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ABSTRACT 
In this paper, we study the oscillatory behavior for a certain class of second order delay difference equation of the 
form  

( )
1 0n n n

n

u q u
a σ

 
∆ ∆ + = 
 

                                                                                                                                         (1.1) 

Where { } { },n na q  are real sequence and { } 0.na >
 
Examples are inserted to illustrate the results. 
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INTRODUCTION 
 
We consider the second order delay difference equation of the form 

( )
1 0n n n

n

u q u
a σ

 
∆ ∆ + = 
 

                                                                                                                                         (1.1) 

Where ∆ is the forward difference operator is defined by 1n n nu u u+∆ = −  and { } { },n na q  are real sequence. With 
respected to the difference equations (1.1) throughout we shall assume that the following conditions holds. 
(C1):  { } { },n na q  are real sequence and { } 0na >   

(C2): ( ) 0nσ >  is an integer such that lim ( )
n

nσ
→∞

= ∞   

(C3): 
0

1n

n s
s n

R a
−

=

= →∞∑   as n →∞   

 
By a solution of equation (1.1) we mean a real sequence { }nu  satisfying (1.1)  for 0n n≥ .  A solution { }nu is said to 
be oscillatory if it is neither eventually positive nor eventually negative.  Otherwise it is called non-oscillatory. For 
more details on oscillatory behavior difference equation we refer [1-23]. 
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MAIN RESULT 
 
In this section, we present some sufficient conditions for the oscillation of all the solutions of equations (1.1) 
 
Theorem: 1 Assume the (C3) hold ( ) 0nσ∆ ≥   

( )
0

2
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4
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n sn s n s n

R
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= +
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∑                                                                                                                 (1.2) 

 
Then every solution of equations (1.1) is oscillatory. 
 
Proof: Let { }nu be non-oscillatory solution of equation (1.1) without loss of generality, we suppose that  

( )0, 0n nu uσ> >  and for 1n n≥   from the equation 
1 0n

n

u
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 for 1n n≥ . Since  
1

n
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increasing there exist a non-negative constant k  and 2 1n n≥  
1

n
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u k
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∆ ≤ −  for 2 , 0n n k≥ >   

n nu ka∆ ≤ − , 2 , 0n n k≥ >  
 
Summing the inequality for 2 1n to n −   
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Letting n →∞  we have nu →∞ , which is contradiction to the fact that nu  is positive.  
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In the view of (C2) and (1.1) 
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This implies that  

2
( )

( )
1 ( )

( )
4

n
n n n

n n

R
R q

a R
σ

σ
σ

ω
+

 ∆
∆ < − −  

 
                                                                                                                             (1.3) 

 
Summing the inequality for 2 1n to n −   we have  
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∑  

Letting n →∞ , we have, in view of (1.2) that ,n as nω →∞ →∞ which contradicts 0nω > and the proof is 
complete. 
 
Theorem: 2 Let all the assumption of Theorem 1 holds except the condition (1.2) which changed to  
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∑                                                                                             (1.4) 

 
Then every solutions { }nu of equation (1.1) is oscillatory. 
 
Proof: Proceeding as in the proof of Theorem 1, we assume that equations (1.1) non-oscillatory solution, say 

( )0, 0n nu uσ> >  and for 1n n≥ from the equation (1.3) we have 1n n≥ . 
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Which contradicts the condition (1.4)  

This completes the proof. 
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Next, we present some new oscillation results for equation (1.1) we introduce a double sequence 
( ){ }, / 0H m n m n≥ ≥

 
Such that  
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Theorem: 3 Assume that (C1)-(C3) holds and let { }nu  be a positive sequence and assume that there exist a double 

sequence ( ){ }, / 0H m n m n≥ ≥  such that  
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Then every solutions { }nu of equation (1.1) is oscillatory 
 
Proof: Let { }nu be non-oscillatory solution of equation (1.1). Let us first assume the { }nu  is eventually positive and 
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Which clearly contradicts (1.9). This contradiction completes our proof 
 
Remarks: By choosing various specific double sequences{ }( , )H m n  we can derive several oscillation criteria for 
(1.1) 
 
Let us consider the double sequence { }( , )H m n  defined by  

( , ) ( ) , ,H m n m n m n oµ= − ≥ ≥  Where 1µ ≥   is a constant.   
 
Then 2( , ) 0 0, ( , ) 0 fo r 0 ( , ) 0 o r 0H m n for m H m n m n and L H m n m n= ≥ > > ≥ ≤ > ≥   
 
Hence, we have the following corollary 
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{ }nu of equation (1.1) is oscillatory 
 
Example: 1 Consider the delay difference equations  
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