I_{gg} -closed.
- (c) $cl_{g^{\star}}(A) A$ is I_{gg} -open.
- (d) $A_{g^{\star}}$ -A is I_{gg} -open.

Proof:

(a) \Rightarrow (b): Suppose that A is \mathbf{I}_{gg} -closed. Let $A \cup (X-cl_g^*(A)) \subset U$ where U is g-open. Then $X-U \subset (X-A) \cap cl_g^*(A) = cl_g^*(A) - A$ where X-U is g-closed. By Theorem 2.2(c), $cl_g^*(A) - A$ contains no nonempty g-closed set, $X-U = \emptyset$ implies that X=U. Since X is the only g-open set containing A, $A \cup (X-cl_g^*(A))$ is \mathbf{I}_{gg} -closed.

(b) \Rightarrow (a): Suppose that $A \cup (X-cl_g^*(A))$ is I_{gg} -closed. If F is any g-closed set contained in $cl_g^*(A)-A$, then $A \cup (X-cl_g^*(A)) \subset X$ -F where X-F is g-open. Therefore, $cl_g^*(A) \cup cl(X-cl_g^*(A)) \subset X$ -F and so $X \subset X$ -F, it follows that $F = \emptyset$. Hence A is I_{gg} -closed.

The equivalence of (b) and (c) follows from the fact that $X-(cl_g^*(A)-A) = A \cup (X-cl_g^*(A))$. The equivalence of (c) and (d) follows from the fact that $cl_g^*(A) - A = A_g^* - A$.

Theorem: 2.4 For a subset A of an ideal topological space (X, τ , I), A is I_{gg} -open if and only if $F \subset int_g^*(A)$ whenever $F \subset A$, where F is a g-closed set in (X, τ , I).

Proof: Suppose that A is I_{gg} -open. If F is g-closed and $F \subset A$, then $X - A \subset X - F$, and so $cl_g^*(X-A) \subset X-F$. Therefore, $F \subset int_g^*(A)$.

Conversely, suppose the condition holds. Let U be a g-open set such that X-A \subset U. Then X-U \subset A and so X-U \subset int_g*(A) which implies that $cl_g^*(X-A) \subset U$. Thus X-A is I_{gg} -closed and so A is I_{gg} -open.

Theorem: 2.5 Let (X, τ, I) be an ideal topological space. Then every g-open subset of (X, τ, I) is τ_g^* -closed if and only if every subset of (X, τ, I) is I_{gg} -closed.

Proof: Suppose that every g-open subset of (X, τ, I) is τ_g^* -closed. Let $A \subset U$ where $A \subset X$ and U is g-open. Since U is g-open, $A_g^* \subset U_g^* \subset U$ and so A is I_{gg} -closed. Conversely, suppose that every subset of (X, τ, I) is I_{gg} -closed. Let $A \subset X$ be a g-open set. Since $A \subset A$, $A_g^* \subset A$, A is a τ_g^* -closed set. Hence, every g-open subset of (X, τ, I) is τ_g^* -closed if and only if every subset of (X, τ, I) is I_{gg} -closed.

Theorem: 2.6 Let (X, τ, I) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq cl_g^*(A)$ and A is an I_{gg} -closed subset of X, then B is also an I_{gg} -closed set.

Proof: Since $cl_g^{*}(B)-B \subset cl_g^{*}(A)-A$ and $cl_g^{*}(A)-A$ contains no nonempty g-closed set, $cl_g^{*}(B)-B$ contains no nonempty g-closed set. This implies that B is I_{gg} -closed.

Theorem: 2.7 Let (X, τ, I) be an ideal topological space. If A and B are subsets of X such that $\operatorname{int}_{g^*}(A) \subset B \subset A$ and A is an I_{gg} -open set, then B is also an I_{gg} -open set.

Theorem: 2.8 Let (X, τ, I) be an ideal topological space. If A and B are subsets of X such that $A \subset B \subset A_g^*$ and A is I_{gg} -closed, then A and B are g-closed sets.

Proof: Since $A \subset B \subset A_g^*$, $A_g^* = B_g^* = A^* = B^*$ by [1, Theorem 3.10]. Let $A \subset U$ and $U \in \tau$. Since A is I_{gg} -closed, $A^* = B^* = B_g^* = A_g^* \subset U$ which implies that A and B are g-closed sets.

Theorem: 2.9 Let (X, τ, I) be an ideal topological space and $A \subset X$. Then A is I_{gg} -closed if and only if A = F-N, where F is τ_g^* -closed and N contains no nonempty g-closed set.

Proof: If A is I_{gg} -closed, then by Theorem 2.2(c), $N = A_g^* - A$ contains no nonempty g-closed set. If $F=cl_g^*(A)$, then F is τ_g^* -closed such that $F-N = (A \cup A_g^*) - (A_g^*-A) = (A \cup A_g^*) \cap ((X-A_g^*)\cup A) = A$. Conversely, suppose that A = F-N where F is τ_g^* -closed and N contains no nonempty g-closed set. Let U be a g-open set such that $A \subset U$. Then $F-N \subset U$ which implies that $F \cap (X-U) \subset N$. Now, $A \subset F$ and $F_g^* \subset F$ implies that $A_g^* \cap (X-U) \subset F_g^* \cap (X-U) \subset F \cap (X-U) \subset N$. By hypothesis, since $A_g^* \cap (X-U)$ is g-closed, $A_g^* \cap (X-U) = \emptyset$, and so $A_g^* \subset U$ which implies that A is I_{gg} -closed.

Theorem: 2.10 Let (X, τ, I) be an ideal topological space and $A \subset X$. Then the following hold.

- (a) Every g-closed set is I_{gg} -closed.
- (b) The union of two I_{gg} -closed sets is I_{gg} -closed.
- (c) The intersection of a closed set with an I_{gg} -closed set is I_{gg} -closed.
- (d) The union of a g-closed set with an I_{gg} -closed is I_{gg} -closed.

Proof:

- (a) If A is g-closed in (X, τ, I) , then A is τ_{g^*} -closed. Therefore, $A_{g^*} \subset A \subset U$ whenever $A \subset U$ and $U \in \tau_g$ implies that A is I_{gg} -closed.
- (b) Let A and be B be I_{gg} -closed sets and U be a g-open set such that $A \cup B \subset U$. Since $A_g^* \subset U$, $B_g^* \subset U$ and by [1, Theorem 3.7(h)], $(A \cup B)_g^* = A_g^* \cup B_g^* \subset U$ which implies that $A \cup B$ is an I_{gg} -closed set.
- (c) Let A be an \mathbf{I}_{gg} -closed set and B be a closed set in (X, τ, \mathbf{I}) . Suppose that $A \cap B \subset U$ and U is g-open in X. Then $A \subset U \cup (X B)$. Now X-B is open and hence $U \cup (X B)$ is g-open. Since A is \mathbf{I}_{gg} -closed, $cl_{g^*}(A) \subset U \cup (X B)$. Therefore, $cl_{g^*}(A) \cap B \subset U$ which implies that $cl_{g^*}(A \cap B) \subset U$. So $A \cap B$ is an \mathbf{I}_{gg} -closed set.
- (d) The proof follows from (a) and (b).

The following example shows that the converse of Theorem 2.10(a) is not true.

Example: 2.11 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $I = \{\emptyset, \{a\}\}$. If $A = \{a\}$ and $A \subset U$ where $U = \{a\}$ is open, then $cl(A) = X \not\subset U$ but $A_g^* = \not o \subset U$ which implies that A is g-closed.

The following example shows that the concept of I_g -closed sets and I_{gg} -closed sets are independent.

Example: 2.12 In Example 2.11, if $A = \{a\}$ and $U = \{a\} \in \tau$, then $cl^*(A) = X \not\subseteq U$ but $A_g^* = \not \supseteq \subset U$ which implies that A is I_{gg} -closed but not I_g -closed.

Theorem: 2.13 Let (X, τ, I) be an ideal topological space and $A \subset X$. If $A \subset A_g^*$ and A is I_{gg} -closed, then A is I_{g} -closed.

Proof: Let $A \subset U$ where $A \subset X$ and $U \in \tau$. Since U is g-open, $A_g^* \subset U$ by hypothesis. Since $A \subset A_g^*$ and by [1, Theorem 3.10], $A^* = A_g^* \subset U$ which implies that A is \mathbf{I}_g -closed.

REFERENCES

[1] K. Bhavani, g-Local Functions, J. Adv. Stud. Topol, (2013), in press.

[2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Mathematica Japanica, 49 (3), (1999), 395-401.

[3] D. Jankovic and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295 - 310.

- [4] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [5] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89 96.
- [6] R. Vaidyanathaswamy, The localization theory in Set Topology, Proc. Indian Acad. Sci., 20 (1945), 51 61.

Source of support: Nil, Conflict of interest: None Declared