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ABSTRACT 

Fourier transform of fractional order using the Mittag-Leffler-type function )( q
q xE  and its complex type, was 

introduced together with its inversion formula. The obtained transform provided a suitable generalization of the 
characteristic function of random variables. It was shown that complex fractional moments which are complex 
moments of order nqth of a certain distribution, are equivalent to Caputa fractional derivation of generalized 
characteristic function (GCF) in origin, n being a positive integer and 0 < q ≤ 1. The case q=1 was reduced to the 
complex moments. Finally, after introducing fractional factorial moments of a positive random variable, we presented 
the relationship between integer moments, fractional moments (FMs) and fractional factorial moments (FFMs) of a 
positive random variable. 
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1. INTRODUCTION 

 
It is well know that the Fourier transform of probability density function is characteristic function, that is    
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Where the notation . means expectation and on the other hand, we have: 
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This function generates complex moments of integer order, as we have: 
 

.)()(
0=

=
tk

X
k

k

du
tdiX φ                                                                                                                                            (3)     

  
But in this work, we generalized ( )tXφ  in order to obtain complex non-integer moments. 
 
Recently, fractional moments of the type E[X kq ] have been introduced [2], showing that such quantities have important 
features: (i) they are exact natural generalization of integer moments as like as fractional differential operators 
generalize  the classical differential calculus; (ii) the interesting point is the relationship between  fractional moments 
and the fractional special functions. 
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In this work, at first, we defined a Mittag-leffler-type function ( )q

q xΕ  
and its complex type, hereafter called the 

generalized exponential function. This function is a product of Mittag-leffler function and a power function. Using 
complex type of this function, we defined generalized Fourier transform. The obtained transform provided a suitable 
generalization of the characteristic function of random variables; that is using the expectation of complex generalized 
exponential function, we could directly obtain the generalized characteristic function GCF of a certain random 
variable. It was shown that complex fractional moments which are complex moments of order nqth of a certain 
distribution, are equivalent to Caputa fractional derivation of the GCF in origin, n being a positive integer and            
0 < q ≤ 1. The case q=1 was reduced to the complex moments. In continue, after introducing fractional factorial 
moments of a positive random variable, we presented the relationship between integer moments, fractional moments 
(FMs) and fractional factorial moments (FFMs) of a positive random variable. 
 
Our main means of Fractional Calculus for this generalization were Reimann-Liouville and Caputo operators, 
fractional Taylor series.  
 
2. PRELIMINARIES  

 
In this section, we briefly review the definitions of fractional integrals and fractional derivatives, and the formal 
fractional right Riemann- Liouville Taylor series. 

 
Definition: 1 Let ( )xf  is a function defined on the interval [a,b] and q is a positive real number. The right Riemann-
Liouville fractional integral is defined by:                                                 
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and also the right “Riemann –Liouville fractional derivative" is defined by:                             
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Definition: 2 Let [ ] 1,n q= + the right Caputo fractional derivative ))(( xfDq

x
C
a  is defined by:   

( ) ( ) ( ) ( ) ,1
1

dttf
dt
dtx

qn
xf

dx
dI n

nqnx

a
n

n
qn

xa

−−

− ∫ −
−Γ

=                                                                                             (6) 

and the  sequential fractional  derivatives  is given  by:  
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Definition: 3Let ( )xf  be a function defined on the right neighborhood of a,  and be an infinitely fractionally- 

differentiable function at a, that is to say, all ( ) ( ) ( ),...2,1,0, =kxfD kq
x

C
a  exist. The formal fractional right 

Riemann- Liouville Taylor series of a function is 
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where, q

x
C
a D  is the right Caputa fractional derivative and q

xa I  is the right Riemann- Liouville fractional integral . 
 
The fractional Taylor series of an infinitely fractionally differentiable function is based on fundamental theorem of 
Fractional Calculus (see [6]). By fundamental theorem of fractional calculus, one can say that the right Caputa 
fractional derivative operation and the right Riemann- Liouville fractional integral operation are in inverse to each 
other.  
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3. GENERALIZED FOURIER TRANSFORM 
 
The explicit solutions to the equation 

( ) ( ) ( )RNnnqnxxyyDq
x

C ∈∈≤〈−〉=− λλ ,;1,0,00                                                                           (8) 
 

in terms of this function, that is                        
      

 
Sequential fractional derivative of the function gives 

 
 (9) 

 
    and in general case  
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In addition, the generalized exponential function satisfied 
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 that is, ( )q

q xΕ  is the fractional analogue of  Exp (x).  
 
The fractional Taylor series of this function is as following: 
 

( )( ) ( )[ ] ( )( ) ,
1

1)1(
00

kq

kk

kq
xa

q
q ax

kq
Iax −

+Γ
==−Ε ∑∑

∞

=

∞

=

                                                                                         (12) 

because, 
 

(13) 

 
It can be seen that, 
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where L is Laplace transform. With substitutions q=1 and a=0 the results (8) t0 (14) have valid for the elementary 
exponential function. 
 
We define the generalized exponential function, ( )q

q xΕ  by the series below 
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and we have the complex generalized exponential function as following: 
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and also we have: 
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Now that we have a generalization of the complex exponential function, it should; of course, be possible to construct a 
generalization of the Euler relation, that being  
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From the real part of (16) we obtain the equation for the generalized cosine function 
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where by using (16) and (17) in recent equation, we can rewrite:  
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So that in the case q=1, we have:    
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and from the imaginary part of (16) we obtain the equation for the generalized sine function  
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where by using (16) and (17) in recent equation, we can rewrite:  
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So that in the special case q=1, we have:    
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Also we have 

 
 
 

Therefore we conclude that the function ( )q
q ix)(Ε  is periodic with period qT  defined as the solution of the equation 
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Definition: 4 Let )(,:)( xfxCRxf →→ .The generalized Fourier transform of the function f  is defined by 
integral 
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and  for q=1, we have the classical Fourier transform 
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and inverse Fourier transform is as following: 

( ) 1 ˆ(( ) ) ( ) .q
q q

q

f x E isx f s ds
T

∞

−∞

= −∫  

 
4. THE GENERALIZED CHARACTERISTIC FUNCTION (GCF) OF A RANDOM VARIABLE 
 
Definition: 5 The generalized characteristic function of any random variable X, )(~ tXφ  is defined by: 
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where, ( )( )q
q ixtΕ  is the generalized exponential function. In the special case we q=1, obtain the ordinary 

characteristic function 
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Theorem: 1 Suppose that the fractional generalized characteristic function of a random variable X is finite in some 
open interval containing zero. Then, all the complex fractional  moments exist and 
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that is,  the complex fractional moments are the coefficients of the fractional Mac-Lourin series of ( )tXφ
~ and the 

generalized characteristic function is infinitely fractionally differentiable in that open interval, and for 0<q ≤1  and
,...2,1=k  
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  also in the special case q=1 we obtain:                             
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Proof: Since the fractional Mac-Lourin series of ( )( )q

q ixΕ  is 
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in the other hand, by using (9), we have: 
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5. THE FRACTIONAL FACTORIAL MOMENTS (FFMS) 

 
Stirling functions of the first kind, S(n,k), can be defined via their  generating  function 
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and with the convention S(n,0) = δ 0,n (Kronecker, s delta) . The latter gives a natural possibility to define “Stirling 

number of fractional order ” S(q,k) with q∈C and k∈N 0 . In fact, these “Stirling functions”, as one may call them, 
which were introduced by Butzer, Hauss and Schmidt [1], may be defined via the generating function 
         
 (|x|<1, q∈C).                                                                                    (24) 
 
 
Theorem: 2 Suppose X be a random variable with support  [0,∞)  and  G X (z) is the probability generating function 

and finite in some open interval containing the origin. Then G X (z) is infinitely fractional differentiable in that open 
interval, and if ( )zGXz 1
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→

 is finite, then )1)...(1( +−− qkXXX  exists and is infinite, 

 
( )( ) ,)1)...(1(lim

1
+−−=

→
qkXXXzG qK

XZ
 

 
where the notation (qk) means the right Caputo fractional derivative ))(( xfDkq
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and in the case q=1, we have: 
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Proof: It flows from the convergence of series (25) for |z|=1   and from Weierstrass theorem on uniformly convergent 
series of analytic functions that G X (z)  is a analytic function of z  in |z| <1, with (25) as its power series expansion. 

Since G X (z) is analytic, it is infinitely fractionally differentiable, and one can write meaningfully the fractional Taylor 
expansion 
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5. THE RELATIONSHIP BETWEEN INTEGER MOMENTS WITH FMS AND FFMS 
 
In this section, another theorem which brings the relationship between integer moments, FMs and FFMs is presented 
for a positive random variable. 
 
Theorem: 3 Suppose X be a random variable with support [0, ∞).   
(i)  fractional moments of X exist if and only if integer moments exist. 
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(ii)  fractional factorial moments of X exist if and only if integer moments exist. 
 
Proof: (i) let q be a non-integer number, it can be written: 
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then, we have : 
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by taking expectation of recent équation, we have :  
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(ii) By taking expectation of expression (24), we have: 
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