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ABSTRACT 

In this paper, we investigated the peristaltic motion of a Johnson-Segalman fluid through a porous medium in a two - 

dimensional channel under the assumptions of long-wavelength and low-Reynolds number. The flow is investigated in a 

wave frame of reference moving with velocity of the wave. A Perturbation solution for small Weissenberg number is 

obtained for the axial velocity, axial pressure gradient and pressure rise per one wavelength. The effects o various 

emerging parameters on the pressure gradient, pumping characteristics and friction force are discussed through graphs in 

detail.  
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1. INTRODUCTION: 

 

Peristalsis is a well known mechanism of pumping biological and industrial fluids. Even though it is observed in living 

systems for many centuries; the mathematical modeling of peristaltic transport began with trend setting works by Shapiro et 

al. [1] using wave frame of reference and Fung and Yih [2] using laboratory frame of reference. Many of the contributors to 

the area of peristaltic transport have either followed Shapiro or Fung. 

 

Even though, there are many models to describe non-Newtonian behavior of the fluids but in recent years, the Johnson-

Segalman fluid has acquired a special status, as it includes as special cases the classical Newtonian fluid and Maxwell fluid. 

The Johnson-Segalman model is a viscoelastic fluid model which was developed to allow for non-affine deformations 

Johnson and Segalman [3]. The following researchers [4,5,6] used this model to explain the phenomenon of “spurt”. The 

term “spurt” is used to describe the large increase in the volume through put for a small increase in the driving pressure 

gradient (Vinogardov et al. [7]; Denn [8]) at a critical value of the pressure gradient that is observed in the flow of many 

non-linear fluids. Some experiments relevant to this issue have also been carried out by (Kraynik and Schowalter [9], Lim 

and Schowalter [10], Malkus et al. [5], Migler et al. [11], Migler et al. [12], Ramamurthy [13]). Experimentalists usually 

associate “spurt” with slip at the wall. Rao and Rajagopal [14] also studied three distinct flows of Johnson-Segalman fluid. 

Unlike most other fluid models, the Johnson-Segalman (JS) fluid allows for a non-monotonic relationship between the 

shear stress and the rate of share in a shear flow for certain values of the material parameter. While the JS model offers a 

very interesting means for explaining “spurt”, it seems more likely that the phenomenon is because of the “stick slip” that 

takes place at the boundary Rao and Rajagopal [14]. Hayat et al. [15] investigated the peristaltic motion of a Johnson-

Segalman fluid in a planner channel.  The MHD peristaltic motion of Johnson-Segalman fluid in a planar channel was 

studied by Elshahed and Haroun [16].  

 

In all the above mentioned studies, no porous medium has been taken into account. But it is well known that flow through a  
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porous medium has practical applications especially in geophysical fluid dynamics. Examples of natural porous media are  

beach sand, sandstone, limestone, rye bread, wood, the human lung, bile duct, gall bladder with stones and in small blood 

vessels. In the arterial system of human or animal, it is quite common to find localized narrowings, commonly caused by 

intravascular plaques. This stenosis disturbs the normal pattern of blood flow through the artery. Acknowledge of flow 

characteristics in the vicinity of stenosis may help to further the understanding of some major complications which can 

arise such as an in growth of tissue in the artery, the development of a coronary thrombosis, the weakening and bulging of 

the artery downstream from stenosis, etc. The investigations of blood flow through arteries are of considerable importance 

in many cardiovascular diseases particularly atherosclerosis. In some pathological situations, the distribution of fatty 

cholesterol and artery clogging blood clots in the lumen of coronary artery can be considered as equivalent to porous 

medium. El Shehawey and Husseny [17] and El Shehawey et al. [18] studied the peristaltic mechanism of a Newtonian 

fluid through a porous medium. Hall effects on peristaltic flow of a Maxwell fluid through a porous medium in a channel 

was studied by Hayat et al. [19] 

 

In view of these, we studied the peristaltic flow of a Johnson-Segalman fluid through a porous medium in a two - 

dimensional channel. The flow is investigated in a wave frame of reference moving with velocity of the wave under the 

assumptions of long-wavelength and low-Reynolds number. A Perturbation solution for small Weissenberg number is 

obtained for the axial velocity, axial pressure gradient and pressure rise per one wavelength. The effects o various emerging 

parameters on the pressure gradient, pumping characteristics and friction force are discussed in detail. 

 

2. THE MATHEMATICAL MODEL: 

 

We consider an incompressible, Johnson-Segalman fluid through a porous medium in a two dimensional infinite symmetric 

channel of width 2a . We employ a rectangular coordinate system with X parallel to and Y normal to the channel walls. 

Moreover, we consider an infinite wave train traveling with velocity c along the channel walls. Fig. 1 shows the physical 

model of the problem. The symmetric channel walls are defined as  

 

              ( ) ( )
2

, sinH X t a b X ct
π

λ

� �
± = ± ± −� �� �

                           (2.1) 

where b is the amplitude of the wave, t is the time and λ is the wavelength. 

 

 
 

The equations governing the flow of an incompressible fluid are 

 

              div 0V =                  div
dV

f
dt

σ ρ ρ+ =                                                                                        (2.2) 

whereV is the velocity field, f - the body force per unit mass, ρ - the fluid density,
d

dt
- the material derivative andσ - 

the Cauchy stress tensor given by [3]: 
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              pI Tσ = − +                                                                                                                                        (2.3) 

2T D Sµ= +                                                                                                                                        (2.4)   

       

( ) ( ) 2
TdS

S m S W eD W eD S D
dt

η
� �

+ + − + − =� �� �
                                                     (2.5)      

   

1
,

2

T
D L L� �= +� �           

1
,

2

T
W L L� �= −� �         gradL V=                                          (2.6) 

 

The equations above include the scalar pressure p, the identity tensor I , the dynamic viscosities � and �, the relaxation time 

m, the slip parameter e and the respective symmetric and skew symmetric part of the velocity gradient D  andW . Note 

that, our model reduces to the Maxwell fluid model for 1e = and 0µ = , and for 0m µ= = , it reduces to the classical 

Navier-Stokes fluid model. 

 

The velocity for unsteady two-dimensional flows is defined as 

 

          ( ) ( ), , , , , ,0V U X Y t V X Y t= � �� �                                                                                                (2.7) 

 

From Eqs. (2.2) - (2.7) we obtain, when body forces are absent, 

 

0
U V

X Y

∂ ∂
+ =

∂ ∂
                            (2.8)  

 
2 2

2 2

XX XYU U U p U U S S
U V u

t X Y X X Y X Y k

µ
ρ µ

� �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �
+ + = − + + + + −	 
	 


∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �
                     (2.9) 

 
2 2

2 2

XY YYV V V p V V S S
U V v

t X Y X X Y X Y k

µ
ρ µ

� �∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� �
+ + = − + + + + −	 
	 


∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �
                           (2.10) 

 

2 2XX XX XX

U U
S m U V S emS

X t X Y X
η

∂ ∂ ∂ ∂ ∂� �
= + + + − +	 


∂ ∂ ∂ ∂ ∂� �
( ) ( )1 1 XY

V U
m e e S

X Y

∂ ∂� �
− − +� �∂ ∂� �

   (2.11) 

 

( ) ( )1 1
2

XY XY XX

U V m U V
S m U V S e e S

Y X t X Y Y X
η

∂ ∂ ∂ ∂ ∂ ∂ ∂� � � � � �
+ = + + + + − − +	 
 	 
 � �∂ ∂ ∂ ∂ ∂ ∂ ∂� � � � � �

               

                                   ( ) ( )1 1
2

YY

m V U
e e S

X Y

∂ ∂� �
+ − − +� �∂ ∂� �

                                                              (2.12) 

 

2 2
YY YY YY

V V
S m U V S emS

Y t X Y Y
η

∂ ∂ ∂ ∂ ∂� �
= + + + −	 


∂ ∂ ∂ ∂ ∂� �
( ) ( )1 1 XY

U V
m e e S

Y X

∂ ∂� �
+ − − +� �∂ ∂� �

                (2.13) 

 

In the fixed frame ( ),X Y the motion is unsteady, while it becomes steady in the wave frame ( ),x y . The transformation 

from the fixed frame of reference ( ),  X Y  to the wave frame of reference ( ),  x y  is given by 

 

,x X ct= − ,y Y=  ,u U c= −  ,v V=  ( ) ( ),p x P X t=                                                         (2.14) 
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Here u, v and U, V are the velocity components in the wave frame and in the fixed frame, respectively. We put Eq. (2.14) 

into the Eqs. (2.8) - (2.13) and using the following non - dimensional variables: 

 

x
x

λ
= , ,

y
y

a
=  ,

u
u

c
=  ,

v
v

c
= ,

H
h

a
= ,

a
S S

cµ
=

( )

22
,

a
p p

c

π

λ µ η
=

+

2
,

aπ
δ

λ
=  Re ,

caρ

µ
=  

,
mc b

Wi
a a

φ= =  ,                                                                                       (2.15) 

 

we have (after dropping the bars) 

 

  0,
u v

x y
δ

∂ ∂
+ =

∂ ∂
                                                                                                                                            (2.16) 

 

( )
2 2

2

2 2

1
Re 1

xyxx
SSu u p u u

u v u
x y x x y x y Da

µ η
δ δ δ

µ

∂� �� � � � ∂∂ ∂ + ∂ ∂ ∂
+ = − + + + + − +	 
	 
 	 


∂ ∂ ∂ ∂ ∂ ∂ ∂� �� � � �
                  (2.17)          

                             
2 2

3 2 2

2 2
Re

xy yy
S Sv v p v v

u v v
x y y x y x y Da

µ η δ
δ δ δ δ δ

µ

∂ ∂� �� � � �∂ ∂ + ∂ ∂ ∂
+ = − + + + + −	 
	 
 	 


∂ ∂ ∂ ∂ ∂ ∂ ∂� �� � � �
                      (2.18) 
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u U
S Wi u v S eWi S
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ηδ
δ δ

µ
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= + + −	 
	 


∂ ∂ ∂ ∂� � � �
( ) ( )2 1 1

xy

v u
Wi e e S

x y
δ
� �∂ ∂
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   (2.19) 

 

( ) ( )2 21 1
2

xy xy xx

u v Wi u v
S Wi u v S e e S

y x x y y x

η
δ δ δ

µ
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+ = + + + − − +	 
 	 
 � �∂ ∂ ∂ ∂ ∂ ∂� � � � � �

     

                                        ( ) ( )21 1
2
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Wi v u
e e S

x y
δ

� �∂ ∂
+ − − +� �∂ ∂� �

                                                              (2.20) 

 

2
2

yy yy yy

v v
S Wi u v S eWi S

y x y y

ηδ
δ δ

µ

� �� � ∂ ∂ ∂ ∂
= + + −	 
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( ) ( )21 1

xy

u v
Wi e e S

y x
δ

� �∂ ∂
+ − − +	 


∂ ∂� �
    (2.21) 

 

Under lubrication approach (i.e., neglecting the terms of order δ  and Re), from Eqs. (2.17) and (2.18), we get 

 

( )
2

2

1
0 1

xy
Sp u

u
x y y Da

µ η

µ

∂� �+ ∂ ∂
= − + + − +	 


∂ ∂ ∂� �
                                                                                                    (2.22) 

0
p

y

∂
=

∂
                                                                                                                       (2.23) 

where 

( )1
xx xy

u
S Wi e S

y

∂
= +

∂
                                                                                                                                 (2.24) 

( ) ( )1 1
2 2

xy xx yy

u Wi u Wi u
S e S e S

y y y

η

µ

∂ ∂ ∂
= + − − +
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                                                                                             (2.25) 
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( )1
yy xy

u
S Wi e S

y

∂
= − −

∂
                                                                                                                                   (2.26) 

 

From Eqs. (2.24) – (2.26), we write 

 

( )
2

2 21
xy xy

u u
S Wi e S

y y

η

µ

� �∂ ∂
+ − =	 


∂ ∂� �
                                                                                                           (2.27) 

 

Using Eqs. (2.23) and (2.27), the Eq. (2.22) can be rewritten as 

 

( )
32

2 2

12
1

dp u u
Wi u

dx x y y
α α

� �� �∂ ∂ ∂
= + − +� �	 


∂ ∂ ∂� �� �� �
                                                                  (2.28) 

where 
( )
( )

2

1

1e η
α

µ η

−
=

+
 and 

( )
2

Da

η
α

µ µ
=

+
. 

 

The corresponding non-dimensional boundary conditions are 

 

  
0 0

u

y

∂
=

∂
   at    0y =                                      (2.29) 

0 1u = −   at   1 siny h xφ π= = +                                    (2.30)

  

The volume flow rate in a wave frame is given by 

 

0

h

q udy=                                         (2.31)  

 

The flux at any axial station in the laboratory frame is 

 

( ) ( )
0

, 1
h

Q x t u dy q h= + = +                                       (2.32) 

 

The average volume flow rate over one wave period T (= / cλ ) of the peristaltic wave is defined as 

 

         

0

1
1

T

Q Q d t q
T

= = +                                      (2.33) 

 

3. SOLUTION: 

 

The Eq. (2.28) is non-linear and its closed form solution is not possible. thus, we linearize this equation in terms of 
2

Wi , 

since Wi  is small for the type of flow under consideration. So we expand ,u p and q  as  

 

( )2 4

0 1u u Wi u o Wi= + +   

 

( )2 40 1
dpdp dp

Wi o Wi
dx dx dx

= + +  
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( )2 4

0 1q q Wi q o Wi= + +                                                                                                                               (3.1) 

 

3.1 Equations of order 
0

Wi : 

 

( )
2

20 0
02

1
dp u

u
dx y

α
∂

= − +
∂

                                                                             (3.2) 

 

The corresponding boundary conditions are 

 

0 0
u

y

∂
=

∂
   at    0y =                                        (3.3) 

0 1u = −   at   y h=                                        (3.4) 

 

3.2 Equations of order
2

Wi : 

 

32
21 1 1

1 12

dp u u
u

dx y y y
α α

� �� �∂ ∂ ∂
= + −� �	 


∂ ∂ ∂� �� �� �
                                                                                           (3.5) 

   

The corresponding boundary conditions are 

 

   
1 0

u

y

∂
=

∂
  at    0y =                                        (3.6)  

1 0u =    at   y h=                                        (3.7) 

 

3.3 Solution of order
0

Wi : 

 

Solving the Equation (3.2) by using the boundary conditions (3.3) and (3.5), we obtain 

 

0
0 2

1 cosh
1 1

cosh

dp y
u

dx h

α

α α

� �
= − −� �� �

                                      (3.8) 

 

and the volume flow rate 0q  is given by    

 

( )0
0 0 3

0

sinh cosh1

cosh

h h h hdp
q u dy h

dx h

α α α

α α

−� �
= = −� �

� �
                                    (3.9) 

 

From Equation (3.7), we obtain 

 

( )3

00
cosh

sinh cosh

q h hdp

dx h h h

α α

α α α

+
=

−
                                    (3.10)

  

3.4 Solution of order
2

Wi : 

 

Solving the Eq. (3.5) by using Eq. (3.8) and the boundary conditions (3.6) and (3.7), we obtain 
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3

01 1
1 2 2 4 2

1 cosh 3 cos cosh 3 sinh
1

cosh 2 cosh 16 4

dpdp y h y h h h
u

dx h dx h

α α α α α

α α α α α α

� �� � � � � �
= − + −	 
 	 
	 
 � �� � � � � �� �

 

3

01

2 2

3 1 cosh 3 sinh

2 cosh 3 16 4

dp y y y

dx h

α α α

α α α α

� � � � � �
− −	 
	 
 � �� � � �� �

                                (3.11) 

 

and the volume flow rate 1q  is given by 

( )
( )

3
3

01 1
1 3 4 3

cosh1 sinh cosh 3

cosh 2 cosh sinh cosh

q h hdp h h h B
q

dx h h h h h

α αα α α α

α α α α α α α

� �+−� � � �
= + � �	 
 	 


−� � � � � �
   (3.12)

  

where  

tanh cosh 3 tanh sinh sinh 3 cosh sinh

16 4 48 4 4

h h h h h h h h h
B

α α α α α α α

α α α
= − − + −  

 

 

From Equation (3.10), we obtain 

 

( )

( )

33 8
01 1 1

4

coshcosh 3

sinh cosh 2 sinh cosh

q h hdp hq B

dx h h h h h h

αα α α α

α α α α α α

� �+
= − � �

− −� �� �
                                (3.13) 

 

Substituting Equations (3.10) and (3.13) into the second equation of (3.1) and neglecting terms greater than ( )4

i
O W , we 

get 

 

( ) ( )

( )

33 8
21

4

cosh cosh3

sinh cosh 2 sinh cosh

q h h q h hdp B
Wi

dx h h h h h h

α α αα α

α α α α α α

� �+ +
= − � �

− −� �� �
                                (3.14) 

 

The dimensionless pressure rise and frictional force per one wavelength in the wave frame are defined, respectively as 

 
2

0

dp
p dx

dx

π

∆ =                                        (3.15) 

and 
2

0

dp
F h dx

dx

π � �
= −	 


� �
 .                                      (3.16) 

 

4. DISCUSSION OF THE RESULTS: 

Fig. 2 shows the effect of Darcy number Da on the variation of pressure gradient
dp

dx
with x  for 0.01Wi = , 

0.8, 1, 1e η µ= = = and 0.6φ = . It is noted that, the magnitude of 
dp

dx
 decreases with an increase in Da .The effect 

of Weissenberg number Wi on the variation of pressure gradient 
dp

dx
 with x for 0.25Da = , 

0.8, 1, 1e η µ= = = and 0.6φ =  is shown in  Fig. 3. It is observed that, the magnitude of the 
dp

dx
 increases with 

increasing Wi . 
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Fig. 4 represents the effect of amplitude ratio φ  on the variation of pressure gradient 
dp

dx
 with x  for 0.5Da = , 

0.8,  1,  1e η µ= = = and 0.01Wi = . It is noted that, the magnitude of the pressure gradient
dp

dx
 increases with an 

increase in φ  . 

 

Fig. 5 shows the effect of Darcy number Da on the variation of pressure rise p∆ with time averaged flux Q  for 

0.01Wi = , 0.8, 1, 1e η µ= = = and 0.6φ = .It is observed that, in the pumping region ( )0p∆ > , the Q  

decreases with increasing Da  while it increases with increasing Da , the both pumping and co-pumping regions. 

 

In order to study the effect of Weissenberg number Wi on the variation of pressure rise p∆ with time averaged flux Q  

for 0.25Da = , 0.8, 1, 1e η µ= = = and 0.6φ =  is shown in Fig. 6. It is observed that, the pumping increases with 

increasingWi . Further it is observed that, the pumping is more for Johnson-Segalman fluid than that of Newtonian fluid. 

Moreover for large Da  the pumping curves co-insides for all Wi  is shown in Fig. 7. 

 

Fig. 8 depicts the effect of amplitude ratio φ on the variation of pressure rise p∆ with time averaged flux Q  

for 0.5Da = , 0.8, 1, 1e η µ= = = and 0.01Wi = . It is noted that, in the pumping region, the Q  increases with 

increasing amplitude ratio φ  while in co-pumping region (for an appropriately chosen ( )0p∆ < it decreases with 

increasingQ . 

 

The effect of Darcy number Da on the variation of friction force F with time averaged flux Q  for 0.01Wi = , 

0.8, 1, 1e η µ= = = and 0.6φ =  is presented in Fig. 9. It is observed that, the friction force F  initially increases and 

then decreases with increasing Da . 

 

Fig. 10 shows the effect of Weissenberg number Wi on the variation of friction force F  with time averaged flux Q  

for 0.25Da = , 0.8, 1, 1e η µ= = = and 0.6φ = . It is noted that, the friction force F  decreases with 

increasingWi , for large Da  the friction force F  co-insides for all Wi  is shown in Fig. 11. 

 

The effect of amplitude ratio φ on the variation of friction force F  with time averaged flux Q  for 0.5Da = , 

0.8, 1, 1e η µ= = = and 0.01Wi =  is depicted in Fig. 12. It is observed that, the friction force F  first decreases and 

then increases with increasingφ . 

 

5. CONCLUSIONS: 

 

In this paper, we investigated the peristaltic transport of a Johnson-Segalman fluid through a porous medium in a two - 

dimensional channel under the assumptions of long-wavelength and low-Reynolds number. A Perturbation solution for 

small Weissenberg number is obtained for the axial velocity, axial pressure gradient, friction force and pressure rise per one 

wavelength. It is found that both the pressure gradient 
dp

dx
 and the time averaged flux Q   increases with increasing 

Weissenberg number Wi  as well as amplitude ratio φ , whereas they decreases with increasing Darcy number Da . The 

friction force F  initially increases and then decreases with increasing Da . The friction force F  decreases with 

increasingWi . The friction force F  first decreases and then increases with increasingφ . Further it is observed that the 

pumping is less for Newtonian fluid than that of Johnson-Segalman fluid. 
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