International Journal of Mathematical Archive-5(3), 2014, 111-118 JMA Available online through www.ijma.info ISSN 2229 - 5046

WEIGHTED SHARING OF A SMALL FUNCTION OF A MEROMORPHIC FUNCTION AND ITS DERIVATIVES

C. K. Basu¹ and T. Lowha*²

¹Department of Mathematics, West Bengal State University, Berunanpukuria, P.O. Malikapur, Barasat, North 24 Parganas, Pin-700126, West Bengal, India.

²Department of Mathematics, Sarsuna College, Sarsuna, Kolkata, Pin-700061, West Bengal, India.

(Received on: 20-01-14; Revised & Accepted on: 11-03-14)

ABSTRACT

In this paper, we study the relationship between a meromorphic function and its k-th order derivative which share a small function with weight(multiplicities) l(a positive integer)ignoring multiplicity.

MR(2010) Subject Classification: 30D35.

Keywords and Phrases: Meromorphic function, sharing values, small function.

INTRODUCTION AND RESULTS

In this paper we shall use the standard notations of Nevanlinna theory such as T(r, f), N(r, f), m(r, f) and so on (see[3]), where f is a meromorphic function defined on the whole complex plane. The quantity S(r,f) is defined by S(r,f)=0(T(r,f)) as $r \to \infty$ possibly outside a set of finite linear measure. A meromorphic function a(z) is called a small function with respect to f provided T(r,a)=S(r,f) holds.

Suppose that f and g are two non-constant meromorphic functions, α is a small function with respect to f and g and k be a positive integer. Now f and g share 'a' ignoring multiplicities or IM (counting multiplicities or CM) if f - a and g - a

have the same zeros ignoring(counting) multiplicities. We denote by $N_k \left(r, \frac{1}{f-a} \right)$, the counting function for zeros

of f - a with multiplicity $\leq k$ (counting multiplicity), and by $\overline{N}_k \left(r, \frac{1}{f-a}\right)$, the corresponding one for which the

multiplicity is not counted. Similarly by $N_{(k)}\left(r,\frac{1}{f-a}\right)$, we mean the counting function for zeros of f – a with

multiplicity at least k (counting multiplicity) and by $\overline{N}_{(k)}\left(r,\frac{1}{f-a}\right)$, we mean the corresponding one for which the multiplicity is not counted.

We denote
$$N_k \left(r, \frac{1}{f-a} \right) = \overline{N} \left(r, \frac{1}{f-a} \right) + \overline{N}_{(2)} \left(r, \frac{1}{f-a} \right) + \dots + \overline{N}_{(k)} \left(r, \frac{1}{f-a} \right)$$

$$\text{where} \ \ \overline{N}_{\text{(I}}\!\!\left(r,\frac{1}{f-a}\right) = \overline{N}\!\!\left(r,\frac{1}{f-a}\right) \text{ and } \delta_{p}\!\left(a,f\right) = 1 - \limsup_{r \to \infty} \frac{N_{p}\!\!\left(r,\frac{1}{f-a}\right)}{T\!\left(r,f\right)}, \text{ where p is a positive }$$

integer; then clearly $0 \le \delta(a, f) \le \delta_k(a, f) \le \Theta(a, f) \le 1$,

Corresponding author: T. Lowha*2

²Department of Mathematics, Sarsuna College, Sarsuna,Kolkata, Pin-700061, West Bengal, India. E-mail: t.lowha@gmail.com

where
$$\delta(a, f) = 1 - \limsup_{r \to \infty} \frac{N\left(r, \frac{1}{f - a}\right)}{T(r, f)}$$
 and $\Theta(a, f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{f - a}\right)}{T(r, f)}$

In [6], Q.C. Zhang proved the following theorem about a meromorphic function and its k-th order derivative.

Theorem: A Let f be a non-constant meromorphic function and let k be a positive integer. Suppose that f and $f^{(k)}$ share 1 CM and $2\overline{N}(r,f)+\overline{N}(r,\frac{1}{f^{(k)}})+N(r,\frac{1}{f^{(k)}})\leq (\lambda+o(1))T(r,f^k)$ for $r\in I$, where I is a set of infinite linear measure and λ satisfies $0<\lambda<1$ then $\frac{f^{(k)}-1}{f-1}\equiv c$ for some constant $c\in C-\{0\}$.

In 2003, Kit-wing [5] discussed the problem of a meromorphic function and its k- th derivative sharing one small function and proved the following result.

Theorem: B Let $k \ge 1$. Let f be a non-constant non-entire meromorphic function, $a \in s(f)$ and $a \ne 0, \infty$ and f do not have any common pole. If $f, f^{(k)}$ share a CM and $4\delta(0, f) + 2(8 + k)\Theta(\infty, f) > 19 + 2k$, then $f = f^{(k)}$.

Two years latter, in 2005, Q.C.Zhang [2] proved the following theorem.

Theorem: C Let f be a non-constant meromorphic function and $k(\ge 1), l(\ge 0)$ be integers. Also let $a \equiv a(z)$ ($not \equiv 0, \infty$) be a meromorphic function such that T(r,a) = S(r,f). Suppose that f - a and $f^{(k)}$ -a share (0,l). If $l \ge 2$ and $(3+k)\Theta(\infty,f) + 2\delta_{2+k}(0,f) > k+4$ or, if l=1 and $(4+k)\Theta(\infty,f) + 3\delta_{2+k}(0,f) > k+6$, or, if l=0, i.e., f-a and $f^{(k)}$ -a share the value 0 IM and $(6+k)\Theta(\infty,f) + 5\delta_{2+k}(0,f) > 2k+10$ then $f \equiv f^{(k)}$.

Recently, in 2010, A.Chen, X.Wang and G.Zhang [7] proved the following results.

Theorem: D Let $k(\geq 1), n(\geq 1)$ be integers and f be a non-constant meromorphic function. Also let $a(z)(not \equiv 0, \infty)$ be a small function with respect to f. If f and $[f^n]^{(k)}$ share a(z) IM and

$$4\overline{N}(r,f) + 2\overline{N}\left(r,\frac{1}{\left(\frac{f}{a}\right)^{r}}\right) + 2N_{2}\left(r,\frac{1}{\left(f^{n}\right)^{(k)}}\right) + \overline{N}\left(r,\frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq \left(\lambda + o(1)\right)T\left(r,\left(f^{n}\right)^{(k)}\right), \text{ or, if } f \text{ and } f \in \mathbb{R}^{n}$$

$$(\mathbf{f}^{\mathbf{n}})^{(k)} \text{ share a(z) CM and } 2\overline{N}\left(r,f\right) + \overline{N}\left(r,\frac{1}{\left(\frac{f}{a}\right)^{}}\right) + N_{2}\left(r,\frac{1}{\left(f^{n}\right)^{(k)}}\right) \leq \left(\lambda + o\left(1\right)\right)T\left(r,\left(f^{n}\right)^{(k)}\right), \text{ for } 0 < \lambda < 1,$$

where $r \in I$ and I is a set of infinite linear measure, then $\frac{f-a}{\left(f^n\right)^{\!\!(k)}-a}=c$, for some constant $c \in C-\{0\}$.

Theorem: E Let $k(\ge 1), n(\ge 1)$ be integers and let f be a non-constant meromorphic function. Also let a(z) ($not = 0, \infty$) be a small function with respect to f. If f and $(f^n)^{(K)}$ share a(z) IM and $(2k+6)\Theta(\infty,f)+3\Theta(0,f)+2\delta_{k+2}(0,f)>2k+10$, or, if f and $(f^n)^{(K)}$ share a(z) CM and $(k+3)\Theta(\infty,f)+\delta_2(0,f)+\delta_{k+2}(0,f)>k+4$ then $f = (f^n)^{(k)}$.

In this paper, we will prove the following two theorems which will include the behavior of a meromorphic function and its k th derivative sharing a small function with multiplicity not greater than l, a positive integer.

Theorem: 1 Let k, m and n are three positive integers with $m \le n$ and let f be a non-constant meromorphic function. Also let a(z) $(not = 0, \infty)$ be a small function with respect to f. If $\overline{E}_{l}(a, f^m(z)) = \overline{E}_{l}(a, f^{m(k)})$, where 1 is a positive integer and

$$\overline{N}(r,f) + 2N_2\left(r,\frac{1}{f}\right) + 2N_2\left(r,\frac{1}{\left(f^n\right)^{(k)}}\right) + \overline{N}\left(r,\frac{1}{\left(f^n\right)^{(k)}}\right) \leq \left(\lambda + 0(1)\right)T\left(r,\left(f^n\right)^{(k)}\right), for \ 0 < \lambda < 1,$$

where $r \in I$ and I is a set of infinite linear measure, then $\frac{\left(f^n\right)^{(k)}-a}{f^m-a}=c$ for some constant $a \in C-\{0\}$ where C is the set of complex numbers.

Theorem: 2 Let f be a non-constant meromorphic function and let k and n be two positive integers. If $\overline{E}_{l}(a,f)\equiv\overline{E}_{l}(a,(f^n)^{(k)})$, where l is a positive integer and a(z) ($not\equiv 0,\infty$) be a small function of f and $(2k+6)\Theta(\infty,f)+\Theta(0,f)+2\delta_2(0,f)+2\delta_{k+2}(0,f)>2k+10$ then $f=(f^n)^{(k)}$.

2. LEMMAS

Here we mention some existing lemmas of the literature which will be frequently used to prove the aforementioned theorems.

Lemma 2.1 (see[7]): Let f be a non-constant meromorphic function and k,p be two positive integers. Then $N_p\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right) + k\overline{N}(r, f) + S(r, f)$.

Lemma: 2.2 (see[4]) Let f be a non-constant meromorphic function and let n be a positive integer. $P(f) = a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f$

where a_i is a meromorphic function such that $T(r, a_i) = S(r, f)$ (i = 1, 2, ..., n). Then T(r, P(f)) = nT(r, f) + S(r, f).

3. PROOF OF THE THEOREMS

Proof of Theorem: 1 Let $F = \frac{f^m}{a}$ and $G = \frac{\left(f^n\right)^{(k)}}{a}$. Therefore, $F - 1 = \frac{f^m - a}{a}$ and $G - 1 = \frac{\left(f^n\right)^{(k)} - c}{a}$.

Now, $\overline{E}_{l}(a, f^m) = \overline{E}_{l}(a, (f^n)^{(k)})$ except the zeros and poles of a(z). Define,

$$H = \left(\frac{F''}{F'} - \frac{2F''}{F - 1}\right) - \left(\frac{G''}{G'} - \frac{2G''}{G - 1}\right).$$

We now consider two cases:

Case: I Suppose H not $\equiv 0$. Then m(r,H) = S(r,f). Now if z_0 is a common simple zero of F-1 and G-1 (except the zeros and poles of a(z)), then after simple calculation, we get $H(z_0) = 0$.

So,
$$\overline{N}_E\left(r, \frac{1}{G-1}\right) \le N\left(r, \frac{1}{H}\right) + S\left(r, f\right) \le T\left(r, H\right) + S\left(r, f\right) \le N\left(r, H\right) + S\left(r, f\right)$$

Again by analysis, we can deduce that,

$$\begin{split} N(r,H) &\leq \overline{N}(r,f) + \overline{N}_{(2)}\left(r,\frac{1}{F}\right) + \overline{N}_{(2)}\left(r,\frac{1}{G}\right) + \overline{N}_{L}\left(r,\frac{1}{F-1}\right) + \overline{N}_{L}\left(r,\frac{1}{G-1}\right) + \overline{N}_{*}\left(r,\frac{1}{F-1}\right) \\ &+ \overline{N}_{*}\left(r,\frac{1}{G-1}\right) + \overline{N}_{0}\left(r,\frac{1}{F'}\right) + \overline{N}_{0}\left(r,\frac{1}{G'}\right) + S(r,f). \end{split}$$

Also,
$$\overline{N}\left(r, \frac{1}{G-1}\right) = N_E^{(1)} + \overline{N}_E^{(2)}\left(r, \frac{1}{G-1}\right) + \overline{N}_L\left(r, \frac{1}{G-1}\right) + \overline{N}_L\left(r, \frac{1}{F-1}\right) + \overline{N}_*\left(r, \frac{1}{G-1}\right) + S(r, f).$$

Therefore.

$$\overline{N}\left(r, \frac{1}{G-1}\right) \leq \overline{N}\left(r, f\right) + \overline{N}_{(2}\left(r, \frac{1}{F}\right) + \overline{N}_{(2}\left(r, \frac{1}{G}\right) + 2\overline{N}_{L}\left(r, \frac{1}{F-1}\right) + 2\overline{N}_{L}\left(r, \frac{1}{G-1}\right) + 2\overline{N}_{L}\left(r, \frac{1}{G-1}\right) + 2\overline{N}_{L}\left(r, \frac{1}{G-1}\right) + 2\overline{N}_{L}\left(r, \frac{1}{G-1}\right) + \overline{N}_{L}\left(r, \frac{1}{G-1}\right) + \overline{N}$$

Since, $\overline{E}_{l}(1,F) = \overline{E}_{l}(1,G)$

$$\text{Therefore, } 2\overline{N}_L \left(r, \frac{1}{G-1}\right) + 2\overline{N}_* \left(r, \frac{1}{G-1}\right) + \overline{N}_E^{(2)} \left(r, \frac{1}{G-1}\right) \leq 2\,\overline{N}_{(2)} \left(r, \frac{1}{G-1}\right).$$

From (1), we have.

$$\overline{N}\left(r,\frac{1}{G-1}\right) \leq \overline{N}\left(r,f\right) + \overline{N}_{(2)}\left(r,\frac{1}{F}\right) + \overline{N}_{(2)}\left(r,\frac{1}{G}\right) + 2\overline{N}_{(2)}\left(r,\frac{1}{G-1}\right) + 2\overline{N}_{(2)}\left(r,\frac{1}{G-1}\right) + 2\overline{N}_{(2)}\left(r,\frac{1}{F-1}\right) + \overline{N}_{(2)}\left(r,\frac{1}{F-1}\right) + \overline{N}_{(2)}\left(r,\frac{1}{F-1}\right) + \overline{N}_{(2)}\left(r,\frac{1}{G-1}\right) + S\left(r,f\right)$$
(2)

We also have,

$$\overline{N}_{2}\left(r,\frac{1}{F}\right)+2\overline{N}_{L}\left(r,\frac{1}{F-1}\right)+\overline{N}_{*}\left(r,\frac{1}{F-1}\right)+\overline{N}_{0}\left(r,\frac{1}{F'}\right)\leq2\overline{N}\left(r,\frac{1}{F'}\right)$$
(3)

Now by the second fundamental theorem we get,

$$T(r,G) \le \overline{N}(r,G) + \overline{N}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{G-1}) - N_0(r,\frac{1}{G'}) + S(r,G)$$

$$\tag{4}$$

From (4) using (2) and (3) we get,

$$T(r,G) \le 2\overline{N}(r,f) + 2\overline{N}(r,\frac{1}{F'}) + 2\overline{N}(r,\frac{1}{G'}) + \overline{N}(r,\frac{1}{G}) + S(r,f)$$

$$\tag{5}$$

By lemma(2.1) we have,

$$T(r, f^n)^{(k)} \le 6\overline{N}(r, f) + 2N_2\left(r, \frac{1}{f}\right) + 2N_2\left(r, \frac{1}{\left(f^n\right)^{(k)}}\right) + \overline{N}\left(r, \frac{1}{\left(f^n\right)^{(k)}}\right) + S(r, f)$$

which contradicts the given conditions of the theorem.

Case: II Suppose
$$H(z) \equiv 0$$
 i.e., $\frac{F''}{F'} - \frac{2F'}{F-1} = \frac{G''}{G'} - \frac{2G''}{G-1}$. Integrating we get,

 $\log F' - 2\log(F-1) = \log G' - \log(G-1) + \log A$. where A is a constant $\neq 0$.

That is,
$$\log \frac{F'}{(F-1)^2} = \log \frac{AG'}{(G-1)^2}$$
.

Again integrating we get,

$$\frac{1}{F-1} = \frac{A}{G-1} + B \tag{6}$$

Now if z_0 is a pole of f with multiplicity p which is not the poles and the zeros of a(z), then z_0 is the pole of F with multiplicity mp and the pole of G with multiplicity np+k(\neq mp). This contradicts (6). This implies f has no pole, that is f is an entire function.

So,
$$\overline{N}(r.F) = S(r, f)$$
 and $\overline{N}(r.G) = S(r, f)$. Now we prove that $B = 0$.

We first assume that B \neq 0, then
$$\frac{1}{F-1} = \frac{B\left(G-1+\frac{A}{B}\right)}{G-1}$$
.

Therefore,
$$\overline{N}\left(r, \frac{1}{G-1+\frac{A}{B}}\right) = \overline{N}(r, F) = S(r, f)$$

Now we assume $\frac{A}{B} \neq 1$.

By the second fundamental theorem,

$$T(r,G) \leq \overline{N}(r,G) + \overline{N}\left(r,\frac{1}{G}\right) + \overline{N}\left(r,\frac{1}{G-1} + \frac{A}{B}\right) + S(r,G)$$

$$\leq \overline{N}\left(r,\frac{1}{G}\right) + S(r,f)$$

$$\leq T(r,G) + S(r,f)$$

Hence
$$T(r,G) = \overline{N}\left(r,\frac{1}{G}\right) + S(r,f)$$
 i.e., $T(r,(f^n)^{(k)}) = \overline{N}\left(r,\frac{1}{(f^n)^{(k)}}\right) + S(r,f)$

This contradicts the given condition of the theorem.

Next, we assume
$$\frac{A}{B} = 1$$
. Then, $(AF - A - 1) G = -1$.

So,
$$\frac{a^2}{f^n (Af^m - Aa - A)} = -\frac{(f^n)^{(k)}}{f^n}$$

Now by lemma (2.1) and (2.2), we get,

$$(n+m)T(r,f) = T\left(r, \frac{(f^n)^{(k)}}{f^n}\right) + S(r,f)$$

$$\leq n \sqrt{r, \frac{1}{f}} + k \sqrt{r} (r,f) + S(r,f)$$

$$\leq nT(r,f) + S(r,f)$$

i.e.,
$$T(r, f) = S(r, f)$$
. This is not true.

Hence our assumption is not true and therefore B =0. So, $\frac{G-1}{F-1} = A$

This proves the theorem.

Proof of the theorem: 2

Let
$$F = \frac{f(z)}{a(z)}$$
 and $G = \frac{(f^n)^{(k)}}{a(z)}$. So, $\overline{E}_{II}(a,f) = \overline{E}_{II}(a,(f^n)^{(k)})$ implies, $\overline{E}_{II}(1,F) = \overline{E}_{II}(1,G)$, except the zeros and poles of a(z).

We define,
$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right)$$
.

Now we consider two cases:

Case: I Suppose H not $\equiv 0$.

Then (5) of the proof in theorem1 still holds. Writing (5) for the function F, we get,

$$\begin{split} T(r,F) &\leq 2\,\overline{N}(r,f) + 2\,\overline{N}\bigg(r,\frac{1}{G}\bigg) + 2\,\overline{N}\bigg(r,\frac{1}{F'}\bigg) + \overline{N}\bigg(r,\frac{1}{G}\bigg) + S(r,f) \\ &\text{i.e. } T(r,f) \leq 2\,\overline{N}(r,f) + 2\,\overline{N}_2\bigg(r,\frac{1}{(f^n)^{(k)}}\bigg) + 2\,\overline{N}(r,f) + \overline{N}_2\bigg(r,\frac{1}{f}\bigg) + 2\,\overline{N}(r,f) + \overline{N}\bigg(r,\frac{1}{f}\bigg) + S(r,f) \\ &\leq (2k+6)\,\overline{N}(r,f) + 2N_{K+2}\bigg(r,\frac{1}{f}\bigg) + 2\,\overline{N}_2\bigg(r,\frac{1}{f}\bigg) + \overline{N}\bigg(r,\frac{1}{f}\bigg) + S(r,f) \\ &\text{i.e., } (2k+6)\Theta(a,f) + \Theta(0,f) + 2\delta_2(0,f) + 2\delta_{k+2}(0,f) \leq 2k+10 \end{split}$$

This contradicts the given condition of the theorem.

Case: II Suppose $H \equiv 0$.

So
$$\frac{1}{F-1} = \frac{A}{G-1} + B$$
, where $A \neq 0$, B are constant. By the same argument of the proof of theorem 1, we get, $\overline{N}(r,F) = S(r,f)$ and $\overline{N}(r,G) = S(r,f)$.

So,
$$\Theta(\infty, f) = 1$$
.

Assume that, B \neq 0, then
$$\frac{B\left(F-1-\frac{1}{B}\right)}{F-1} = -\frac{A}{G-1}$$

So,
$$\overline{N}\left(r, \frac{1}{F-1+\frac{1}{B}}\right) = \overline{N}(r,G) = S(r,f)$$
.

If $B \neq -1$, then by the second fundamental theorem for F, we have

$$T(r,F) \leq \overline{N}(r,F) + \overline{N}(r,\frac{1}{F}) + \overline{N}\left(r,\frac{1}{F-1+\frac{A}{B}}\right) + S(r,f)$$

$$\leq \overline{N}\left(r,\frac{1}{F}\right) + S(r,f)$$

$$\leq T(r,F) + S(r,f)$$
So $T(r,F) \leq \overline{N}\left(r,\frac{1}{F}\right) + S(r,f)$ i.e., $T(r,f) \leq \overline{N}\left(r,\frac{1}{f}\right)$. Hence, $\Theta(0,f) = 0$.

Putting $\Theta(\infty, f) = 1$; $\Theta(0, f) = 0$ and also $\delta(0, f) \leq \Theta(0, f) = 0$ in the given condition of the theorem we have, $\delta_{k+2}(0, f) > 2$, which is not true. Hence B = -1.

So
$$\overline{N}\left(r,\frac{1}{F}\right) = S(r,f)$$
, i.e., $\overline{N}\left(r,\frac{1}{f}\right) = S(r,f)$. Therefore, $\frac{F}{F-1} = \frac{A}{G-1}$,

i.e.,
$$F(G-1-A) = -A$$
 that is $F = \frac{A}{-G + (1+A)}$

So,
$$f = \frac{A}{-(f^n)^{(k)} + (1+A)}$$
. Therefore, $\overline{N}\left(r, \frac{1}{(f^n)^{(k)} + (1+A)}\right) = \overline{N}(r, f) = S(r, f)$.

Hence $T(r, f) = T(r, (f^n)^{(k)}) = S(r, f)$. which is also not true. Thus B = 0.

So
$$\frac{1}{F-1} = \frac{A}{G-1}$$
, i.e., $G-1 = A (F-1)$.

If A \neq 1 then
$$G = A\left(F - 1 + \frac{1}{A}\right)$$
. So, $N\left(r, \frac{1}{G}\right) = N\left(r, \frac{1}{F - 1 + \frac{1}{A}}\right)$.

By the second fundamental theorem, we have,

$$T(r,F) \le \overline{N}(r,F) + \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{F-1+\frac{1}{A}}\right) + S(r,f).$$

i.e.,

$$T(r,f) \leq \overline{N}\left(r,\frac{1}{F}\right) + \overline{N}\left(r,\frac{1}{G}\right) + S(r,f).$$

$$= \overline{N}\left(r,\frac{1}{f}\right) + \overline{N}\left(r,\frac{1}{(f^n)^{(k)}}\right) + S(r,f).$$

$$\leq \overline{N}\left(r,\frac{1}{f}\right) + N_{k+1}\left(r,\frac{1}{f}\right) + k\,\overline{N}(r,f) + S(r,f)$$

$$= \overline{N}\left(r,\frac{1}{f}\right) + N_{k+1}\left(r,\frac{1}{f}\right) + S(r,f)$$

So,

$$\Theta(0,f) + \delta_{k+1}(0,f) \le 1 \tag{7}$$

Now by the given condition of the theorem and by (7) we have, $\Theta(0, f) > 2$. This is not possible.

So, A = 1 and hence F = G i.e.,
$$f = (f^n)^{(k)}$$
.

This proves the theorem.

REFERENCES

- [1] Chen A., Wang X., and Zhang G., Unicity of meromorphic function sharing one small function with its derivative, International Journal of Mathematics and Mathematical Sciences, Artical Id 507454, P.11, 2010.
- [2] Fang M.L., Hong W., A unicity theorem for entire functions concerning differential polynomials, Indian J. Pure Appl. Math. 32(9)(2001), 1343-1348.

- [3] Hayman W.K., Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
- [4] Lin S., Lin W., Uniqueness of meromorphic function concerning weakly weighted sharing, Kodai mathematical Journal, Vol29,pp.269-280,2006.
- [5] Yang C.C., On deficiencies of differential polynomials II,Math.Z.125(1972),107-112.
- [6] Yang C.C., Yi H.X., Uniqueness theory of meromorphic function, Mathematics and its Application, Vol.557, Science Press, Beijing, China; Kluwer Academic, New York, NY, USA, 2003.
- [7] Yi H.X., Yang C.C., Uniqueness theory of meromorphic functions, Science Press, Beijing, 1995.
- [8] Yu K.W., On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure and Appl. Math. 4(2003),1-7.
- [9] Zhang Q.C., Meromorphic function that shares one small function with its derivative, Journal of Inequalities in pure and Applied Mathematics, Vol.6, no.4, Article 116, P.13, 2005.
- [10] Zhang Q.C., The uniqueness of meromorphic functions with their derivatives, Kodai Mathematical Journal, Vol21, no.2, pp.179-184,1998.

Source of support: Nil, Conflict of interest: None Declared