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ABSTRACT 
In this paper present a reliable algorithm for solving Volterra Integro-Differential Equations (VIDE) using single-
term Haar wavelet series (STHWS) method. The obtained discrete results were compared with exact solution of the 
VIDE and methods taken from the literature [1, 4] to highlight the efficiency of the STHWS method. Some 
illustrative examples have been presented to illustrate the implementation of the algorithm and efficiency of the 
method. 
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1. INTRODUCTION 
 
Mathematical modelling of real-life problems usually results in functional equations, e.g. partial differential 
equations, integral and integro-differential equation, stochastic equations and others. Many mathematical 
formulations of physical phenomena contain integro-differential equations, these equations arise in fluid dynamics, 
biological models and chemical kinetics. Integro-differential equations are usually difficult to solve analytically so 
it is required to obtain an efficient approximate solution. Several numerical methods for approximating the 
Fredholm or Volterra integro-differential equations are known.  
 
A number of problems in chemistry, physics and engineering are modelled in terms of system of Volterra integro-
differential equations. Various methods have been developed to prove existence and uniqueness of solutions to 
integro-differential equations [2, 5 – 6, 15 - 17]. In this paper, we use a Single-Term Haar Wavelet Series (STHWS) 
method for solving the Volterra integro-differential equations. This method was first presented by S. Sekar and 
team of his researchers [3, 7 – 13, 14] for solving IDE and Fredholm IDE of the second Kind, Analysis of the Fuzzy 
IDE, A study on linear and nonlinear stiff problems and fuzzy differential equations, Nth-order fuzzy differential 
equations, Hybrid fuzzy systems, A study on second-order fuzzy differential equations and to solve one 
dimensional fuzzy differential inclusions. Recently, the authors have used Homotopy Perturbation Method (HPM) 
[1] and the Block Pulse Functions (BPF) and their operational matrices [4] method for the numerical solution of 
Volterra integro-differential equations to prove their efficiency.  
 
In this article we developed numerical methods for VIDEs to get discrete solutions via STHWS method which was 
studied by S. Sekar and team of his researchers [7 - 13]. The paper is organized as follows: In section 2, we describe 
Haar wavelet series, their properties and STHWS methods. In section 4, general format for VIDEs discussed. 
Finally in section 5 we apply the proposed method on some examples which was taken from the literature [1,7] to 
show the accuracy and efficiency of the STHWS method. 
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2. PROPERTIES OF HAAR WAVELET AND STHW TECHNIQUE 
 
2.1 HAAR WAVELET SERIES 
 
The orthogonal set of Haar wavelets ( )thi  is a group of square waves with magnitude of 1± in some intervals and 

zeros elsewhere. In general, ( ) ( ),21 kthth j
n −=  Where kn j += 2 , .,,,20,0 Zkjnkj j ∈<≤≥ Any 

function y(t), which is square integrable in the interval [0, 1) can be expanded in a Haar series with an infinite 
number of terms  
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Eq. (1) contains an infinite number of terms for a smooth y (t). If y (t) is a piecewise constant or may be 
approximated as a piecewise constant, then the sum in Eq. (1) will be terminated after m terms, that is  
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where “T” indicates transposition, the subscript m in the parentheses denotes their dimensions,  ( ) )()( thC m
T
m  

denotes the truncated sum. Since the differentiation of Haar wavelets results in generalized functions, which in any 
case should be avoided, the integration of Haar wavelets are preferred.  
 

Integration of Haar Wavelets should be expandable in Haar series ∫ ∑
∞

=

=
t

i
iim thCdh

0 0
)()( ττ  If we truncate to 

nm 2=    terms and use the above vector notation, then integration is performed by matrix vector multiplication 
and expandable formula into Haar series with Haar coefficient matrix defined by [7].   
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where the m-square matrix E is called the operational matrix of integration which satisfies  the following recursive 
equations    
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Proof of equation (2) is found in [5]. Since ( )mxmH and ( )

1−
×mmH contain many zeros. Let us define   

( ) ( ) ( ) ( ) )()( tMthth mm
T
mm ×≈ , and ( ) )()( 011 thtM =×  satisfying ( ) ( ) ( ) ( ) )()( thCctM mmmmmm ×× = and ( ) 011 cC =× .  

 
2.2 SINGLE TERM HAAR WAVELET SERIES TECHNIQUE 
 
With the STHWS approach, in the first interval, the given function is expanded as STHWS in the normalized 

interval [ )1,0∈τ , which corresponds to 




∈

m
1,0τ  by defining mt=τ , m being any integer. In STHWS, the 

matrix becomes
2
1

=E . Let  ( )
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Integrating (9) with
1
2

E = , we get  ( ) ( ) ( )0
2
1 11 xx += ν . Where (0)x  is the initial condition. According to [7], 

we have ( ) ( ) ( ) ( )011 xxdx −== ∫
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In general, for any interval n, n=1, 2.......  
 

We obtain, ( ) ( ) ( )1
2
1

−+= nxvx nn                                                       (3) 

    ( ) ( ) ( )1−+= nxvnx n                                                        (4) 
 
Equation (3) and (4) give the discrete time values of ( )nx and ( )nx  ( )x n for the nth interval. These values from the 
basis for the estimating block pulse values and discrete values in the subsequent normalized time intervals. 
 
3. VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 
 
Consider the general form of linear Volterra integro-differential equation is of the form [1,4] 
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Where the functions f (x), μ (x) and the kernel k(x,t) are given functions, whereas y(x) needs to be determined.  
 
4. NUMERICAL EXAMPLE  
 
In this section, the following examples 1 and 2 has been solved numerically using the Homotopy Perturbation 
Method (HPM) [1] and STHWS method. Examples 3 and 4 have been solved numerically using the Block Pulse 
Functions (BPF) and their operational matrices [4] and STHWS method. The obtained results (with step size        
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time = 0.1) along with exact solutions of the examples 1 to 4 and absolute errors between them are calculated and 
are presented in Table 1 to 4. A graphical representation is given for the VIDEs in Figures 1 to 4, using three-
dimensional effect to highlight the efficiency of the STHWS method. 
 
Example: 1 Consider the linear Volterra integro-differential equation [1] 
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For which the exact solution is ( ) xxexy −−=10 . 
 
Example: 2 Consider the linear Volterra integro-differential equation [1] 
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For which the exact solution is ( ) xexy x cosh−= . 
 
Example: 3 Consider the linear Volterra integro-differential equation [4] 
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For which the exact solution is ( ) xxy cosh= . Indeed, in this example, we have ( ) 0=xf , ( ) ( ) 0=xyxµ and 

( ) 1, == txkλ  
 
Example: 4 Consider the linear Volterra integro-differential equation [4] 
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For which the exact solution is ( ) xxy sin= . Indeed, in this example, we have ( ) 1== xfλ , ( ) ( ) 0=xyxµ and 

( ) 1, −=txk  
 

  
Figure 1. Error estimation of Example 1 
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Figure 2. Error estimation of Example 2 

 

 
Figure 3. Error estimation of Example 3 

 
                       Figure 4. Error estimation of Example 4 

                                           
5. CONCLUSIONS 
 
In this paper, we have successfully approximated the solution of the form (1) of Volterra integro-differential 
equations. To this end, we have used STHWS methods. Moreover, the error of the proposed method is analyzed. 
For more investigation, some examples have been presented. As the numerical results showed, the proposed method 
is an effective method to solve the Volterra integro-differential equations. The benefit of the method is simplicity 
for execution and using Haar series which make the method cheap as computational costs. 

 
Table 1: Exact Solutions and Error calculation of Example 1 

x 
Example 1 

Exact 
Solutions 

HPM 
Error 

STHWS 
Error 

0.1 9.909516258 1.24E-03 1.42E-05 
0.2 9.836253849 2.63E-03 2.67E-05 
0.3 9.777754534 3.42E-03 3.17E-05 
0.4 9.731871982 4.73E-03 4.63E-05 
0.5 9.69673467 5.39E-03 5.89E-05 
0.6 9.670713018 6.77E-03 6.36E-05 
0.7 9.652390287 7.48E-03 7.85E-05 
0.8 9.640536829 8.19E-03 8.36E-05 
0.9 9.634087306 9.63E-03 9.89E-05 
1.0 9.632120559 1.57E-02 1.85E-04 
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Table 2: Exact Solutions and Error calculation of Example 2 

x 
Example 2 

Exact 
Solutions 

HPM 
Error 

STHWS 
Error 

0.1 1.110701379 1.00E-03 1.00E-05 
0.2 1.245912349 2.00E-03 2.00E-05 
0.3 1.4110594 3.00E-03 3.00E-05 
0.4 1.612770464 4.00E-03 4.00E-05 
0.5 1.859140914 5.00E-03 5.00E-04 
0.6 2.160058461 6.00E-03 6.00E-04 
0.7 2.527599983 7.00E-03 7.00E-04 
0.8 2.976516212 8.00E-03 8.00E-04 
0.9 3.524823732 9.00E-03 9.00E-04 
1.0 4.194528049 9.90E-02 9.90E-03 

 
Table 3: Exact Solutions and Error calculation of Example 3 

x 
Example 3 

Exact 
Solutions 

BPF 
Error 

STHWS 
Error 

0.1 1.005004168 1.00E-03 1.00E-06 
0.2 1.020066756 2.00E-03 2.00E-06 
0.3 1.045338514 3.00E-03 3.00E-05 
0.4 1.081072372 4.00E-03 4.00E-05 
0.5 1.127625965 5.00E-03 5.00E-05 
0.6 1.185465218 6.00E-03 6.00E-04 
0.7 1.255169006 7.00E-03 7.00E-04 
0.8 1.337434946 8.00E-03 8.00E-04 
0.9 1.433086385 9.00E-03 8.50E-04 
1.0 1.543080635 9.90E-03 7.00E-03 

 
Table 4: Exact Solutions and Error calculation of Example 4 

x 
Example 4 
Exact 
Solutions 

BPF 
Error 

STHWS 
Error 

0.1 0.099833417 1.00E-03 1.00E-07 
0.2  0.198669331 2.00E-03 2.00E-06 
0.3  0.295520207 3.00E-03 3.00E-06 
0.4  0.389418342 4.00E-03 4.00E-06 
0.5  0.479425539 5.00E-03 5.00E-05 
0.6 0.564642473 6.00E-03 6.00E-05 
0.7  0.644217687 7.00E-03 7.00E-05 
0.8 0.717356091 8.00E-03 8.00E-04 
0.9 0.78332691 9.00E-03 9.00E-04 
1.0 0.841470985 9.90E-03 9.90E-04 
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