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ABSTRACT
Fourier transform of fractional order using the Mittag-Leffler-type function Eq (Xq) and its complex type, was

introduced together with its inversion formula. The obtained transform provided a suitable generalization of the
characteristic function of random variables. It was shown that complex fractional moments which are complex
moments of order ng™ of a certain distribution, are equivalent to Caputa fractional derivation of generalized
characteristic function (GCF) in origin, n being a positive integer and 0 < g < 1. The case q=1 was reduced to the
complex moments. Finally, after introducing fractional factorial moments of a positive random variable, we presented
the relationship between integer moments, fractional moments (FMs) and fractional factorial moments (FFMs) of a
positive random variable.
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1. INTRODUCTION

It is well know that the Fourier transform of probability density function is characteristic function, that is

oy () = (e ) = [~ ™ f (x)dx, (1)
Where the notation <> means expectation and on the other hand, we have:
) i tk
_ K\ | 2
¢x(t)—§<(-><) o 0

This function generates complex moments of integer order, as we have:

Ok d g, (t
(xy ) =20 ®

But in this work, we generalized ¢x (t) in order to obtain complex non-integer moments.

Recently, fractional moments of the type E[X kq] have been introduced [2], showing that such quantities have important
features: (i) they are exact natural generalization of integer moments as like as fractional differential operators
generalize the classical differential calculus; (ii) the interesting point is the relationship between fractional moments
and the fractional special functions.
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In this work, at first, we defined a Mittag-leffler-type function Eq(xq) and its complex type, hereafter called the

generalized exponential function. This function is a product of Mittag-leffler function and a power function. Using
complex type of this function, we defined generalized Fourier transform. The obtained transform provided a suitable
generalization of the characteristic function of random variables; that is using the expectation of complex generalized
exponential function, we could directly obtain the generalized characteristic function GCF of a certain random
variable. It was shown that complex fractional moments which are complex moments of order nq™ of a certain
distribution, are equivalent to Caputa fractional derivation of the GCF in origin, n being a positive integer and
0 < g < 1. The case g=1 was reduced to the complex moments. In continue, after introducing fractional factorial
moments of a positive random variable, we presented the relationship between integer moments, fractional moments
(FMs) and fractional factorial moments (FFMs) of a positive random variable.

Our main means of Fractional Calculus for this generalization were Reimann-Liouville and Caputo operators,
fractional Taylor series.

2. PRELIMINARIES

In this section, we briefly review the definitions of fractional integrals and fractional derivatives, and the formal
fractional right Riemann- Liouville Taylor series.

Definition: 1 Let f (X) is a function defined on the interval [a,b] and ( is a positive real number. The right Riemann-

Liouville fractional integral is defined by:
X

MO ()= [ (O, —eosa(x (o @

I'(a);

and also the right ““Riemann —Liouville fractional derivative" is defined by:
d), .

anf(X){—J (a1°F(x)). )
dx

Definition: 2 Letn = [q]+1, the right Caputo fractional derivative (ED f)(x) is defined by:

| n-a i f(x)z;j(x_t)nql 2 f(t)dt, (6)
a'x dx" F(n_q)a dt"

and the sequential fractional derivatives is given by:
Cpka _CpaCpa Cnya
D =.D/;D/...;D,
%,—/
Ktimes

Definition: 3Let f(X) be a function defined on the right neighborhood of a, and be an infinitely fractionally-

differentiable function at a, that is to say, all (g D¢ )k f(x),(k =0.,2,...) exist. The formal fractional right
Riemann- Liouville Taylor series of a function is

F0-2(c08) 100 | Je 1 @] 0
expilicity

19) @ = —a)“

(1) 0= g

where, g D, is the right Caputa fractional derivative and . 1} is the right Riemann- Liouville fractional integral .

The fractional Taylor series of an infinitely fractionally differentiable function is based on fundamental theorem of
Fractional Calculus (see [6]). By fundamental theorem of fractional calculus, one can say that the right Caputa

fractional derivative operation and the right Riemann- Liouville fractional integral operation are in inverse to each
other.
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3. GENERALIZED FOURIER TRANSFORM

The explicit solutions to the equation

(6D%y)-ay(x)=0 ()0, n-1gq<m; neN, A<R)

)
in terms of this function, that is
y(x)=E, (ax9) .
Sequential fractional derivative of the function gives
“Di%y=Ay. ©)

and in general case

oD} E, ((x-a)')=E,((x-a)') (10)

In addition, the generalized exponential function satisfied

E,(A(x+y)") =B, () E, (2y7) . (11)
and

By (A(x=%)") = (Ax*) E, (2(—x)") = E, (0) =1,

Therefore

E, (ﬂ,(—x)q)z E, ((—1)q zxq) =E(Ax)

that is, Eq (Xq) is the fractional analogue of Exp (X).

The fractional Taylor series of this function is as following:

E,((x—a))= i (e F )= g@(x —a), (12)
because,
(D8 ) E,((x-a)") |, =1. (13)
It can be seen that,

q s
LB () =< (14)

where L is Laplace transform. With substitutions q=1 and a=0 the results (8) t0 (14) have valid for the elementary
exponential function.

We define the generalized exponential function, Eq (Xq ) by the series below

= Tr(kg+1) ° (15)
and we have the complex generalized exponential function as following:
q N X kq N X i”kTq (16)
E (ixX)N=>)> ——(H)=> —e 2,
(@ = 2 ™" T 2 Tka D
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and also we have:

E, (X)) = Z(

k

kq+l( ™= kZ::;F(kq+1)

—i;qu

(17)

Now that we have a generalization of the complex exponential function, it should; of course, be possible to construct a
generalization of the Euler relation, that being

E,((ix)7) = cos, (x?) +isin, (x?). (18)
From the real part of (16) we obtain the equation for the generalized cosine function

aqy — 1 E 1x)d E ix)d
€S, (x7) == (Eq ()") + Eq (1))

where by using (16) and (17) in recent equation, we can rewrite:

- kQﬂ'
cos_(x*°
) = kZ:(;F(kq+1) 2

So that in the case g=1, we have:

cos, (x') = gr(k 1) k; = cos(x),

and from the imaginary part of (16) we obtain the equation for the generalized sine function
H ay — 1 E )4 E )4
sing (x7) = = (B4 (1)) = Eq (1)),

where by using (16) and (17) in recent equation, we can rewrite:

. - . kq;r
q
sing (x*) = kZ:(;F(kq )T

So that in the special case q=1, we have:

)

sin, (xY) _Z:;‘F(k 1) %:sin(x).

Also we have
B, ((0x+y))7)= By (%)) E,((iy)* )
Therefore we conclude that the function Eq ((ix)q) is periodic with period Tq defined as the solution of the equation

E,(i°(T,)%) =1.

Definition: 4 Let f (x):R—C, x—> f(x).The generalized Fourier transform of the function f is defined by
integral

s)= T E, ((isx)?) f (x)dx, seC (19)

and for g=1, we have the classical Fourier transform

5)= _T e f (x)dx,
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and inverse Fourier transform is as following:

X)= Ti T E, ((~is0)") f, (5)ds.

4. THE GENERALIZED CHARACTERISTIC FUNCTION (GCF) OF A RANDOM VARIABLE

Definition: 5 The generalized characteristic function of any random variable X, gZX (t) is defined by:

@y (1) = (E, (X)), (20)
where, Eq(ixt)q) is the generalized exponential function. In the special case we =1, obtain the ordinary
characteristic function

#y (1) = (Exp(iXt)).

Theorem: 1 Suppose that the fractional generalized characteristic function of a random variable X is finite in some

open interval containing zero. Then, all the complex fractional moments exist and
kq

oy (t)= Z<(lx)kq>(t—, (1)

I'(kq+1)

that is, the complex fractional moments are the coefficients of the fractional Mac-Lourin series of JX (t) and the

generalized characteristic function is infinitely fractionally differentiable in that open interval, and for 0<q <1 and
k=12,..

(X)) =($DL) (B4 (1)) |o= (DI (@ (1) |co (22)
also in the special case g=1 we obtain:
(@) = (Eo3) o ) |,y =400 | -

Proof: Since the fractional Mac-Lourin series of Eq ((ix)q) is

E, (ix))=>] = (kq 1)(|x)kq

k=0
it can be written:

~ . (IXt) ) kqg
t = E lXt a = _ - kq t
Py (1) < o ((IXt) )> <zr(kq+1) - kz:;)((um >—F(kq D
in the other hand, by using (9), we have:
(502 ) 4, (1) = (5Dg ) (B, (x0))) = ((SDIYE(XD)*)))
=((iX)“ E, ((iXD)%)) .
5. THE FRACTIONAL FACTORIAL MOMENTS (FFMS)
Stirling functions of the first kind, S(n,k), can be defined via their generating function
=>'s(n,k) x", (XEC, neNo) (23)
k=0

where

(x), =x(x=1)(x=2)..(x—n+1)=

I'(1+X)
I'(1+x-n)’
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and with the convention S(n,0) =3 , , (Kronecker s delta) . The latter gives a natural possibility to define “*Stirling

number of fractional order ”* S(g,k) with ge C and ke N . In fact, these “Stirling functions™, as one may call them,
which were introduced by Butzer, Hauss and Schmidt [1], may be defined via the generating function

Mx+1) & ;
X), = S k x|<1, q € C). 24
(x)g = (Xq+1k2;q)x (XI<1,q€C) (24)
Theorem: 2 Suppose X be a random variable with support [0,0) and G  (z) is the probability generating function

and finite in some open interval containing the origin. Then G, (z) is infinitely fractional differentiable in that open
interval, and if lim G, (z) is finite, then <x (X —1...(X —gk +1)> exists and is infinite,
z—>1

|Zinqe<qu>(z)= (X (X —=1)..(X — gk +1)),
where the notation (gk) means the right Caputo fractional derivative (D} f )(x) and in the case g=1, we have:
IziLnle§(K)(z)= (X (X —1)..(X —k +1)),

where

Gx(z)ziP(x=k) z*. (25)

Proof: It flows from the convergence of series (25) for [z|=1 and from Weierstrass theorem on uniformly convergent
series of analytic functions that G y (z) is a analytic function of z in |z| <1, with (25) as its power series expansion.

Since G  (z) is analytic, it is infinitely fractionally differentiable, and one can write meaningfully the fractional Taylor
expansion

o1 (0) Zrigea® ) 00

k=0
also,

&G @)= ("))

G&qk)(z) = <(;qu:k (z* )>,

we have,
G (7) = _PA+ X)) xeac),
T+ X —gk)

and if g=1, we have,

|Zigl1c;<x+<>(z)=<%> = (X))

5. THE RELATIONSHIP BETWEEN INTEGER MOMENTS WITH FMS AND FFMS

In this section, another theorem which brings the relationship between integer moments, FMs and FFMs is presented
for a positive random variable.

Theorem: 3 Suppose X be a random variable with support [0, ).

(i) fractional moments of X exist if and only if integer moments exist.
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(i) fractional factorial moments of X exist if and only if integer moments exist.

Proof: (i) let g be a non-integer number, it can be written:

x1 =3 L(x1)® @)(x—a)", a0

-3 28k Z(—l)“k@xka“,

:i n (_1)n—kan—kxk(a)n’

oko  kl(n—k)ra™™®

then, we have :
o n (_1\"-k,q-k
quzz( H"ra' " (a), X<
oo KI(n—k)!

by taking expectation of recent équation, we have :

<X q> = izn:c(n,k,q,a) <X k>.

n=0 k=0
(ii) By taking expectation of expression (24), we have:

(X)) = >25(ak) (x*)
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