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ABSTRACT 

In this paper a new method is presented in order to check the monotonicity of the beta function using the Euler gamma 

function. 
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1. INTRODUCTION: 

The Euler Gamma function Γ  is defined for  0>x  by   
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The digamma function  ψ   is defined by  
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and has the representation 
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In [2], J.Sandor proved the following inequality  
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Lator on, L. Bougoffa [1] in his roll generalized inequality (1.3) by giving the following  

 

Theorem:  1.1. Let f be a function defined by  
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in which 01 >+ ax  and 01 >+ bx , then for all 0>≥ ba  or ba ≥>0 0( >a and )0<b , f  is decreasing 

(increasing) respectively on [ )∞,0 . 

------------------------------------------------------------------------------------------------------------------------------------------------ 

����������	
���
������ Hanadi  Dawood Saleem*������

���hanadi_772000@yahoo.com 
Department of Mathematics College of Computers Sciences and Mathematics University of Mosul Mosul-IRAQ 



Hanadi Dawood Saleem*/ A study of some inequality containing the beta function /IJMA- 2(5), May -2011, Page: 659-661 

660© 2011, IJMA. All Rights Reserved                                                                                                                                                      

The aim of this paper is to present a new result concerning the beta function. In fact,     we prove the following:  

 

2. RESULT: 

 

Theorem: 2.1. Let f be a function defined by  

 

),1,1()( bxaxxf ++= β  

 

when 01 >+ ax  , 01 >+ bx . Define  
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,min bAaBbAaB ++=λ  , { }.,max
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bAaBbAaB ++=µ  

 

Then  

 

Case A.  when ba , have the same signs. 

 

1. f  is decreasing whenever ba , are positive. 

 

2. f  is increasing whenever ba , are negative. 

 

Case B. when ba , have different signs.  

 

1. f  is decreasing if 0≥λ . 

 

2. f  is increasing if 0≤µ .   

 

 

Proof: Let  
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where axA += 1  ,  bxB += 1 . The above implies 
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Differentiating, we obtain 
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Simplifying, we have 
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Case: 1 if  0, ≥ba , then 0
)(
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≤

′

xf

xf
, which implies 0)( ≤′ xf . 
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That is f  is non-increasing 

 

if  0, ≤ba , then 0
)(

)(
≥

′

xf

xf
, and hence 0)( ≥′ xf . 

which implies  f  is non-decreasing. 

 

Case: 2 when  ba ,  have different signs  

If  0≥λ , then { } 0,min 22 ≥++ bAaBbAaB , which implies each of the two terms bAaB + , 
22

bAaB +  non-

negative  and therefore  f  is non-increasing as in case-1. 

 

If  0≤µ , then each of the two terms bAaB + , 
22

bAaB +  non-positive which implies f  is non-decreasing as in 

case-1. 

 

3. APPLICATIONS: 

 

Corollary: 3.1 Let  01 >+ ax  , 01 >+ x .Then  

 

     (a) The function )1,1( xax ++β is decreasing for 1≥a  ,  �
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     (b) The function )1,1( xax ++β is decreasing for 10 ≤< a  ,  ( )∞−∈ ,1x . 

 

Proof: The proof follows from Th.2.1 by putting 1=b . 

 

Corollary: 3.2. Let  01 >+ ax  , 01 >+ x .Then 

   (a) The function )1,1( xax −−β is decreasing for 1≥a  ,  �
�
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   (b) The function )1,1( xax −−β is decreasing for 10 ≤< a  ,  ( )1,0∈x . 

 

Proof: The proof follows from Theorem.2.1 by putting 1=b . 

 

Corollary: 3.3. Let λ , µ , A , B  be as defined in Theorem 2.1, let  01 >+ ax , 01 >+ x .Then the function 

)1,1( xax +−β decreasing if 0≥λ  and increasing if 0≤µ .    

 

Proof: The proof follows from Theorem.2.1 by putting 1=b . 
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