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WEIGHTED SHARING OF A SMALL FUNCTION
OF A MEROMORPHIC FUNCTION AND ITS DERIVATIVES
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ABSTRACT

In this paper, we study the relationship between a meromorphic function and its k-th order derivative which share a
small function with weight(multiplicities) I(a positive integer)ignoring multiplicity.
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INTRODUCTION AND RESULTS

In this paper we shall use the standard notations of Nevanlinna theory such as T(r, f ), N(r, f),m(r, f)and so on
(see[3]), where f is a meromorphic function defined on the whole complex plane. The quantity S(r,f) is defined by
S(r,f)=0(T(r,f)) as r — oo possibly outside a set of finite linear measure. A meromorphic function a(z) is called a small
function with respect to f provided T(r,a)= S(r,f) holds.

Suppose that f and g are two non-constant meromorphic functions, « is a small function with respect to f and g and k be
a positive integer. Now f and g share ‘a’ ignoring multiplicities or IM (counting multiplicities or CM) if f-a and g - a

1
have the same zeros ignoring(counting) multiplicities. We denote by Nk)(r,f—j , the counting function for zeros
—a

— 1
of f - a with multiplicity < K (counting multiplicity), and by N k)(r,f—], the corresponding one for which the

multiplicity is not counted. Similarly by N({r,f—], we mean the counting function for zeros of f — a with

— 1
multiplicity at least &(counting multiplicity) and by N (k(r,f—J, we mean the corresponding one for which the

multiplicity is not counted.

We denote N, r,i =N r, 1 +N(z r, 1 +oe +N(k r, 1
f-a f-a f-a f-a

N r’i
where N r 1 =N|r ! and O (a f)—l—limsup u where p is a positive
“WtCa 'f-a P orT(rf) piap

integer; then clearly 0 < &(a, f)< 6, (a, )< ©(a, f) <1,
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N(r,flaJ N(r’flaJ
N % and O(a, f)=1—1li N
and O(a, f) imsup,_,, 61

where 5(a, f)=1-limsup,

In [6], Q.C. Zhang proved the following theorem about a meromorphic function and its k-th order derivative.

Theorem: A Let f be a non-constant meromorphic function and let k be a positive integer. Suppose that f and f* share
— — 1 1
1 CM and 2N(r, f )+ Nl r,— [+N| T — S(ﬂ, + 0(1))T(I’, fk ) for re |, where | is a set of infinite linear
f f ()

f (k)

measure and A satisfies 0 < A <1 then =C for some constantC € C —{0}.

In 2003, Kit-wing [5] discussed the problem of a meromorphic function and its k- th derivative sharing one small
function and proved the following result.

Theorem: B Let K >1. Let f be a non-constant non-entire meromorphic function, a € S(f ) and a(;t O,oo) and f do
not have any common pole. If f,f* share a CM and 45(0, f )+ 2(8 + k)@(oo, f ) >19+ 2k, then f = f®).

Two years latter, in 2005, Q.C.Zhang [2] proved the following theorem.

Theorem: C Let f be a non-constant meromorphic function and k(Z 1), I(Z 0) be integers. Also let
a= a(z) (not =0, oo) be a meromorphic function such that T(r,a) = S(r,f). Suppose that f — a and f®-a share o,h.
1 1>2 and (3+k)®(co, f)+25,.,(0, f)>k+4or,ifl =L and (4+k)O(o0, f)+35,,,(0,f)>k+6,0r,
if1=0,ie., f-a and f¥-a share the value 0 IM and (6 + k )&(o0, f)+56,,, (0, f)> 2k +10 then f= f®),

Recently, in 2010, A.Chen, X.Wang and G.Zhang [7] proved the following results.

Theorem: D Let k(Z 1), n(Z 1) be integers and f be a non-constant meromorphic function. Also let a(z)(not =0, oo)
be a small function with respect to f. If f and [f"]* share a(z) IM and

+ 2N 1 N 1

1
e
a

AN(r, f)+2N|r, S(/1+0(1))T(r,<f”)(k)),or, if f and

1 1

(f)' (e S(’1+0(1))T(|’,(fn)(k)),for0<ﬂb<1,

(f)® share a(z) CM and ZW(r, f )+N r,

f-a
where I € | and I is a set of infinite linear measure, then W:C, for some constant ce C —{0}.
f“) —-a

Theorem: E Let k(Z 1), n(Z 1) be integers and let f be a non-constant meromorphic function. Also let a(z) (not = 0,00)
be a small function with respect to f. If f and (") share a(z) IM and (2k +6)8(e, )+30(0, f )+ 26, ,(0, f)>2k +10,

or, if fand (") share a(z) CM and (k +3)@(co, f )+ 5,(0, f )+ 5,.,(0, f)>k+ 4then f E(f ”)(k).

In this paper, we will prove the following two theorems which will include the behavior of a meromorphic function and
its k th derivative sharing a small function with multiplicity not greater than I, a positive integer.
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Theorem: 1 Let k, m and n are three positive integers with m< n and let f be a non-constant meromorphic function.

Also let a(z) (not = 0,c0)be a small function with respect to f. If Eu)(a, f”‘(z))zﬁl)(a, f" (k)), where | is a
positive integer and

N(r, f)+2N2(r,%]+2N{r,ﬁ]+ﬁ[r,ﬁ}s(ﬂ+O(1))T(r,(f n)<k>) for0< <1,

n\k)

. P a .
where 1 € | and | is a set of infinite linear measure, then e = for some constant a€C —{0} where C is
—a

the set of complex numbers.

Theorem: 2 Let f be a non-constant meromorphic function and let k and n be two positive integers. If
En(a, f)zEn(a,(f ”)(k)), where | is a positive integer and a(z) (not = 0,00) be a small function of f and
(2k +6)0(c0, f)+6(0, f)+25,(0, f)+25,.,(0, f)>2k +10 then

()"
2. LEMMAS

Here we mention some existing lemmas of the literature which will be frequently used to prove the aforementioned
theorems.

Lemma 2.1 (see[7]): Let f be a non-constant meromorphic function and k,p be two positive integers. Then

N, 1t 2 M1 oK 156 ).

Lemma: 2.2 (see[4]) Let f be a non-constant meromorphic function and let n be a positive integer.
P(f)=a,f"+a, _ f"" +.... +af

where a;is a meromorphic function such that T(r, a, )=S(r, f)(i=12,...... ,N). Then

T(r,P(f))=nT(r, f)+S(r, f).

3. PROOF OF THE THEOREMS

(k) (k)

fm n f"—a f""" —c

Proof of Theorem: 1 Let F =—— and G = £—L . Therefore, F -1 = and G -1= .
a a a a

Now, E (a, fm )=E|) (a, (f " )(k)) except the zeros and poles of a(z). Define,
H _(E_ 2F" j _(g_ 2G" j

F' F-1) G G-1)
We now consider two cases:

Case: | Suppose H not =0. Then m(r,H) = S(r,f). Now if z, is a common simple zero of F-1 and G-1 (except the

zeros and poles of a(z)), then after simple calculation, we get H(z,) =0.

1 Jg N(r,%}ts(r, £)<T(r,H)+S(r, f)< N(r,H)+5S(r, f)

Again by analysis, we can deduce that,
— — 1 — 1) — 1 — 1 — 1
N(r,H)<N(r,f)+Ng|r—=|+Ng|[r=|+No|r,——|+N¢| r,—— [+ N.| r,—
F G F-1 G-1 F-1

+N*(I’,L)+No(r,ij+ﬁo(l’,ij+8(l’, f).
G-1 F' G'
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Also, N| r,L=N§)+N(E2 S I oY (PR S I v (PR S A P +3(r, )
G-1 G-1 G-1 F-1 G-1
Therefore,

N| T, ! < N(r, f)+N¢ r,i +Ng r,i +2No|T, ! + 2N, r,L
G-1 F G F-1 G-1
+2Ny| T, 1 +N(E2 r, 1 +2N. L +N. r,L @
G-1 G-1 G-1 F-1
1

Since, E|)(l, F)=E|)(1,G),
Therefore, 2N, r, 1 +2N. r, 1 +N(E2 r, ! SZN(z F,L.
G-1 G-1 G-1 G-1

From (1), we have,
N[r-2 <N(r, f)+Ne SR W PR T

G-1 F G G-1

+2N. r,L +N. r,L +No r,i +No r,i +S(r, f)
F-1 F-1 ' G'

We also have,

N{r,l}rzﬁ{r, ! j+ﬁ{r, ! j+ﬁo(r,iJ£2N(r,iJ -
F F-1 F-1 F' F'

Now by the second fundamental theorem we get,

T(r,G)<N(r,G)+ W[r,é}+ﬁ(r, L J - No(r,ij +5(r,G) @)

G-1

)

From (4) using (2) and (3) we get,

— — 1 — 1 — 1
T(r,G)< 2N(r, f)+2N(r,Ej+2N(r,a) + N(r,a} +S(r, ) (5)
By lemma(2.1) we have,

T, ) <6N(r, f)+2N2(r,%]+2N{r,ﬁW] ; N[r,ﬁﬂl +5(r, )
fr fr
which contradicts the given conditions of the theorem.
Case: Il Suppose H(Z)=Oie E—E—E—E Integrating we get
: pp =S e T E L T e o1 g g we get,

log F'—2log(F —1)=log G'—log (G —1)+log A. where A is a constant 0.

F' AG'

That is, Iogm =log (G _1)2 .
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Again integrating we get,
1 A

- - 4B 6
F-1 G-1 ©

Now if z, is a pole of f with multiplicity p which is not the poles and the zeros of a(z), then z, is the pole of F with
multiplicity mp and the pole of G with multiplicity np+k(mp). This contradicts (6). This implies f has no pole, that is f
is an entire function.

so, N(r.F)=S(r, f) and N(r.G) = S(r, f). Now we prove that B = 0.

B(G —1+gj
We first assume that B # 0, then = .
F-1 G-1
_ 1 _
Therefore, N I’,—A =N(r,F)=S(r, f)
G —1+E

A
Now we assume E #1.

By the second fundamental theorem,

T(r,G)sﬁ(r,G)+N(r,éj+N r, +5(r,G)

G—1+A
B
SN(r,éj+S(r, )
<T(r,G)+S(r, f)

— 1 ) nn(k — 1
Hence T(r,G) =N (r,E}LS(r, f)ie, T(r,(f")*)=N (r,wj+8(r, f)

This contradicts the given condition of the theorem.

A
Next, we assume B =1.Then, (AF-A-1)G=-1.

aZ (fn)(k)
So, =-
fU(Af™ — Aa— A) fr

Now by lemma (2.1) and (2.2), we get,
()"

(n+m)T(r, T) :T(r,T}rS(r, f)
<n rﬂr,%}kﬂ(r,f)w(r,f)
<nT(r, f)+S(r, f)

i.e, T(r, f)=S(r, f). Thisis not true.
G-1

=A

Hence our assumption is not true and therefore B =0. So,

This proves the theorem.
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Proof of the theorem: 2

Let F =E and G = (7%
a(z) a(z)

zeros and poles of a(z).

We define, H = E—£ - E—E )
F' F-1 G G-1

Now we consider two cases:
Case: | Suppose H not=0.

Then (5) of the proof in theorem1 still holds. Writing (5) for the function F, we get,

_ — 1 — 1 — 1
T(rF)<2N(r. )+ 2N (r,6]+2N (r,;)+ N (r,a}s«, f)

.So, En(a, f)=En(a, (f")™) implies, En(L F)=E(L,G), except the

e T(r, f)<2N(r, f)+2Wz[r,ﬁj+2W(r, f)+Wz(r,%J 2N (r, f)+W[r,%j+S(r, )

1

<(2k+6 W(r, f)+2NK+2[r,Tj ZWz[r,%j+W(r,%j+S(r, )

ie., (2k +6)0(a, f)+0(0, f)+25,(0, f)+25,,,(0, f) < 2k +10

This contradicts the given condition of the theorem.

Case: 1l Suppose H=0.

1

A
So =——+ B, where A #0, B are constant. By the same argument of the proof of theorem 1, we get,

F-1 G-1
N(r,F)=S(r, f) and N(r,G)=S(r, f).

S0, O(co, f)=1.
B(F—l—lj
B A
Assume that, B # 0, then =_
F-1 G-1
_ 1 _

So, N r,—1 =N(r,G)=S(r, f).

F-1+—

B

If B # -1, then by the second fundamental theorem for F, we have

—— |+s(r )

T(r,F)<N(r, F)+W(r,i)+W r,
F Foleg

sﬁ(r,é}rS(r,f)
<T(r,F)+S(r, f)

So T(r, F)SW(r,é}S(r, f)ie, T(r, f)SW[r,%} Hence, ©(0, f) =0.

© 2014, IIMA. All Rights Reserved

116



C.K. Basu'andT. Lowha*z/ Weighted Sharing 0f A Small Function of A Meromorphic Function And Its Derivatives/
IJMA- 5(3), March-2014.

Putting @(oo, f )= 1,00, f)=0 and also 5(0, f )S ®(0, f)=0in the given condition of the theorem we have,
5..,(0, f)> 2, which is not true. Hence B = - 1.

so N r,i =S(r,f),i.e.,W r,i =S(r, f). Therefore, F =i,

F f F-1 G-1
. ) A
ie,F(G-1-A)=-Athatis F=————.

-G+(1+A)
A — 1 —

So, f = . Therefore, N | r, =N(r, f)=S(r, f).
0 YO @A) erefore ( (f”)(")+(1+A)J (r,f)=S(r,f)

Hence T(r, f)=T(r,(f")®)=S(r, ). which is also not true. Thus B = 0.

So =i,i.e.,G—1=A(F—1).
F-1 G-1

If A#1 then G:A(F—1+lj. So, N(r,iij r,;1 .
A G Fl+

By the second fundamental theorem, we have,

T(r,F)<N(r,F)+ N(r,ij+ N r,#
F Fol+~

ie.,

T(r f)<N (r,ij N[r,éj+s(r,f).

[r, j [ T )(k)j+8(r f).

( ] kﬂ(r —j+kN(r f)+S(r, f)
[ j k+1[r%)+5(r f)

So,

@0, f)+5,,(0, f) <1 )

T

IA
Zl

Il
Z|
—hll—\

Now by the given condition of the theorem and by (7) we have, ®(0, f) > 2. This is not possible.

So,A=landhenceF=Gie., f =(f")®.
This proves the theorem.
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