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ABSTRACT 
In this paper, we shall develop a new approach to an implicit method for solving convection–diffusion equation by 
small parameter with the time derivative term. The suggested method gives highly accurate result whatever the exact 
solution is too large.  The stability condition and the advantages of the considered method compared with the classical 
methods as Crank-Nicolson method are discussed. 
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1. INTRODUCTION 
 
 Consider the singularly perturbed convection – diffusion equation 
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Where 0>δ small, b is is the thermal diffusivity and u (x, t) is given continuous function satisfies the initial and 
boundary conditions: 
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In this paper we define an implicit method for solving the singularly perturbed convection – diffusion parabolic partial 
differential equation produces very high accuracy compared with the other classical method, i.e. the numerical solution 
produced by the considered method is almost identical to the exact solution. We use the restrictive Pade` approximation 
as done in [6],[7],[8],[9] and [10] to approximate the exponential function. 
 
2. RESTRICTIVE PADE` APPROXIMATION (RPA)   
 
The restrictive Pade` approximation can be written as done in [6] in the form  
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Where α is a positive integer dose not exceeding the degree of the denominator N, i.e. α =1(1) N, such that 
 
f x RPA M N x o xf x
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Let f (x) has a Maclaurin series ∑
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The vanishing of the first (M+N+1) powers of x on the left hand side of (5) implies a system of (M+N+1) equations.  
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Hence we can determine the coefficient, ai and bi as a function of εi, i=1(1)α, where the parameters εi are to be 
determined, such that 
 

( )( ) [ / ] ( ), 1(1)i f x if x RPA M N x iα α= + =  .                                                                      (7) 
 
It means that the considered approximation is exact at (α+1) points. 
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It’s Pade` approximation and restrictive Pade` approximation takes the forms: 
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Fig. 1: Comparison of the errors between PA [2 / 1] and RPA [2 / 1] 
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3. RESTRICTIVE PADE` APPROXIMATION (RPA) FOR SOLVING SINGULARLY PERTURBED 
CONVECTION – DIFFUSION EQUATION 
 
Consider the singularly perturbed convection–diffusion equation (1). The exact solution of grid representation of 
equations (1) is:  
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Then equation (8) can take the form 
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Then the restrictive Pade` approximation [1/1] can take the form: 
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Then we can approximate equation (9) as: 
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Which can take the equivalent scalar form: 
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To determine the restrictive parameters ji ,ε we must have the exact solution at the first level, this enables the value of 
u(x, t) at the grid point. 
 
4. THE STABILITY ANALYSIS 
 
A Von Neumann stability analysis must considered the finite difference equations (12). This is accomplished by 
substituting the Fourier components of ,,,,,
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amplitude at time level n, and γβα ,, are the wave numbers in the zyx ,, directions respectively. If a phase angles 
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Consequently the considered method will be stable when 1≤G , i.e.  11 , ≤≤− jirε  
 
5. NUMERICAL RESULTS 
 
We present some numerical examples to compare the considered method (12) with Crank-Nicolson method (C.N.) as 
done in [14], and we consider two cases. We apply our method on the examples 1and 2 such that the exact solution is 
given at the first level to determine the restrictive parameters εi, j, and hence we use it for another levels for calculation.  
In general the exact solution at the first level is unknown, so we can use the Crank-Nicolson method, to evaluate the 
solutions at the first time level by large number of very small time step length k to determine the restrictive parameters 
εi, j, then we can use large time step length k to evaluate the solution at another levels.  
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Example: 1 
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Its exact solution is given by: )(exp),( txtxu +=  
 
Example: 2 
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t x 
Crank-Nicolson 

method The considered method 

A. E. A. E. 

5 
0.2 
0.5 
0.9 

1.7 × 10 -3 
3.0 × 10 -3 
1.4 × 10 -3 

5.7 × 10 -14 
2.0 × 10 -14 
5.7 × 10 -14 

10 
0.2 
0.5 
0.9 

2.5 × 10 -1 
4.5 × 10 -1 
2.0 × 10 -1 

5.5 × 10 -11 
3.6 × 10 -11 
7.2 × 10 -12 

20 
0.2 
0.5 
0.9 

400.0 
9931.4 
4425.4 

1.8 × 10 -6 
2.6 × 10 -6 
3.1 × 10 -6 

Table: 1. Comparison of the absolute errors (A.E.) between Crank-Nicolson method and the considered method for 
h=0.1 and k=0.1, for example 1, where 8109.5)20,2.0( ×=u . 

 

t x Crank-Nicolson method The considered method 
A. E. A. E. 

5 
0.2 
0.5 
0.9 

5.9 × 10 -7 
1.3 × 10 -6 
1.1 × 10 -6 

3.5 × 10 -17 
9.0 × 10 -17 
2.9 × 10 -16 

10 
0.2 
0.5 
0.9 

2.2 × 10 -8 
1.1 × 10 -8 
8.8 × 10 -8 

1.0 × 10 -17 
3.6 × 10 -17 
4.6 × 10 -17 

20 
0.2 
0.5 
0.9 

2.1 × 10 -9 
4.3 × 10 -10 
4.3 × 10 -9 

8.0 × 10 -19 
4.0 × 10 -18 
4.2 × 10 -19 

Table: 2. Comparison of the absolute errors (A.E.) between Crank-Nicolson method and the considered method for 
h=0.1 and k=0.0.05, for example 2. 

 
6. CONCLUSION 
 
The numerical results presented  tables (1), and (2) shows that the absolute errors obtained by the considered methods is 
almost of order 10-10 of that absolute errors obtained by Crank-Nicolson method.  
 
In the case of too large solution for example 1, it is clear from the given data  in table (1) that the absolute errors 
associated with Crank-Nicolson method is too large compared with that of the considered method. 
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