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ABSTRACT

In this paper we introduce the concept of a-compatible mappings of type (P), which is equivalent to the notion of o-
compatible mappings as well as compatible mappings of type (P) under certain conditions. We prove a common o-fixed
point theorem for four a- compatible mappings of type (P).

1. INTRODUCTION

The theory of fixed points is a quite popular and attractive area of researches in Mathematics. It has equally drawn
attention of people working both in Pure as well as Applied Mathematics. Fixed points have long been used in Analysis
to solve various kinds of differential and integral equations. It has wider applications to the theory of positive matrices.

The theory of fixed points took its proper shape with the landmark result of polish mathematician S. Banach popularly
known as Banach Contraction Principle. Till then many workers including S. Brouwer, J. Schauder, G. D. Birkoff, O.
D. Kellog, M. Balanzat, Y. J. Cho, G. Jungck, B. Fisher, S. M. Kang, R. Kannan, R. P. Pant, etc. have contributed and
given the present shape to the theory.

G. Jungck [1] has given a generalization of the Banach's contraction theorem by using the concept of commuting
mappings. S. Sessa [9] generalized the concept of commuting mapping by using the concept of weakly commuting
mappings.

Further G. Jungck [2] generalized weak commutativity by introducing the concept of compatible mappings. Jungck and
others proved common fixed point theorems using this concept ([2]-[4], [7] [8]).

In [5] Jungck introduced the notion of weakly compatible maps. In [6] Jungck, introduced the concept of compatible
mappings of type (A) and proved common fixed point theorems for compatible mappings of type (A) on a complete
metric space.

Recently Pathak-Chang-Cho-Kang [11] introduced the concept of compatible mappings of type (P) in metric space
(X, d) and compare it with the compatible and compatible mappings of type (A).

In a paper [14,15] author introduced the concept of a-fixed point, a-commuting mappings, weakly oa-commuting
mappings, a-compatible mappings, weakly a-compatible mappings and a-compatible mappings of type (A) and proved
some common a-fixed point theorems.

In this paper, we introduce the concept of a-compatible mappings of type (P) in metric space (X, d), which is
equivalent to the concept of a-compatible mappings and as well as a-compatible mappings of type (A) under certain
conditions. We prove a common o-fixed point theorem for four a-compatible mappings of type (P) on a complete
metric spaces.

2. a-COMPATIBLE MAPPINGS OF TYPE (P)

In this section, we introduce the concept of a.-compatible mappings of type (P) in metric space (X, d) and show that the
concept of a-compatible mappings, a-compatible mappings of type (A) and a-compatible mappings of type (P) are
equivalent under some conditions and give some properties of a-compatible mappings of type (P) for our main result.
Throughout this paper (X, d) denotes a metric space.
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We also recall the following definitions and properties of a-compatible mappings and a-compatible mappings of type
(A).[14,15]

Definition: 2.1 Let o, Sand T be self maps of a metric space (X, d). Then Sand T are called a-compatible if (c0S) and
(c0T) are compatible if
lim, -,  d((0S)( 0 T)(Xy), (0T)( 0S)(%n)) = 0,

whenever {x,} is a sequence in X such that
lim, _, o (@0S)(Xy) = lim, _, . (a0T)(x,) =t  for some tin X.

Definition: 2.2 Let o, S and T be self maps of a metric space (X, d). Then S and T are said to be a-compatible
mappings of type (A) if («0S) and (o0T) are compatible mappings of type (A) if
limy -,  d((a0T)(00S)(Xn), (0:0S)(a0S)(X,)) =0
and lim, _, . d((c0S)(a0T)(Xy), (a0 T)(a0T)(X,)) =0

whenever {x,} is a sequence in X such that
lim, 2, » (@0S)(X,) = lim,, _, . (@0 T)(X,) =t for some tin X.

Definition: 2.3 Let o, S and T be self maps of a metric space (X, d). Then S and T are said to be a-compatible
mappings of type (P) if («0S) and (a0T) are compatible mappings of type (P) if
limy , o d((«0S)(20S)(Xn), (a0T)(@0T)(Xy)) = 0

whenever {x,} is a sequence in X such that
lim, _, ., (00S)(X,) = lim, _, ,, (00T)(x,) = t for some tin X.

Definition: 2.4 Let o, S: (X, d) — (X, d) be mappings. Then (c.0S) is said to be sequentially continuous at a point
t e X if for every sequence {x,} in X, such that
lim, ., ,, d(x,, t) =0, we have lim,_, ., d((c0S)X,, (00S)) = 0.

The following propositions show that Definitions 2.1 and 2.2 are equivalent under some conditions:

Proposition: 2.1 Let o, S, T : (X, d) — (X, d ) be mappings such that (c.0S) and (c.0T) are continuous. If Sand T are
o-compatible, then they are a-compatible of type (A).

Proposition: 2.2 Let a, S, T: (X, d) — (X, d) be mappings such that one of («0S) and (a.0T) is continuous. If S and T
are a-compatible mappings of type (A), then they are a-compatible.

Remark: 2.1 In [15] we can find two examples that Proposition 2.1 and 2.2 are not true if S and T are not continuous
on X.

We can also show that (00S) and (a0T) are continuous, then S and T are a-compatible if and only if they are o-
compatible mappings of type (P), as follows:

Proposition: 2.3 Let a, S, T: (X, d) — (X, d) be mappings such that (c.0S) and (a.0T) are continuous. Then S and T are
o-compatible mappings if and only if they are a-compatible mappings of type (P).

Proof: Let {x,} be a sequence in X such that (a0S)(X,) , (x0T)(X,) — t for some t € X. Since («0S) and (c.0T) are
continuous, then we have

lim, _, ,,(00S)(a0S)(Xn) = limy -, ,,(@0S) (a0 T)(X,) = (c0S)t

lim, _, ,,(00T)(00S)(Xn) = lim, _, (a0 T) (a0 T)(Xn) = (a0 T)t

Suppose that S and T are a-compatible mappings. Then
lim, _, . d((0S)(a0T)(Xn), (20T)(c0S) )(Xy)) = 0

By the triangle inequality of the metric d, we have
d((«0S)(0S)(Xn), (a0 T)(0T)(Xn)) < d((0S)(0S)(Xn), (10S)(a0T)(Xn)) + d((ct0S)(a0OT)(Xn), (0 T)(0T)(Xn))
< d((a0S)(a0S)(xn), (20S)(a0T)(Xn)) + d((.0S)(0T)(Xn), (0:0T)(t0S)(Xn))
+ d((00T)(0S)(Xn), (00 T)(@0T)(Xn))
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Taking n — oo, since S and T are a-compatible and («0S) and (a0 T) are continuous, then
limy _, d((0S)(c0S)(Xn), (0 T) (0 T)(Xy)) = 0

Therefore, S and T are a-compatible mappings of type (P).

Conversely, Suppose that S and T are a-compatible mappings of type (P).That is,
lim, _, . d((0S)(0S)(Xy ), (@0T)(0T) )(Xn)) =0

By the triangle inequality of the metric d, we have
d((«0S)(a0T)(Xn), (@0 T)(c0S)(Xn)) < d((0S)(0T)(Xn), (@0S)(t0S)(Xn)) + d((c0S)(c0S)(Xn), (0 T)(ct0S)(Xn))
< d((«0S)(00T)(Xn), (0S)(0S)(Xn)) + d((c0S)(c0S)(Xn), (0 T)(ct0T)(Xr))
+d((00T)(@0T)(Xn), (0T)(ct0S)(Xn))

Taking n — o, since S and T are a-compatible of type (P) and («0S) and (a0T) are continuous, then we have
lim, _, d((20S)(c0T)(Xn), (20T)(0S)(Xy)) = 0

Therefore, S and T are a-compatible mappings. This completes the proof .

Proposition: 2.4 Let a, S, T: (X, d) — (X, d) be mappings such that one of («0S) and (o.0T) is continuous. Then S and
T are a-compatible mappings of type (A) if and only if they are a-compatible mappings of type (P).

Proof: Let {x,} be a sequence in X such that (a0S)(X,) , (x0T)(Xx,) — t for some t € X. Assume without loss of
generality, that (a0T) is continuous, then we have
limy 2, (00T)(@0S)(Xn) = lim, _ (a0 T)(@0T)(X,) = (a0 T)t
Suppose that S and T are a-compatible mappings of type (A), that is,
lim, -, . d((c.0S)(ct0T)(Xn), (00 T)(c0T))(Xn)) =0
and lim,_ » d((c0T)(0S)(Xy), (00S)(0S))(X,)) = 0

By the triangle inequality of the metric d, we have
d((«0S)(0S)(Xn), (a0 T)(20T)(Xn)) < d((0S)(0S)(Xn), (01O T)(0S)(Xn)) + d((a0T)(t0S)(Xn), (0 T)(0T)(Xn))

Taking n — oo, since S and T are a-compatible of type (A) and (a0T) is continuous, then
limy _, » d((0S)(20S)(Xn), (20T)(@0T)(Xn)) = O

Therefore, Sand T are a-compatible mappings of type (P).

Conversely, Suppose that S and T are a-compatible mappings of type (P), that is,
lim, _, . d((20S)(00S)(Xy), (00 T)(0T) )(Xy)) = 0

By the triangle inequality of the metric d, we have
d((«0S)(0S)(Xn), (a0T)(t0S)(%n)) < d((@0S)(0S)(Xy), (0 T)(a0T)(%n)) + d((c0T)(t0T)(Xn), (0 T)(00S)(Xn))

Taking n — oo, since S and T are a-compatible of type (P) and (a0T) is continuous, then
lim, , ,, d((a0S)(00S)(Xy), (a0 T)(a0S)(xn) =0

Similarly, we have
lim, _, ,, d((a0T)(a0T)(Xy), (20S)(a0T)(X,)) =0

Therefore, S and T are a-compatible mappings of type (A). This completes the proof.

We give following examples to show that the results of Proposition 2.3 and 2.4 are not true if (00S) and (c.0T) are not
continuous.

Example: 2.1 Let X =R, the set of reals with usual metric d(x, y) = | X —y|. Define o, S, T: R — R such that

z 1 if z
a(x)z X !f x#0 S(x): / X | x;thndT(X): 1/x !f X#0
1 if x=0, 2 if x=0, 2 if x=0,
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Then (00S) and (a0T) are not continuous at x = 0. Consider a sequence {x,} in X defined by x,=n®, n=1,2... Then
we have, as n — o
(@0S)x, =1/n® >0, (a0T)x,= 1/n*? - 0

limn_, o d((00S) (@0 T) (%), (10T)(c0S)(Xn)) = liMa . d(n%, n?%) = 0

limn_, .. d((00S)(010S) (%), (€0T)(@0T)(Xn) = lima . d(n2, n®)
:|n12_ n48| -

limn_, .. d((@0S)(@0T) (%), (0T)(0T)(X,)) = limy_, .. d(n?*, n*®)

=% — n®| =0

limn_, .. d((@0T)(t0S) (%), (010S)(@0S) (X)) = limn ... d(n?*, n'?)
:|n24—n12|:oo

Thus S and T are a-compatible mappings but neither a-compatible mappings of type (A) nor a-compatible mappings
of type (P).

Example: 2.2 Let X = [0, 2] with the usual metric d(x, y) =| x—y|. Define a, S, T: X — X such that

o (x) = Jx it xe[0,9) S(X):{XZ ToxeldD it )= (2-x)" if xe[0,1)
2\/—if xelL?], 2 if xe[17], 2 if xe[l,2]

Then (a0S) and (c0T) are not continuous at x = 1. Let {X,} < [0, 2] be a sequence such that x, — 1 and assume that
Xy < 1 for all n, then

(00T)Xn = 2 — X, — 1from right hand side and (a.0S)x, = X, — 1 from right hand side.
Since 2 —x,> 1, forall n, thus
(00S)(a0T)Xy = (00S)(2—X,) =2 and (00T)(@0S)Xn = (a0 T)(Xn) = 2 — X,

Consequently,
lim, _, ., d((00S)(a0T)(Xy), (@0T)(c0S)(Xy)) =1limy 0|2 —(2 —X%,)| —> 1

Also,
lim, , ., d((c.0S)(c0S)(Xn), (0 T)(at0T) (X)) = lim, , ., d((:0S)(Xn), (0T)(2 —Xy))
=limp 5 d(Xn, 2) = limy L 0| X —2| > 1

lim, _, ., d((.0S)(a0T)(Xy), (0 T)(0T)(Xn)) = limy , . 2 — (aOT)(2 — Xy)|
=|2—2| >0 as x,—>1 and

lim, _, , d((0T)(a0S)(Xn), (c0S)(0S)(Xn)) = limn 5o (2 —Xn) — Xy
=lim, 5,1 —2%,|> 0 asx, > 1

Thus Sand T are a-compatible mappings of type (A) but they are neither a-compatible nor a-compatible mappings of
type (P).

Example: 2.3 Let X =R, the set of reals with usual metric d(x, y) =|x—y|. Define a, S, T: R — R such that
1/x if x=0 x/2 if x#0 x/3 if x=#0
a(x)= ) S(x)= . and T (X)= )
1 if x=0, 2 if x=0 1 if x=0,

Then (a0S) and (a0T) are not sequentially continuous at x = 0. Consider a sequence {x.} in X defined by x, = n%
n=1,2...Thenwe have,asn — o

(00S)Xy = 2/n> > 0, (aoT)X,= 3/n* > 0
lim, _, .. d((@0S)(@0T)(X,), (00T)(@0S)(xy)) = lim, , .. d(2n? / 3, 3n?/ 2)

=|2n*/3—3n°/2|=
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limn_, .. d((@0S)(c0S) (%), (@0T)(@0T) (%)) = limy . d(n? n2) = 0

limy _, » d((0t0S) (@0 T)(Xn), (0 T) (a0 T)(Xy)) = limy, ., d(2n?/ 3, n?)
=|2n*/3—n’|=w

lim, _, .. d((@0T)(c0S)(X,), (c0S)(00S)(X,)) = limy_, ., d(3n?/ 2, n?)
=|3n*/27 n*|=w

Thus S and T are a-compatible mappings of type (P) but neither a-compatible of type (A) nor a-compatible.
Next we give several properties of a-compatible mappings of type (P) for our main theorems.
Proposition: 2.5 Let a, S, T: (X, d) — (X, d) be mappings. If S and T are a-compatible mappings of type (P) and
(a0S)(t) = (a0 T)(t) for some t € X, then

(00S)(a0T)(t) = (a0S)(0S)(t) = (a0 T)(a0T)(t) = (a0 T)(a0S)(t).
Proof: Suppose that {x,} is a sequence in X defined by x, = t,for n=1,2,3,..., and (a0S)(t) = (aoT)(t). Then
we have,

(a0S)(Xn), (@0T)(X,) — (20S)(t) as n — co.

Since S and T are a-compatible of type (P), then we have

d((@0S)(@0S)(t), (@0T)(@0T)() = 1im nu d((0S)(@0S)(Xn), (0T)(@0T)(Xn)) = O

and so (00S)(00S)(t) = (20 T)(00T)(1).
Since (00T)(t) = (0S)(t)

therefore (00T)(a0T)(t) = (a0T)(c0S) (1)

and (00S)(a0T)(t) = (20S)(a0S)(t)

So, (00S)(a0T)(t) = (20S)(a0S)(t) = (a0 T) (a0 T)(t) = (0 T)(c0S)(t).

Proposition: 2.6 Let S and T be a-compatible mappings of type (P) from a metric space (X, d) into itself. Suppose
lim,_., (00S)X, = lim,_., (a0T)x, = t for some tin X. Then

(1)  limy . (a0T)(aoT)x, = (aoS)t if (a0S) is sequentially continuous.

(2)  lim, . (a0S)(a0S)x, = (a0T)t if (aoT) is sequentially continuous.

(3) (@0S)(aoT)(t) = (c0S)(c0S)(t) and (a0S)t = (a0 T)t if (c0S) and (a0 T) are sequentially continuous at t.

Proof: Suppose that lim,_,,(a0S)X, = lim,_..(a0T)X, =t for some t € X.

(1) Since, (a0S) is sequentially continuous, then we have
im0 (00S)(00S)X,, = (00S)t.

By triangle inequality, we have
d((@0T)(a0T)Xys, (c0S)t) < d((@0T)(a0T)Xn, (a0S)(a0S)x,) + d((c0S)(c0S)Xn, (00S)t)

Letting n—oo, since S and T are a-compatible mappings of type (P), then we have
limy_,., d((c0T) (20 T)X,, (20S)t) =0
o) limy . (a0T)(a0T)X, = (c0S)t.

(2) The proof of limn_,,, (c.0S)(c.0S)x, = (a0 T)t follows on the similar lines as argued in(1).

(3) Since, (a0T) is sequentially continuous at t, we have
lim,_., (aoT)(a0T)X, = (a0 T)t

Since, (a.0S) is sequentially continuous at t, by (1) also we have
lim,_.. (00T)(a0T)X, = (c0S)t

Hence, by the uniqueness of the limit, we have (00S)t = (a0T)t
© 2014, 1IMA. All Rights Reserved 282



Renuka Rathore*/ a-COMPATIBLE MAPPINGS OF TYPE (P) AND COMMON a-FIXED POINT THEOREM /
IUMA- 5(1), Jan.-2014.

By Proposition 2.5, we have
(a0S)(a0T)t = (a0 T)(c0S)t.

This completes the proof.

Throughout this section, suppose that a function ¢ : [0,:0)™* — [0,c0) satisfies the followings:

(i) ¢ isa upper semi-continuous and non-decreasing in each co-ordinate variable.

(i) o(t) =max {o(t, 0,2t,0,t,0,2t,t,0,1, 2ttt t),d(t, 0,0, 2t t 2t,0,t 2t t, 0,1t t),
¢(0,t,0,0,t0,0,0,t0,t,t,0,0)}<t, forsomet>0.

Lemma: 2.1 Let a, A, B, S and T be self maps of complete metric space (X, d) into itself such that

(2.1) (00A)(X) < (a0T)(X) and (aoB)(X) < (a0S)(X)

(2.2) [d((a0A)X, (0B)Y)I* < ¢(d((a0S)x, (a0A)x) d((a0T)y, (a0B)y),
d((a0S)x, (coB)y) d((aoT)y, (a0A)X),
d((a0S)x, (a0A)X) d((a0S)X, (a0B)y),
d((aoT)y, (a0A)x) d((a0T)y, (20B)y),
[d((0S)x, (a0T)y)]%,
d((20S)X, (a0A)X) d((a0T)y, (a0A)X),
d((aoT)y, (a0B)y) d((a0S)x, (a0B)y),
d((a0S)x, (aoT)y) d((c0S)X, (a0A)X),
d((a0S)x, (a0T)y) d((a0T)y, (20A)X),
d((«0S)x, (aoT)y) d((a0T)y, («0B)y),
d((c0S)x, (a0T)y) d((c0S)x, (c0B)y),
d((c0S)x, (a0T)y) d((c0A)X, (c0B)y),
d((c0S)x, (a0A)X) d((a0A)X, (c0B)y),
d((«oT)y, (a0B)y) d((c0A)x, (a0B)Y))

forall x,y e X, where ¢ satisfies (i) and (ii), then there is a Cauchy sequence {y,} in X, defined by,
Yon-1 = (@0T)Xon_1 = (00A)Xon 2 and Yo = (a0S)Xpn = (00B)Xy, 1 forn=1,2,3,...

Proof:Let X, € X be arbitrary since (a0A)(X) < (a0T)(X) and (c0B)(X) < (20S)(X), we can choose X, X, in X,
such that
Y1 = (a0T)x; = (a0A)Xy and y, = (00S)X, = (00B)xy

In general we can choose X,,_; and X,, in X, such that
Yan-1= (00T)Xon-1 = (@OA)Xzn2 and Y, = (0S)Xzn = (00B)Xzn-1 (2.3)

Thus the indicated sequence {y,} exists. To show that {y,} is Cauchy, by (2.2) and (2.3) imply that

[d(y2n+1’ an+2)]2 = [d((aOA)XZn: (O‘OB)XZnﬂ)]2
< ¢(d((0S)Xzn, (00A)Xzn) A((00T)Xzn+1, (AOB)Xzns1), d((000S)Xan, (010B)X2n+1) A((0T)Xzn+1, (0OA)X20),
d((@0S)Xzn, (0t0A)Xzn) d((010S)Xzn, (010B)Xzns1), A((AOT)Xzns1, (AOA)Xzn) A((OT)Xzns1, (00B)Xzn41),
[d((0S)Xzn, (0 T)Xans1)T, d((010S)Xan, (000A)X2n) (00T )Xons1, (1OA)Xr),
d((GOT)X2n+1, ((X,OB)XZm.l) d((ocOS)XZn, (QOB)XZn.;.l), d(((XOS)XZn, ((XOT)XZm.l) d(((XOS)XZn, ((XOA)XZn),
d(((XOS)XZn, (QOT)XZn.;.l) d((aOT)X2n+1, (QOA)XZn), d(((XOS)XZn, ((XOT)XZm.l) d(((X,OT)XZrH.l, (QOB)XZnﬂ),
d(((XOS)XZn, (QOT)XZn.;.l) d((ocOS)XZn, (QOB)XZn.;.l), d(((XOS)XZn, ((XOT)XZm.l) d((ocOA)XZn, ((XOB)XZm.l),
d(((XOS)XZn, (QOA)XZn) d((ocOA)XZn, ((XOB)XZm.l), d((GOT)X2n+1, (QOB)XZnﬂ) d((ocOA)XZn, ((X,OB)XZm.l)
or
[d(y2n+l’ y2n+2)]2 = ¢(d(y2n’ YZn+1) d(y2n+1a YZn+2)v 0, d(an, y2n+1) d(yZm y2n+2)a
0, [d(an,anﬂ)]Z: Or CI(y2n+1’ an+z) d(an. an+2):
d(yZn’ an+1) d(an. an+1), O’ d(yZn’ an+1) d(y2n+1’ y2n+2)r
d(yZn’ an+1) d(an. an+2), d(an. an+1) CI(y2n+1’ y2n+2)r
d(yZna YZn+1) d(Y2n+1, YZn+2)a d(y2n+la YZn+2) d(an+1y y2n+2))

Let d(Y,, Ya+1) = d, then we get
Bontt < (A Ay, 0, Qoo+ Uer), 0, T 0, pes(t Uer). Ton
0, d2n Aan+1, d2n(dant dane1), 2n Aanet, 2n danea, d22n+1) (2.4)
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We want to show that dy,.; < d,, . For this assume that for some n, dy.1 > dy,. Now by (2.4), we have

o < ¢(d2,,02d2,,0,d2 ,02d2,, d2 .0 d2

2n+l? 2n+l’ 2n+l? 2n+1’ ' 2n+1? 2n+l’

2 2 2 2 2
2d2n+l’ d2n+l’ d2n+l'd2n+l) < d2n+l

Which is a contradiction. Therefore d,n.1 < da,, similarly again using (2.2) we obtain
dzzn < ¢( daq A1, 0, 0, dopq(don-1 + dan), dgzn,l. an(d2n-1 + da2n), 0, d2n_102n,

d2n—1(d2n-1 + d2n), dzzn,l, 0, dzrrl d2n ’ dgzn ' CI2n—1 CI2n) (2'5)

If possible let d,, >dy,_; for some n, then (2.5) gives

2 2 2 2 2 2 2 2 2 2 2
d2n < ¢(d2n ' 0' 0’ 2d2n ' d2n ’ 2d2n ’ 0’ d2n ' 2d2n ’ d2n ’ 0’ d2n ' d2n ’dZn)

< d,,
Which is a contradiction. Therefore d,, < don_1 . Thus {d,} is non-increasing sequence in R* let{d,} > r e R". Ifr =0,
then since ¢ is upper semi-continuous, we have from (2.4) and (2.5) as n— «
rr<¢(? 0,250,150, 2%, 12,0, 1%, 2r%, 12, i 1Y) < 2

and rP<¢(r? 0,0,2r% 1% 2r%, 0,13, 1%, 2r, 0, 1%, I, 1Y) < 12

Which is a contradiction, therefore d, — 0. Now we shall show that sequence {y,} is Cauchy. If not so then there exist
an ¢ > 0 and sequence of positive integer {m(k)} and {n(k)} with k < n(k) < m(k) such that

Ck=d(Ymmy Ynw) =5 k=1,2, ... (2.6)

Let m(k) be the least integer exceeding n(k) for which (2.6) is true then by the well ordering principle,

d(Ym@- 1, Yny) > € . Now
& < ¢ < d(Ymy Y@ -1) + dYmgg -1 Yngo) < dmag-1 + & —> & as k>0

and thus ¢, — . Further ¢, can have different values under the following four cases, viz.,

(@ misevenandnisodd; (b) mand nare odd,;
(¢) misoddandniseven;(d) mand n are even.

Now, in case (a), we have
Ck = d(Yam Yon-1)
< d(yva y2m+1) + d(y2m+1y an) + d(an, y2n—1)

letting n — oo we get
€ <0+ 0+1imy_, o d(Yomet, Yon) @7)

Now using (2.2) and (2.3), we obtain
[d(Yzme1, Yan)]* = [d((00A)Xom, (010B)Xon1)]*

< ¢ (dam dan-1, (Ck + d2n-1)( Ck + dam), dom(Ck + d2n-1),
Oon-1 (C + dom), ci  Oam (Ck + dam), Oan(Ck + Ozn_y),
Ci Oam, Ci (Cic+ dom), Ck Oan-q, Cic (Ck+ Oanoy),
Ci (dom + Ci+ dan_1) Oom (Ck+ O2n-1), Aanoa(Oom + Ci + don1)).

Since ¢ is upper semi-continuous so letting n — oo and using (ii), we get

1My oo [d(Yomss, Yan) P < (0, €%,0,0, €% 0,0,0, €% 0, %, €2 0, 0) < &

So we get a contradiction and hence ¢ = 0. Similarly, other cases also give € = 0. Therefore, the sequence {y,} is
Cauchy sequence.

© 2014, 1IMA. All Rights Reserved 284



Renuka Rathore*/ a-COMPATIBLE MAPPINGS OF TYPE (P) AND COMMON a-FIXED POINT THEOREM /
IUMA- 5(1), Jan.-2014.

Now we prove the our main result.

Theorem: 2.1 Let a, A, B, S, T be self maps of complete metric space (X, d) satisfying (2.1), (2.2) and (2.8). The pairs
A, Sand B, T are a-compatible of type (P).

One of (a0A), (aoB), (a0S) and (a0T) is sequentially continuous at their coincidence point.
Then A, B, S and T have a unique common a-fixed point in X.

Proof: By Lemma 2.1, the sequence {y,} as defined by (2.2) is Cauchy, so it converges to a point z in X. Consequently
the subsequence {(c.0A)Xan}, {(c0S)Xon}, {(00B)Xan 1} and {(a0T)Xzq_1} CONVerges to z.

Now suppose (a0A) is sequentially continuous, since A and S are a-compatible of type (P), then by Proposition 2.6 we

have

(00A)(a0S)Xon = (@0A)z and  (00S)(00S)Xn — (0A)Z as n — oo, By (2.2),

[d((0:0A)(00S)Xan, (010B)Xan-1)]” <  (d((00S)(t0S)Xan, (0A)(010S)Xan) d((OT)Xan1, (0OB)Xan 1),
d((0.0S)(at0S)Xan, (010B)Xan_1) d((00T)Xan_1, (0A)(ct0S)Xan),
d((0.0S)(00S)Xan, (0A)(at0S)Xzn) d((00S)(010S)Xan, (0L0B)Xon-1),
d((@0T)Xan_1, (00A)(ct0S)Xzn) d((00T)Xzn_1, (0LOB)Xon_1),
[d((0S)(@0S)Xan, (10T )Xz 1)T7,
d((00S)(010S)X2n, (0A)(0l0S)Xan) d((00T)Xzn-1, (€0A)(00S)Xan),
d((20T)Xzn-1, (€0B)Xzn-1) d((@0S)(c0S)Xzn, ((10B)X2n-1),
d((20S)(00S)Xzn , (0T)Xzn-1) d((010S)(0S)Xzn, (010A)(0L0S)Xzn),
d((00S)(00S)Xzn, (10 T)X2n-1) A((@0T)Xzn-1, (OA)(00S)Xzn),
d((a0S)(0t0S)Xzn, (10T)Xzn-1) A((OT)X2n-1, (OB)Xap 1),
d((20S)(00S)Xzn, (00 T)Xzn-1) A((0t0S)(0t0S)Xzn, (0LOB)X2n-1),
d((20S)(00S)Xzn, (010 T)X2n-1) d((0t0A)(00S)Xzn, (01OB)Xzn-1),
d((20S)(00S)Xzn, (010A)(a0S)X2n) d((00A)(0t0S)Xzn, (0B)Xon-1),
d((@0T)Xzn-1, (00B)Xzn-1) d((€OA)(0t0S)Xzn, (0.0B)X2n-1))

Since ¢ is upper semi-continuous, so letting n — oo, we obtain
d((a0A)z , 2)]* < ¢ (0, d((@0A)z, 2)]% 0, 0, d((a0A)z, 2)]% 0, 0, 0, d((a0A)z, 2)]% 0,
d((@0A)z, 2)]% d((00A)z, 2)]%, 0, 0)

So that (a0A)z =z, since (a0A)(X) < (a0 T)(X), there exists a point v in X such that z = (a0A)z = (a0 T)v. Again
using (2.2), we get
[d((c0A)(0t0S)Xzn, (ctOBYV)]? < ¢ (d((c10S)(c10S)Xzn, (0A)(010S)X2n) d((ct0T)V, (00B)V),
d((00S)(00S)Xan, (00B)V) d((a0T)V, (0A)(00S)Xan),
d((00S)(00S)Xan, (00A)(010S)X2n) d((c0S)(at0S)Xzn, (c:0B)V),
d(coT)v, (00A)(a0S)Xzn) d((0T)V, (0B)V), [d((00S)(00S)Xzn, (0 TIV)]Z,
d((00S)(at0S)Xan, (0L0A)(ct0S)Xzn) d((@0T)V, (00A)(at0S)Xan),
d((aoT)v, (a0B)Vv) d((0.0S)(ct0S)Xzn, (c10B)V),
d((c:0S)(00S)Xan, (0 T)V) d((ct0S)(00S)Xzn, (0LOA)(0S)X2n),
d((c:0S)(00S)Xan, (a0 T)V) d((a0T)V, (0t0A)(0l0S)Xan),
d((c,0S)(00S)Xan, (a0 T)V)d((a0T)V, (a0B)V),
d((0,0S)(00S)Xan, (a0 T)V)d((a0T)V, (a0B)V),
d((0:0S)(00S)Xan, (a0 T)V) d((ct0S)(00S)Xzn, (0OB)V),
d((c:0S)(00S)Xzn, (0 T)V) d((c0A)(ct0S)Xzn, (c10B)V),
d((00S)(ct0S)Xan, (0L0A)(c10S)Xan) d((c0A)(00S)Xan, (0B)V),
d((a0T)v, (00B)v) d((a0A)(00S)Xzn, (0B)V))

letting n — oo, we have
[d(z, (@0B)V)]*< ¢ (0, 0, 0, 0, 0, 0,[d(z, (@0B)V)]% 0, 0,0, 0, 0, 0, [d(z, (coB)V)])
<[d(z, (a0B)V)]?

Which is a contradiction, therefore z = (00B)v.

Now B and T are o-compatible mappings of type (P) and (.0 T)v = (a0B)v = z, therefore by Proposition 2.5, we have
(a0T)(a0B)Vv = (a0B) (a0 T)V

© 2014, 1IMA. All Rights Reserved 285



Renuka Rathore*/ a-COMPATIBLE MAPPINGS OF TYPE (P) AND COMMON a-FIXED POINT THEOREM /
IUMA- 5(1), Jan.-2014.

Hence (a0T)z = (00B)z.

Now using (2.2) again, we get

[d((c0A)Xzn, (c10B)2)]* < d(d((00S)Xzn, (0t0A)Xzr) d((a0T)z, (00B)2), d((00S)Xzn, (00B)z) d((a0T)z, (C0A)Xz),
d((00S)Xan, (A0A)Xzn) d((010S)Xan, (00B)Zz), d((20T)z, (0A)Xzn) d((20T)z, (c0B)z),
[d((0S)Xan, (00T)2)]%, d((c0S)Xzn, (00A)Xan) d((a0T)Z, (00A)Xz0),
d((a0T)z, (00B)z) d((0:0S)X2n, (00B)Zz), d((0t0S)Xzn, (00 T)Z) d((010S)Xan, (LOA)Xan),
d((00S)Xzn, (@0T)Z) d((00T)z, (00A)Xzn), d((00S)Xan, (0T)Z) d((a0T)z, (0:0B)z),
d((00S)Xan, (@0T)Z) d((00S)Xzn, (00B)Z), d((00S)Xan, (00 T)Z) d((0t0A)Xan, (00B)Z),
d((00S)Xan, (@0A)X2n) d((a0A)Xan, (0B)Zz), d((00T)z, (00B)z) d((0t0A)Xzn, (00B)Z))

letting n — oo, above inequality reduces to

[d(z, (00B)2)2 < ¢ (0, [d(z, (20B)2)T?, 0, 0, [d(z, («0B)2)]3, 0, 0, 0, [d(z, (c:0B)2)T?, O,
[d(z, (¢0B)2)]3, [d(z, («0B)2)]30, 0)
<[d(z, (a0B)2)’

so that z = (0oB)z = (a0 T)v = (a0A)z .
Since (aoB)(X) < (a0S)(X) there exists a point w in X such that z = (a.0B)z = (a0S)w.

Again condition (2.2) imply that
[d((a0A)W, 2)]* = [d((c0A)W, (a0B)2)]?

< ¢ (d((aoS)W, (a0A)W) d((c0T)z, (20B)z), d((a0S)W, (00B)z) d((c0T)z, (0A)W),
d((c0S)w, (c0A)W) d((aoS)w, (oB)z), d((a0T)z, (a0A)W) d((a0T)z, (c0B)z),
[d((x0S)w, (a0T)z)]% d((coS)w, (aoA)Ww) d((aoT)z, (c0A)W),
d((a0T)z, (20B)z) d((c0S)w, (00B)z), d((c0S)W, (0:0T)z) d((c0S)W, (00A)W),
d((a0S)w, (a0T)z) d((coT)z, (a0A)W), d((oS)w, (0T)z) d((aoT)z, (aoB)z),
d((c0S)w, (0:0T)z) d((c0S)w, (00B)z), d((c:oS)w, (a0 T)z) d((c0A)w, (00B)z)
d((c0S)w, (c0A)W) d((aoA)w, (aoB)z), d((coT)z, (oB)z) d((c0A)w, (00B)z))
or
[d((a0A)W, 2)]* <4 (0,0,0,0,0, [d((c0A)W, 2)]% 0, 0,0, 0,0, 0, [d((c0A)w, 2)]%, 0)
< [d((a0A)W, 2)?

so that (a0A)w =z, since A and S are a-compatible mappings of type (P) and (a0 A)w = (0.0S)w = z we obtain using
Proposition 2.5

(a0S)(a0A)W = (a0A)(a0S)w and hence (00S)z = (a0A)z =z.
Therefore z is a common a-fixed point of A, B, Sand T.

Similarly, we can complete the result by taking (c.oB) or (00S) or (a0T) as sequentially continuous .Uniqueness
follows easily from (2.2).

Now we present the following example to prove the validity of Theorem 2.1.

Example: 2.4 Let X = [0, 1] with usual metric in real line. Define A, B, S, T and a by A(x) = x/8, B(x) = x/6, S(x) =
x/2, T(x) = 2x/3 and a(x) = x/3 for all x € [0,1]. Then clearly the function (c.0A), (a0B), (a0S) and (a0T) are
sequentially continuous and satisfy

(a0A)(X) = [0, 1/24] < [0, 2/9] = (a0 T)(X)

(20B)(x) = [0, 1/18] [0, 1/6] = (c.0S)(X)

Moreover
[(a0A)(X) — (a0S)(X)| = [x/24 — x/6] =x/8 — 0 ifand only if x —> 0

|(c0A)(00A)(X) — (a0S)(a0S)(X)| = |X/576 — x/36] = 5x/192 — 0 ifand only if x —> 0

Therefore A and S are a-compatible mappings of type (P). Similarly,
[(c0B)(X) — (a0 T)(X)| = [x/18 — 2x/9| = x/6 — O ifand only if x > 0
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|(0B)(aoB)(X) — (a0 T)(a0T)(X)| = [x/324 — 4x/81] =5x/108 — 0 if and only if x — 0
Thus B and T are also a-compatible mappings of type (P). Let us define the function ¢ as
¢(t1,t2,....,t14)=hmaX{tl,tz,....,t14} for all t1€R+; |:1,2,,14,1/16§h<1/2,then

¢ satisfies condition (i) and (ii).

Also we obtain
[(c0A)(X) — (coB)(Y)| = [x/24 — y/18] = (1/72) |3x — 4y

(00S)(X) — (0T)(Y)| = [x/6 — 2y/9| = (1/18) [3x — 4y

|(20A)(X) — (a0B)(y)[* = (1/16) |(20S)(x) — (x0T)(¥)I?
< 9(d((@0S)(x), (0A)(X))d((0T)(y), (x0B)(Y)), - - - -, [d((@0S)(X), (@OTIYNT, - . .. - )

So that condition (2) is satisfied and thus the hypothesis of Theorem 2.1 is satisfied and clearly x = 0 is the unique
common a-fixed point of A, B, Sand T.
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