International Journal of Mathematical Archive-5(1), 2014, 293-299 MAAvailable online through www.ijma.info ISSN 2229 - 5046

GENERALIZED FOURIER TRANSFORM FOR THE GENERATION OF COMPLEX FRACTIONAL MOMENTS

M. Ganji¹ and F. Gharari*²

¹Department of Statistics, University of Mohaghegh Ardabili, Iran Daneshghah Avenue, Ardabil.

²Department of Mathematics, University of Mohaghegh Ardabili, Iran Daneshghah Avenue, Ardabil.

(Received on: 02-11-13; Revised & Accepted on: 21-01-14)

ABSTRACT

Fourier transform of fractional order using the Mittag-Leffler-type function $E_q(x^q)$ and its complex type, was introduced together with its inversion formula. The obtained transform provided a suitable generalization of the characteristic function of random variables. It was shown that complex fractional moments which are complex moments of order nq^{th} of a certain distribution, are equivalent to Caputa fractional derivation of generalized characteristic function (GCF) in origin, n being a positive integer and $0 < q \le 1$. The case q=1 was reduced to the complex moments. Finally, after introducing fractional factorial moments of a positive random variable, we presented the relationship between integer moments, fractional moments (FMs) and fractional factorial moments (FFMs) of a positive random variable.

Mathematics Subject Classification: MSC 60, MSC 58.

Keywords: Fractional calculus, Mittag-Leffler-type function, Stirling function.

1. INTRODUCTION

It is well know that the Fourier transform of probability density function is characteristic function, that is

$$\varphi_X(t) = \left\langle e^{itX} \right\rangle = \int_{-\infty}^{\infty} e^{itx} f(x) dx, \tag{1}$$

Where the notation $\langle . \rangle$ means expectation and on the other hand, we have:

$$\phi_X(t) = \sum_{k=0}^{\infty} \left\langle (iX)^k \right\rangle \frac{t^k}{k!},\tag{2}$$

This function generates complex moments of integer order, as we have:

$$\left\langle (iX)^k \right\rangle = \frac{d^k \phi_X(t)}{du^k} \Big|_{t=0}.$$
 (3)

But in this work, we generalized $\phi_{\chi}(t)$ in order to obtain complex non-integer moments.

Recently, fractional moments of the type $E[X^{kq}]$ have been introduced [2], showing that such quantities have important features: (i) they are exact natural generalization of integer moments as like as fractional differential operators generalize the classical differential calculus; (ii) the interesting point is the relationship between fractional moments and the fractional special functions.

Corresponding author: F. Gharari*2

²Department of Mathematics, University of Mohaghegh Ardabili, Iran Daneshghah Avenue, Ardabil. E-mail: fatemeh. gharari@yahoo.com

In this work, at first, we defined a Mittag-leffler-type function $E_q(x^q)$ and its complex type, hereafter called the generalized exponential function. This function is a product of Mittag-leffler function and a power function. Using complex type of this function, we defined generalized Fourier transform. The obtained transform provided a suitable generalization of the characteristic function of random variables; that is using the expectation of complex generalized exponential function, we could directly obtain the generalized characteristic function GCF of a certain random variable. It was shown that complex fractional moments which are complex moments of order nq^{th} of a certain distribution, are equivalent to Caputa fractional derivation of the GCF in origin, n being a positive integer and $0 < q \le 1$. The case q=1 was reduced to the complex moments. In continue, after introducing fractional factorial moments of a positive random variable, we presented the relationship between integer moments, fractional moments (FMs) and fractional factorial moments (FFMs) of a positive random variable.

Our main means of Fractional Calculus for this generalization were Reimann-Liouville and Caputo operators, fractional Taylor series.

2. PRELIMINARIES

In this section, we briefly review the definitions of fractional integrals and fractional derivatives, and the formal fractional right Riemann-Liouville Taylor series.

Definition: 1 Let f(x) is a function defined on the interval [a,b] and q is a positive real number. The right Riemann-Liouville fractional integral is defined by:

$${}_{a}I_{x}^{q}f\left(x\right) = \frac{1}{\Gamma\left(q\right)}\int_{a}^{\Lambda}\left(x-t\right)^{q-1}f\left(t\right)dt, \qquad -\infty \le a \ \langle \ x \ \langle \ \infty$$

and also the right "Riemann -Liouville fractional derivative" is defined by:

$${}_{a}D_{x}^{q}f\left(x\right) = \left(\frac{d}{dx}\right)^{n} \left({}_{a}I_{x}^{n-q}f\left(x\right)\right). \tag{5}$$

Definition: 2 Let n = [q] + 1, the right Caputo fractional derivative $\binom{c}{a} D_x^q f(x)$ is defined by:

$${}_{a}I_{x}^{n-q}\frac{d^{n}}{dx^{n}}f(x) = \frac{1}{\Gamma(n-q)}\int_{a}^{x}(x-t)^{n-q-1}\frac{d^{n}}{dt^{n}}f(t)dt,$$
(6)

and the sequential fractional derivatives is given by:

$${}_{a}^{C}D_{x}^{kq} = \underbrace{{}_{a}^{C}D_{x}^{q} {}_{a}^{C}D_{x}^{q} ... {}_{a}^{C}D_{x}^{q}}_{Ktimes}$$

Definition: 3Let f(x) be a function defined on the right neighborhood of a, and be an infinitely fractionally-differentiable function at a, that is to say, all $\binom{c}{a}D_x^q$ f(x), (k=0,1,2,...) exist. The formal fractional right Riemann-Liouville Taylor series of a function is

$$f(x) = \sum_{k=0}^{\infty} {\binom{c}{a} D_x^q}^k f(x) \Big|_{x=a} \cdot \left[{\binom{a}{a} I_x^q}^k (1) \right], \tag{7}$$

expilicity

$$\left({}_{0}I_{x}^{q}\right)^{k}(1) = \frac{1}{\Gamma(ka+1)}(x-a)^{kq}$$
.

where, ${}^{C}_{x}D^{q}_{x}$ is the right Caputa fractional derivative and ${}_{a}I^{q}_{x}$ is the right Riemann-Liouville fractional integral.

The fractional Taylor series of an infinitely fractionally differentiable function is based on fundamental theorem of Fractional Calculus (see [6]). By fundamental theorem of fractional calculus, one can say that the right Caputa fractional derivative operation and the right Riemann-Liouville fractional integral operation are in inverse to each other.

3. GENERALIZED FOURIER TRANSFORM

The explicit solutions to the equation

$$\binom{c}{_0}D_x^q y - \lambda y(x) = 0 \quad , (x)0, \quad n - 1 < q \le n; \quad n \in \mathbb{N}, \quad \lambda \in \mathbb{R}$$

in terms of this function, that is

$$y(x) = E_q(\lambda x^q)$$
.

Sequential fractional derivative of the function gives

$${}_{0}^{C}D_{r}^{kq}y = \lambda^{k}y. \tag{9}$$

and in general case

$${}_{a}^{C}D_{x}^{q} \operatorname{E}_{q}\left(\left(x-a\right)^{q}\right) = \operatorname{E}_{q}\left(\left(x-a\right)^{q}\right) \tag{10}$$

In addition, the generalized exponential function satisfied

$$E_q(\lambda(x+y)^q) = E_q(\lambda x^q) E_q(\lambda y^q) , \qquad (11)$$

and

$$E_{q}\left(\lambda\left(x-x\right)^{q}\right) = E_{q}\left(\lambda x^{q}\right) E_{q}\left(\lambda\left(-x\right)^{q}\right) = E_{q}\left(0\right) = 1,$$

Therefore

$$E_{q}\left(\lambda\left(-x\right)^{q}\right) = E_{q}\left(\left(-1\right)^{q} \lambda x^{q}\right) = E_{q}^{-1}\left(\lambda x^{q}\right) ,$$

that is, $E_q(x^q)$ is the fractional analogue of Exp(x).

The fractional Taylor series of this function is as following:

$$E_{q}((x-a)^{q}) = \sum_{k=0}^{\infty} \left[\binom{a}{a} I_{x}^{q}^{k} (1) \right] = \sum_{k=0}^{\infty} \frac{1}{\Gamma(kq+1)} (x-a)^{kq},$$
(12)

because.

$${\binom{c}{a}D_x^q}^k E_q((x-a)^q) \Big|_{x=a} = 1.$$
 (13)

It can be seen that,

$$L\left\{ \mathbf{E}_{q}\left(x^{q}\right)\right\} = \frac{s^{q-1}}{s^{q}-1},\tag{14}$$

where L is Laplace transform. With substitutions q=1 and a=0 the results (8) t0 (14) have valid for the elementary exponential function.

We define the generalized exponential function, $\mathbf{E}_{q}\!\left(x^{q}\right)$ by the series below

$$\sum_{k=0}^{\infty} \frac{x^{kq}}{\Gamma(kq+1)} , \tag{15}$$

and we have the complex generalized exponential function as following:

$$E_{q}((ix)^{q}) = \sum_{k=0}^{\infty} \frac{x^{kq}}{\Gamma(kq+1)} \cdot (i)^{kq} = \sum_{k=0}^{\infty} \frac{x^{kq}}{\Gamma(kq+1)} \cdot e^{\frac{i\pi kq}{2}},$$
(16)

and also we have:

$$E_{q}((-ix)^{q}) = \sum_{k=0}^{\infty} \frac{x^{kq}}{\Gamma(kq+1)} \cdot (-i)^{kq} = \sum_{k=0}^{\infty} \frac{x^{kq}}{\Gamma(kq+1)} \cdot e^{\frac{-i\pi kq}{2}}.$$
(17)

Now that we have a generalization of the complex exponential function, it should; of course, be possible to construct a generalization of the Euler relation, that being

$$E_a((ix)^q) = \cos_a(x^q) + i\sin_a(x^q). \tag{18}$$

From the real part of (16) we obtain the equation for the generalized cosine function

$$\cos_q(x^q) = \frac{1}{2} (E_q((ix)^q) + E_q((-ix)^q))$$

where by using (16) and (17) in recent equation, we can rewrite:

$$\cos_q(x^q) = \sum_{k=0}^{\infty} \frac{x^{kq}}{\Gamma(kq+1)} \cdot \cos \frac{kq\pi}{2},$$

So that in the case q=1, we have:

$$\cos_1(x^1) = \sum_{k=0}^{\infty} \frac{x^k}{\Gamma(k+1)} \cdot \cos \frac{k\pi}{2} = \cos(x),$$

and from the imaginary part of (16) we obtain the equation for the generalized sine function

$$\sin_q(x^q) = \frac{1}{2i} (E_q((ix)^q) - E_q((-ix)^q)),$$

where by using (16) and (17) in recent equation, we can rewrite:

$$\sin_q(x^q) = \sum_{k=0}^{\infty} \frac{x^{kq}}{\Gamma(kq+1)} \cdot \sin\frac{kq\pi}{2},$$

So that in the special case q=1, *we have:*

$$\sin_1(x^1) = \sum_{k=0}^{\infty} \frac{x^k}{\Gamma(k+1)} \cdot \sin \frac{k\pi}{2} = \sin(x).$$

Also we have

$$E_q((i(x+y))^q) = E_q((ix)^q) E_q((iy)^q),$$

Therefore we conclude that the function $\mathbb{E}_q(ix)^q$ is periodic with period T_q defined as the solution of the equation $E_q(i^q(T_q)^q) = 1$.

Definition: 4 Let $f(x): R \to C$, $x \to f(x)$. The generalized Fourier transform of the function f is defined by integral

$$\hat{f}_q(s) = \int_{-\infty}^{\infty} E_q((isx)^q) f(x) dx, \qquad s \in C$$
(19)

and for q=1, we have the classical Fourier transform

$$\hat{f}(s) = \int_{-\infty}^{\infty} e^{isx} f(x) dx,$$

and inverse Fourier transform is as following:

$$f(x) = \frac{1}{T_q} \int_{-\infty}^{\infty} E_q((-isx)^q) \hat{f}_q(s) ds.$$

4. THE GENERALIZED CHARACTERISTIC FUNCTION (GCF) OF A RANDOM VARIABLE

Definition: 5 The generalized characteristic function of any random variable $X, \widetilde{\phi}_X(t)$ is defined by:

$$\tilde{\varphi}_{X}\left(t\right) = \left\langle E_{q}\left((iXt)^{q}\right)\right\rangle,\tag{20}$$

where, $E_q((ixt)^q)$ is the generalized exponential function. In the special case we q=1, obtain the ordinary characteristic function

$$\phi_X(t) = \langle Exp(iXt) \rangle$$
.

Theorem: 1 Suppose that the fractional generalized characteristic function of a random variable X is finite in some open interval containing zero. Then, all the complex fractional moments exist and

$$\tilde{\varphi}_X\left(t\right) = \sum_{k=0}^{\infty} \left\langle (iX)^{kq} \right\rangle \frac{t^{kq}}{\Gamma(kq+1)},\tag{21}$$

that is, the complex fractional moments are the coefficients of the fractional Mac-Lourin series of $\widetilde{\phi}_X(t)$ and the generalized characteristic function is infinitely fractionally differentiable in that open interval, and for $0 < q \le 1$ and k = 1, 2, ...

$$\left\langle (iX)^{kq} \right\rangle = \begin{pmatrix} {}^{C}_{0} D_{x}^{kq} \end{pmatrix} \left(\tilde{\varphi}_{X} \left(t \right) \right) \Big|_{t=0} = \begin{pmatrix} {}^{C}_{0} D_{x}^{q} \end{pmatrix}^{k} \left(\tilde{\varphi}_{X} \left(t \right) \right) \Big|_{t=0}, \tag{22}$$

also in the special case q=1 we obtain:

$$\left\langle (iX)^k \right\rangle = \left({}_0^C D_x^q\right)^k \phi_X(t) \mid_{t=0} = \phi_X^{(k)}(t) \mid_{t=0}.$$

Proof: Since the fractional Mac-Lourin series of $E_a((ix)^q)$ is

$$E_q((ix)^q) = \sum_{k=0}^{\infty} \frac{1}{\Gamma(kq+1)} (ix)^{kq}$$

it can be written:

$$\tilde{\varphi}_{X}\left(t\right) = \left\langle E_{q}\left((iXt)^{q}\right)\right\rangle = \left\langle \sum_{k=0}^{\infty} \frac{\left(iXt\right)^{qk}}{\Gamma(kq+1)}\right\rangle = \sum_{k=0}^{\infty} \left\langle \left(iX\right)^{kq}\right\rangle \frac{t^{kq}}{\Gamma(kq+1)}$$

in the other hand, by using (9), we have:

$$\begin{pmatrix} {}^{C}_{0}D_{x}^{q} \end{pmatrix}^{k} \widetilde{\phi}_{X}(t) = \begin{pmatrix} {}^{C}_{0}D_{x}^{q} \end{pmatrix}^{k} \left(\left\langle E_{q}((iXt)^{q}) \right\rangle \right) = \left\langle {}^{C}_{0}D_{x}^{kq})(E((iXt)^{q})) \right\rangle$$

$$= \left\langle (iX)^{kq} E_{q}((iXt)^{q}) \right\rangle .$$

5. THE FRACTIONAL FACTORIAL MOMENTS (FFMS)

Stirling functions of the first kind, S(n,k), can be defined via their generating function

$$\left(x\right)_{n} = \sum_{k=0}^{n} S\left(n, k\right) x^{n}, \quad \left(x \in C, \ n \in N_{0}\right)$$
(23)

where

$$(x)_n = x(x-1)(x-2)...(x-n+1) = \frac{\Gamma(1+x)}{\Gamma(1+x-n)},$$

and with the convention $S(n,0) = \delta_{n,0}$ (Kronecker's delta). The latter gives a natural possibility to define "Stirling number of fractional order" S(q,k) with $q \in C$ and $k \in N_0$. In fact, these "Stirling functions", as one may call them, which were introduced by Butzer, Hauss and Schmidt [1], may be defined via the generating function

$$(x)_q = \frac{\Gamma(x+1)}{\Gamma(x-q+1)} = \sum_{k=0}^{\infty} S(q,k) x^k, \qquad (|x|<1, q \in \mathbb{C}).$$
 (24)

Theorem: 2 Suppose X be a random variable with support $[0,\infty)$ and $G_X(z)$ is the probability generating function and finite in some open interval containing the origin. Then $G_X(z)$ is infinitely fractional differentiable in that open interval, and if $\lim_{z\to 1} G_X(z)$ is finite, then $\langle X(X-1)...(X-qk+1)\rangle$ exists and is infinite,

$$\lim_{Z \to 1} G_X^{(qK)}(z) = \langle X(X-1)...(X-qk+1) \rangle,$$

where the notation (qk) means the right Caputo fractional derivative $\binom{c}{a}D_x^{kq}f(x)$ and in the case q=1, we have:

$$\lim_{Z \to 1} G_X^{(K)}(z) = \langle X(X-1)...(X-k+1) \rangle,$$

where

$$G_X(z) = \sum_{k=0}^{\infty} P(x=k) \cdot z^k. \tag{25}$$

Proof: It flows from the convergence of series (25) for |z|=1 and from Weierstrass theorem on uniformly convergent series of analytic functions that $G_X(z)$ is a analytic function of z in |z|<1, with (25) as its power series expansion. Since $G_X(z)$ is analytic, it is infinitely fractionally differentiable, and one can write meaningfully the fractional Taylor expansion

$$G_X(z) = \sum_{k=0}^{\infty} \frac{z^{kq}}{\Gamma(kq+1)} G_X^{(qk)}(0), \quad 0 \langle q \leq 1$$

also

$$\frac{d^{qk}}{dz^{qk}} \Big(G_X(z) = \Big\langle z^X \Big\rangle \Big),$$

$$G_X^{(qk)}(z) = \left\langle \frac{d^{qk}}{dz^{qk}}(z^X) \right\rangle,$$

we have,

$$G_X^{(qk)}(z) = \left\langle \frac{\Gamma(1+X)}{\Gamma(1+X-qk)} z^{X-qk} \right\rangle,$$

$$\lim_{z \to 1} G_X^{(qk)}(z) = \left\langle \frac{\Gamma(1+X)}{\Gamma(1+X-qk)} \right\rangle = \left\langle (X)_{qk} \right\rangle,$$

and if q=1, we have

$$\lim_{z \to 1} G_X^{(\kappa)}(z) = \left\langle \frac{\Gamma(1+X)}{\Gamma(1+X-k)} \right\rangle = \left\langle (X)_k \right\rangle.$$

5. THE RELATIONSHIP BETWEEN INTEGER MOMENTS WITH FMS AND FFMS

In this section, another theorem which brings the relationship between integer moments, FMs and FFMs is presented for a positive random variable.

Theorem: 3 Suppose X be a random variable with support $[0, \infty)$.

(i) fractional moments of X exist if and only if integer moments exist.

(ii) fractional factorial moments of X exist if and only if integer moments exist.

Proof: (i) let q be a non-integer number, it can be written:

$$x^{q} = \sum_{n=0}^{\infty} \frac{1}{n!} (x^{q})^{(n)} (a) (x-a)^{n}, \quad a > 0$$

$$= \sum_{n=0}^{\infty} \frac{(a)_{n}}{n! a^{n-q}} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} x^{k} a^{n-k},$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{n-k} a^{n-k} x^{k} (a)_{n}}{k! (n-k)! a^{n-q}},$$

then, we have:

$$x^{q} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^{n-k} a^{q-k} (a)_{n}}{k! (n-k)!} x^{k},$$

by taking expectation of recent équation, we have :

$$\langle X^q \rangle = \sum_{n=0}^{\infty} \sum_{k=0}^{n} c(n,k,q,a) \langle X^k \rangle.$$

(ii) By taking expectation of expression (24), we have:

$$\langle (X)_q \rangle = \sum_{k=0}^n S(q,k) \langle X^k \rangle.$$

6. REFERENCES

- [1] Butzer P. L., Hauss M., Schmid M., Fractional functions and Stirling numbers of fractional order, Resoltate math, 16 (1989) 16-48.
- [2] Ganji M., Eghbali N., Gharari F., Some fractional special functions and fractional moments, Gen. Math. Notes, (2013), 120-127.
- [3] Hilfer R., Applications of fractional calculus in physics, World Scientific, Singapore, (2000), 51-56.
- [4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Application of fractional Differential Equations, El-sevier, Amsterdam, (2006).
- [5] Li M., Rongren J., Zhu T., Fractional vector calculus and fractional special function, arxive: 1001.2889v1 [math-ph] 17 Jan 2010.
- [6] Li M., Rongren J., Zhu T., Series expansion in fractional calculus and fractional differential equations, arxiv: 0910.4819v2 [math-ph] 30 Oct 2009.
- [7] Oldham K,. Spanier J,. The fractional calculus, Academic Press, New York, (1974).
- [8] Podlubny I., fractional differential equations, Academic Press, San Diego, (1999).
- [9] Vasily E., Tarasov, Annals of physics 323, (2008), 2756-2778.

Source of support: Nil, Conflict of interest: None Declared