A NOTE ON RECTANGULAR MATRICES

Md. Shahidul Islam Khan*

Department of Mathematics, Nabajyoti College, Kalgachia, PIN-781319, India.

(Received on: 27-02-14; Revised & Accepted on: 15-03-14)

ABSTRACT

In this paper, we study about determinants, adjoint, inverse, α - characteristic equation, α -minimal polynomial and α -eigenvalues of rectangular matrices. We also prove some enlightening results.

1. INTRODUCTION

Let V be a Γ – Banach algebra and m, n be positive integers. Denote by $V_{m,n}$ and $\Gamma_{n,m}$ the sets of $m \times n$ matrices with entries from V and $n \times m$ matrices with entries from Γ respectively. Let $(x_{ij}), (y_{ij}) \in V_{m,n}$ and $(\gamma_{ji}) \in \Gamma_{n,m}$, we define $(z_{ij}) = (x_{ij})(\gamma_{ji})(y_{ij})$ where $z_{ij} = \sum_{p} \sum_{q} x_{ip} \gamma_{pq} y_{qj}$ and $||A|| = \max\{|x_{ij}| : i = 1, 2, ..., m; j = 1, 2, ..., n\}$, where $A = (x_{ij}) \in V_{m,n}$. Then $V_{m,n}$ is a $\Gamma_{m,n}$ – Banach algebra with respect to matrix addition, scalar multiplication, matrix multiplication and norm defined as above. The concept of α – characteristic equations has been generalized by several authors [1], [2], [3], [5].In [3], define the product of rectangular matrices A and B of order $m \times n$ by $A.B = A\alpha B$, for a fixed rectangular matrix $\alpha_{n \times m}$. With this product, we have $A^2 = A\alpha A$, $A^3 = A^2(\alpha A)$, $A^4 = A^3(\alpha A), \ldots, A^n = A^{n-1}(\alpha A)$.

2. DEFINITIONS AND EXAMPLES

Definition 2.1: A determinant |A| for a rectangular matrix $A_{m \times n}$ $(m \le n)$

Let J_n be the set of integers $\{1, 2, 3, \dots, n\}$. Let the integers $m, k_{p^1}, k_{p^2}, \dots, k_{p^m}$ be such that

- i. $m \le n$
- ii. $k_{p^i} \in J_n$ for all $i \in J_m$ and $p = 1, 2, 3, \dots$
- iii. $k_{p^1} < k_{p^2} < \dots < k_{p^m}$

For an integer d, $1 \le d \le (n-m+1)$, define a set S_d such that

$$S_d = \left\{ e_p^d = \left(d, k_{p^2}, k_{p^3}, \dots, k_{p^m} \right) \right\}$$

If $N_d = {}^{n-d}C_{m-1}$, then the cardinal number of S_d is N_d .

The set S_d , $1 \le d \le (n-m+1)$ will be ordered as follows. A set $S_u < S_v$ whenever u < v. Moreover, the elements e_p^d and e_q^d will be placed in the order $e_p^d < e_q^d$ whenever $k_{p^s} < k_{q^s}$ for s=2, 3... m.

All the m-tuples, therefore, admit of the following order; namely

$$e_1^1 < e_2^1 < \dots < e_{N_1}^1 < e_2^2 < \dots < e_{N_2}^2 < \dots < e_1^{n-m+1} < \dots < e_{n-m+1}^{n-m+1} \ .$$

Corresponding author: Md. Shahidul Islam Khan* Department of Mathematics, Nabajyoti College, Kalgachia, PIN-781319, India. E-mail: shahidul_islamkhan786@yahoo.com

Md. Shahidul Islam Khan* /A Note On Rectangular Matrices/ IJMA- 5(3), March-2014.

Consider the matrix $A = (a_{ij})_{m \times n}$, $m \le n$. Let A_p^d be a sub-matrix of order $m \times m$ of A whose columns conform to the ordering of integers in e_p^d ; $1 \le d \le (n-m+1)$, $1 \le p \le N_d$.

For an $m \times n$ $(m \le n)$, matrix A with real elements. Let A_n^d be defined as above, then the number $\sum_{n=m+1}^{n-m+1} \sum_{i=1}^{n-m+1} \det(A_p^d)$ will be defined as the determinant of A and will be denoted by |A|.

For an $m \times n$ $(m \ge n)$, matrix A with real elements, |A| will be defined as $|A^T|$ where $|A^T|$ denotes the transpose of matrix of A.

Example: Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$
. Here $m = 2$ and $n = 5$, so $1 \le d \le (5 - 2 + 1)$

i.e. d = 1, 2, 3, 4 and $N_1 = 4, N_2 = 3, N_3 = 2, N_4 = 1$. The sets S_1, S_2, S_3 and S_4 contains the following elements, namely

$$S_1 = \{(1, 2), (1, 3), (1, 4), (1,5)\}$$

$$S_{2} = \{(2,3), (2,4), (2,5)\}$$

$$S_{3} = \{(3,4), (3,5)\}$$

$$S_3 = \{(3,4), (3,5)\}$$

$$S_4 = \{(4,5)\}$$

There by the above definition, we have

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 & 7 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 3 & 5 \end{vmatrix} + \begin{vmatrix} 1 & 4 \\ 3 & 6 \end{vmatrix} + \begin{vmatrix} 1 & 5 \\ 3 & 7 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} + \begin{vmatrix} 2 & 4 \\ 4 & 6 \end{vmatrix} + \begin{vmatrix} 2 & 5 \\ 4 & 7 \end{vmatrix} + \begin{vmatrix} 3 & 4 \\ 5 & 6 \end{vmatrix} + \begin{vmatrix} 3 & 5 \\ 5 & 7 \end{vmatrix} + \begin{vmatrix} 4 & 5 \\ 6 & 7 \end{vmatrix}$$

$$= -42$$

Definition 2.2: Cofactors, Adjoints and Inverse of rectangular matrix

Let A be a $m \times n$ $(m \le n)$ rectangular matrix of order $m \times n$; then we have by definition that |A| is a linear homogeneous function of the entries in the ith row of A. If c_{ij} denotes the coefficient of a_{ij} , $j = 1, 2, 3, \dots, n$, then we get the expression

$$|A| = a_{i1}c_{i1} + a_{i2}c_{i2} + a_{i3}c_{i3} + \dots + a_{in}c_{in}$$

The coefficient c_{ij} of a_{ij} of the above expression is called the cofactor of a_{ij} . Let E, F, G and H be the sub-matrices of A of the order $(i-1)\times(j-1)$, $(i-1)\times(n-j)$, $(m-i)\times(n-j)$ and $(m-i)\times(j-1)$ respectively such

corresponds to the
$$M_{ij} = \begin{vmatrix} E & -F \\ -H & G \end{vmatrix}$$
, the cofactor of a_{ij} , that is $c_{ij} = |M_{ij}|$.

A rectangular matrix A of order $m \times n$ $(m \le n)$ is said to be non-singular if $|A| \ne 0$; otherwise it is said to be singular.

If A is non-singular, then its inverse
$$A^{-1}$$
 is defined by $A^{-1} = \frac{Adj(A)}{|A|}$.

Definition 2.3: α – characteristic Equation, α – eigenvalue, α – eigenvector

Let us consider a rectangular matrix $A_{m \times n}$ $(m \neq n)$. Then we consider a fixed rectangular matrix $\alpha_{n \times m}$ of the opposite order of A. Then αA and $A\alpha$ are both square matrices of order n and m respectively. If m < n, then αA is the highest n^{th} order singular square matrix and $A\alpha$ is the lowest m^{th} order square matrix forming their product. Then the matrix $\alpha A - \lambda I_n$ and $A\alpha - \lambda I_m$ are called the left α -characteristic matrix and right α -characteristic matrix of A respectively, where λ is an indeterminate. Also the determinant $|\alpha A - \lambda I_n|$ is a polynomial in λ of degree n, called the left α -characteristic polynomial of A and $|A\alpha - \lambda I_m|$ is a polynomial in λ of degree n, called the left α -characteristic polynomial of A. That is, the characteristic polynomial of singular square matrix αA is called the left α -characteristic polynomial of A and the characteristic polynomial of the square matrix $A\alpha$ is called the right α -characteristic polynomial of A. The equations $|\alpha A - \lambda I_n| = 0$ and $|A\alpha - \lambda I_m| = 0$ are called the left α -characteristic equation and right α -characteristic equation of A respectively. Then the rectangular matrix A satisfies the left α -characteristic equation, and the left α -characteristic equation of A is called the α -characteristic equation of A.

For, m>n the rectangular matrix $A_{m \times n}$ satisfies the right α -characteristic equation of A. So in this case, the equation $\left|A\alpha-\lambda I_m\right|=0$ is called the α -characteristic equation of A. The roots of the α -characteristic equation of a rectangular matrix A are called the α -eigenvalues of A

If λ is an α -eigenvalue of rectangular matrix A of order $m \times n$ (m < n), then the matrix $\alpha A - \lambda I_n$ is singular. The equation $(\alpha A - \lambda I_n)X = 0$ then possesses a non-zero solution i.e. there exists a non-zero column vector X such that $\alpha AX = \lambda X$. A non-zero vector X satisfying this equation is called a α -characteristic vector or α -eigenvector of A corresponding to the α -eigenvalue λ .

Definition 2.4: α – minimal polynomial

For a rectangular matrix $A_{m \times n}$ $(m \neq n)$ over a field K, let J(A) denote the collection of all polynomial $f(\lambda)$ for which f(A) = 0 (Note that J(A) is non empty, since the α -characteristic polynomial of A belongs to J(A)). Let $m_{\alpha}(\lambda)$ be the monic polynomial of minimal degree in J(A). Then $m_{\alpha}(\lambda)$ is called the α -minimal polynomial of A.

3. MAIN RESULTS

Theorem 3.1: Let A be a rectangular matrix of order $m \times n$ $(m \le n)$.

- i. If m = 1, then $|A| = a_{11} + a_{12} + a_{13} + \dots + a_{1n}$.
- ii. If m = n, then $|A| = \det(A) = \det(A_1^1)$
- iii. If any row of A is multiplied by c, then |A| is multiplied by c.
- iv. If any two rows are identical, then |A| = 0.
- v. The values of a determinant changes in sign only, if any two rows are interchanged.
- vi. If each element in a row is an algebraic sum of two or more quantities, then the determinant can be expressed as an algebraic sum of two or more determinants.

Proof: Proofs are straightforward and so omitted.

Theorem 3.2: If A is a rectangular matrix of order $m \times n$ $(m \le n)$ then

- i. $A.Adj(A) = |A|I_m$ where I_m is the unit matrix of order m.
- ii. Adi(A)A = a singular matrix of order n.

Proof: Proofs are straightforward and so omitted.

Theorem 3.3: If A is an $m \times n$ (m < n) rectangular matrix and α is an $n \times m$ rectangular matrix, then A is a zero of its α -characteristic polynomial.

Proof: Since A is an $m \times n$ (m < n) rectangular matrix and α is an $n \times m$ rectangular matrix, so the α -characteristic polynomial of A is of the form

$$\Delta(\lambda) = |\lambda I - \alpha A| = a_m \lambda^n + a_{m-1} \lambda^{n-1} + a_{m-2} \lambda^{n-2} + \dots + a_0 \lambda^{n-m}.$$

Let $B(\lambda)$ denote the classical adjoint of the matrix $\lambda I - \alpha A$. The elements of $B(\lambda)$ are cofactors of the matrix $\lambda I - \alpha A$ and hence are polynomials in λ of degree not exceeding n-1.

Thus $B(\lambda) = B_{m-1}\lambda^{n-1} + B_{m-2}\lambda^{n-2} + \dots + B_1^{n-m+1} + B_0\lambda^{n-m}$, where the B_i are n-square matrices over K which are independent on λ . By the fundamental property of the adjoint

$$(\lambda I - \alpha A)B(\lambda) = |\lambda I - \alpha A|I$$

$$(\lambda I - \alpha A)(B_{m-1}\lambda^{n-1} + B_{m-2}\lambda^{n-2} + \dots + B_1^{n-m+1} + B_0\lambda^{n-m})$$

$$= (a_m\lambda^n + a_{m-1}\lambda^{n-1} + a_{m-2}\lambda^{n-2} + \dots + a_0\lambda^{n-m})I$$

Removing parentheses and equating the coefficients of corresponding of λ

$$B_{m-1} = a_{m}I$$

$$B_{m-2} - (\alpha A)B_{m-1} = a_{m-1}I$$

$$B_{m-3} - (\alpha A)B_{m-2} = a_{m-2}I$$
.....
$$B_{0} - (\alpha A)B_{1} = a_{1}I$$

$$- (\alpha A)B_{0} = a_{0}$$

Multiplying the above matrix equations by A^n , A^{n-1} , A^{n-2} ,, A^{n-m+1} , A^{n-m} respectively.

$$A^{n}B_{m-1} = a_{m}A^{n}$$

$$A^{n-1}B_{m-2} - A^{n}B_{m-1} = a_{m-1}A^{n-1}$$

$$A^{n-2}B_{m-3} - A^{n-1}B_{m-2} = a_{m-1}A^{n-2}$$
......
$$A^{n-m+1}B_{0} - A^{n-m+2}B_{1} = a_{1}A^{n-m+1}$$

$$- A^{n-m+1}B_{0} = a_{0}A^{n-m}$$

Adding the above matrix equations, we get

$$0 = a_m A^n + a_{m-1} A^{n-1} + a_{m-2} A^{n-2} + \dots + a_0 A^{n-m}$$

In other words, $\Delta(A) = 0$. That A is a zero of its characteristic polynomial.

Theorem 3.4: Let A and α be two rectangular matrices of order $m \times n$ and $n \times m$ (m < n) respectively. If $m_{\alpha}(\lambda) = \lambda^r + c_1 \lambda^{r-1} + c_2 \lambda^{r-2} + \dots + c_{r-1} \lambda$ is the α -minimal polynomial of A and $B_r = (\alpha A)^r + c_1(\alpha A)^{r-1} + c_2(\alpha A)^{r-2} + c_3(\alpha A)^{r-3} + \dots + c_r I$, then $-\alpha A B_{r-1} = 0$.

Proof: Suppose $m_{\alpha}(\lambda) = \lambda^r + c_1 \lambda^{r-1} + c_2 \lambda^{r-2} + \dots + c_{r-1} \lambda$. Consider the following matrices:

$$\begin{split} B_0 &= I \\ B_1 &= \alpha A + c_1 I \\ B_2 &= (\alpha A)^2 + c_1 \alpha A + c_2 I \end{split}$$

REFERENCES

=0

- [1], G. L. Booth, "Radicals of matrix Γ rings", Math. Japonica, Vol.33, 1988, pp. 325-334.
- [2]. H.K. Nath, "A study of Gamma-Banach algebras", Ph.D. Thesis, (Gauhati University), 2001.
- [3]. Jinn Miao Chen, "Von Neumann regularity of two matrix $\Gamma_{n,m}$ ring $M_{m,n}$ over Γ ring", M. J. Xinjiang Univ. Nat. Sci., Vol. 4, 1987, pp. 37-42.
- [4]. P. Rajkhowa and Md. Shahidul Islam Khan, "On α -Characteristic Equations and α -Minimal Polynomial of Rectangular Matrices", IOSR J. of Mathematics, Vol. 6, Issue 3, 2013, pp. 42-46.
- [5]. T. K. Dutta and H. K. Nath, "On the Gamma ring of rectangular Matrices", Bulletin of Pure and Applied Science, Vol. 16E, 1997, pp. 207-216.

Source of support: Nil, Conflict of interest: None Declared