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ABSTRACT
Let G=(V,E)be a graph, let D —V and U be any vertex in D . Then the out degree of U with respect to D

denoted by od 5 (u), is defined asod 5 (W) =|N(u)N(V —D)|. Asubset D <V (G) is called a near equitable

dominating set of G if for every VeV —D there exists a vertex Ue D such that U is adjacent to V and
|od 5 (u) —OdV 5 (V) [€1. A near equitable dominating set is called a strong total near equitable dominating set

(stned-set) if for every vertexV € D there exists U € D suchthat U isadjacentto V and |od 5 (u)—od 5 (v) <1
The minimum cardinality of stned-set of G is called the strong total near equitable domination number of G and is

denoted by ¥ e (G) . In this paper, we initiate a study of this parameter.
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1. INTRODUCTION

Byagraph G = (V,E) we mean afinite, undirected graph with neither loops nor multiple edges. The order and size of
G aredenoted by N and m, respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik [4].

Let G =(V,E) beagraphandlet VeV . The open neighborhood and the closed neighborhood of V are denoted by
N(v)={ueV :uve E} and N[v]= N(v)uU{v}, respectively. If ScV then N(S)=u, N(v) and
N[S]=N(S)uUS.

veS

A subset S of V is called a dominating set if N[S]=V. The minimum (maximum) cardinality of a minimal
dominating set of G is called the domination number (upper domination number) of G and is denoted by y(G)

(T'(G)) . An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [7]. A survey of

several advanced topics in domination is given in the book edited by Haynes et al. [8]. Various types of domination have
been defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes
et al. [7]. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi [5] introduced the concept of total domination in graphs. A

dominating set D of agraph G is a total dominating set if every vertex of V is adjacent to some vertex of D. The
cardinality of a smallest total dominating set in a graph G is called the total domination number of G and is denoted

by 7t(G)-

Equitable domination has interesting application in the context of social networks. In a network, nodes with nearly equal
capacity may interact with each other in a better way. In the society persons with nearly equal status, tend to be friendly.
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Let D cV(G)and U be any vertex in D. The out degree of U with respectto D denoted by OdD (u), is defined as
OdD (u)=|N(u)n(V —D)|. D is called a near equitable dominating set of G if for every VeV —D there
exists a vertex U € D such that U is adjacent to V and |0dD(u)—0dV 5 (V) [€1.The minimum cardinality of

such a dominating set is denoted by y,, and is called the near equitable domination number of G [1]. A near equitable

dominating set D is said to be a total near equitable dominating set if every vertex W €V is adjacent to an element of
D. The minimum cardinality of total near equitable dominating set of G is called the total near equitable domination
number of G and is denoted by 7, (G) [2].

We need the following Definition.

Definition: 1.1[1] Let G = (V,E) be a graph and D be a near equitable dominating set of G . Then Ue D isa

near equitable pendant vertex if od 5 (u) =1.Aset D iscalled a near equitable pendant dominating set if every vertex

in D isan equitable pendant vertex.

2. STRONG TOTAL NEAR EQUITABLE DOMINATION IN GRAPHS

Definition: A near equitable dominating set D of agraph G is said to be a strong total near equitable dominating set
(stned-set) if for every vertexV € D thereexists U € D suchthat U isadjacentto V and |od 5 (u)—od 5 v)£1
. Astned-set D is said to be minimal if no proper subset of D is a stned-set. The minimum cardinality of stned-set of
G s called the strong total near equitable domination number of G and is denoted by .. (G) .

We note that this parameter is only defined for graphs without isolated vertices and, since each total near equitable
dominating set is a near equitable dominating set and each strong total near equitable dominating set is a total near

equitable dominating set, we have 7, (G) < 74,0 (G) < 74e (G) .

Proposition: 2.1 Let G be any graph, and let D 'V (G) be a strong total near equitable dominating set of G .
Then for every component C of G, D "V (C) is a strong total near equitable dominating setin C .

A vertex of a graph is said to be pendant if its neighborhood contains exactly one vertex. The vertex which is adjacent to
the pendant vertex is called support vertex.

Proposition: 2.2 Let T be atree. Then a total near equitable dominating set is a strong total near equitable dominating
set if every support vertex is adjacent to at most two pendant vertices.

Theorem: 2.3 Let T beatree. Then y..(T) =2n—m—2 ifandonlyif T isastar.

Proof: LetT be a tree of ordern. SinceT is a star, ¥, (T)=n-1. Since for any tree, m=n-1, we have
Yae(T)=N-1=2n-(n-1)-2=2n-m-2.

Conversely, suppose that T is not star, then T contains more than one support vertex. Therefore 7., (T)<Nn-2.Thus
Ve (T) <2n—mM-2.

Theorem: 2.4 For any cycle C_ 74, (C,) =n—2ifandonlyif n=4,5,6.

Proof: LetG =C, If n=4,5,6.Clearly, y,,.(C,)=n-2.
Conversely, suppose that p..(C,)=n—2. Since G=C, . Assume that n=4,5 6. If n=3, then
Ve (C3) =221 1f n =7, then y..(C,) =4 <5.Similarly, for n>8, »,.(C,)<n-2.
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Definition: A graph G is a near equitably balanced graph if for any near equitable dominating set D of G,
od_(u)=od_(v),forall u,veD.

Example: A path C4 is a near equitably balanced graph. But a path P, is not near equitably balanced graph.

Remark: 2.5 Let G be a graph such that any near equitable dominating set of G is a near equitable pendant
dominating set. Then G is a near equitably balanced graph.

Theorem: 2.6 Let G be a near equitably balanced graph. Then D is a strong total near equitable dominating set of
G ifandonlyif D is total near equitable dominating set.

Proof: Let G be a near equitably balanced graph. Then for any near equitable dominating set D of G,
OdD ()= OdD (v) for all u,veD. Also, for every VeV —D there exists a vertex Ue D such that U is
adjacent to V and | od 5 (u)—odv 5 (v)|<£1. Since D is a total near equitable dominating set, for any U e D

there exists V€ D suchthat U isadjacentto V. Therefore D is a strong near equitable dominating set.

Theorem: 2.7 Let G be a near equitably balanced graph and let D be a near equitable dominating set of G . Then for
any w,w'eV —-D, |odV D(W)—odv D(W')|S2.

Proof: Let D be a near equitable dominating set of a near equitably balanced graph G . Suppose that W, W' are any two
vertices of V — D such that OdviD (w) < OdviD (w"). Since D is a near equitable dominating set of G , for any UeD,

Odv_D (w) <od . (u)< Odv_D (W) such that |od 5 (u)- OdV—D (W) [£1 and | OdD (u)- OdV—D (W) [<1. Therefore

| odvfD (w) —odvfD w)L2.

Agraph G is called K -regular if every vertex of G has degree K . A graph is said to be regular if it is K -regular for some
nonnegative integer K . Analogous to this definition we can define the near equitably regular graph as follows.

Definition: Let G be a near equitably balanced graph and let D be a near equitable dominating set of G . Then G is a near
equitably regular graph if foranyu,e Dand veV —D, od 5 ()= Odv 5 (v).

Example: A cycle C, is a near equitably regular graph.

Theorem: 2.8 Let G(Nn, m) be a near equitably regular graph, m>1 andlet D be a near equitable dominating set

of G such that the subgraph (V —D) induced by V —D is connected. Then V —D is a strong total near
equitable dominating set.

Proof: Let G(n,m) be a near equitably regular graph, m>1. Then for any stned- set D,
OdD (u)= OdD (v) = OdviD (w) = OdviD (W) >1 for all u,veD and for all w,w' eV —D . Therefore for

any ue D, od 5 (u) >1. Since the subgraph ¢V — D) induced by V — D is connected, it follows that V — D is

a strong total near equitable dominating set.

Definition: A near equitably regular graph with vertices of out degree K is called a K - near equitably regular graph or
near equitably regular graph of out degree K .

Theorem: 2.9 A K -regular graph isa K - near equitably regular graph if and only if it is a k-regular bipartite graph or
a totaly disconnected.
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Proof: Let G(n,m) bea K -regular graph. Then degG (u)=k forall ueV(G).Supposethat G isa K- near
equitably regular graph, it follows that od 5 (u) =od 5 (v) = Odv 5 (w)=k forall uyveD and weV -D.
Therefore both subgraphs (D) and (V —D) induced by D and V —D, respectively are totally disconnected.

Thus G is totaly disconnected for K =0 and k-regular bipartite graph for K >1. The converse is obvious.

Theorem: 2.10 Let G be a near equitably regular graph and let D be a total near equitable dominating set of G .
Then D is a strong total near equitable set.

Proof: Let G be a near equitably regular graph, Suppose that D is a total near equitable dominating set, then for any
veV there exists Ue D such that v is adjacent to U and OdD (u)= OdD (V) or OdD (u)= Odv 5 (v) .

Therefore D is a strong total near equitable set.

Definition: Let G be a graph and let D be a near equitable dominating set of G. Then G is a near equitably
bi-regular graph if forany u,ve D and weV -D, od 5 (u)= OdD (v) = Odv 5 (w)£1.

Proposition 2.11  Any complete graph K is a near equitably bi-regular graph.

Proposition: 2.12 Any near equitably bi-regular graph is a near equitably balanced graph.

Proposition: 2.13 Let G be a graph and let D be a near equitable pendant dominating set of G . Then for any
ueD and veV -D, odD(u)godva(v)SZ.

Theorem: 2.14 Let G be agraph and let D be a near equitable pendant dominating set of G . Then
(i) G isanear equitably regular graph if and only if OdviD (v)=1
(ii) G is anear equitably bi-regular graph if and only if Odv 5 (v)=2.

Theorem: 2.15 Let G beagraphandlet D be a near equitable dominating set of G such that the subgraphs (D)
and (V —D) inducedby D and V — D, respectively are a bipartite graph. Then forany ue D,

ZueDodD(u) =m.

Proof: Suppose that D is a near equitable dominating set of G such that the subgraphs (D) and (V — D) induced
by D and V — D, respectively are bipartite graphs, then OdD (u) = deg(u) and Odv 5 (v) =deg(v), for all

ueD and veV —D . Since szvdeg (W) =2m, we have ZueDOd 5 ()= %ZWevdeg (w)=m.

3. BOUNDS
In this section, we present sharp bounds for .. (G).

Theorem: 3.1 Let G be a connected graph of order N, N>4. Then Y stne (G) < n—L1. Further equality holds for
k

1n-

Proof: It is enough to show that for any minimum strong total near equitable dominatingset D of G, [V —D [>1.
Since G is a connected graph of order N, N> 4 it follows that 6(G)>1. Suppose |V —D |= 0, it follows that
| D|=n. Therefore G is totally disconnected, a contradiction.
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Theorem: 3.2 Let G(Nn,m) be a near equitably regular graph, m>1 andlet D be a near equitable dominating set
of G such that the subgraph (V — D) induced by V —D is connected. Then y..(G) < n—y(G). Further
equality holds for C,.

Proof: Let G be a near equitably regular graph. By Theorem 2.8, V — D is a strong total near equitable dominating
set. Therefore, 7..(G)<|V -D|<n—y(G).

4. MINIMAL STRONG TOTAL NEAR EQUITABLE DOMINATING SETS

We now proceed to obtain a characterization of minimal stned-sets.

Theorem: 4.1 Let D be a dominating set of a graph G . If D is a stned- set, then D is a minimal stned- set if and only if
one of the following holds:
1. D is minimal near equitable dominating set.

2. For any two adjacent vertices X,y e D, od 5 (x) >od 5 (y) and for any vertex Ve D deferent from X and
y, theset U, isnonempty, where U, ={X,y € D,od 5 (x)—od 5 (y)=1,and V isadjacentto X but not

adjacentto y}.

Proof: Suppose that D is a minimal strong total near equitable dominating set of G . Then foranyVv € D, D —{Vv}is not
strong total near equitable dominating set. If D is a minimal near equitable dominating set, then we are done. If not, then
forany ve D, let U, ={x,y e D,od 5 (x)—od 5 (y) =1, andVis adjacent to X but not adjacent to y}. There

exist X,y € D—{v} such that |od (x)—od (Y)>1. If both X,y are adjacent to V, then
D—{v} D—{v}

|od ot }(X) —-od (Y)|=|od 5 (x)—od 5 (Y)I£1, a contradiction. If both X, y are not adjacent to V, then
V

D—{v}

| od ot }(X) —-od (y)|=|od 5 (x)—od S (Y)|£1, a contradiction. So, V is adjacent to precisely one vertex of
\]

D—{v}
{X, y}. Without loss of generality, assume that V is adjacentto Xand V notadjacenttoy .

Then,
L<lod | (9-od_ (y)I=lod (x)+1-od (y)I<lod (x)-od_(y)]+1

So, |OdD(X)—0dD(y) |>0.But |0dD(X)—0dD(y) I<1.
So, |0dD(X)—0dD(y) |=1. Therefore OdD(X)—OdD(y) =1.Hence U, isnotempty.

Conversely, let D be a strong total near equitable dominating set. Suppose to the contrary D is not a minimal strong
total near equitable dominating set. Then forevery Ve D, D —{Vv} isa strong total near equitable dominating set. So,

D is not a minimal near dominating set, a contradiction. Next, suppose that D is a strong total near equitable
dominating set and (2) holds. Then forevery Ve D, U, isnotempty. So, forevery Ve D, thereexist X,y € D

suchthat V isadjacent to precisely one vertex of {X, y},and od 5 (x)—od 5 (y) =1. Suppose to the contrary D is

not a minimal strong total near equitable dominating set. Then for every Ve D, D —{v} is a strong total near

equitable dominating set. So, 1<| od . (x)—od oo (V)€1 and thus we have | od . (x) —od oot} (NI|=1.

Then Jod__ ()-od__ (y)I=lod ()-od_ ()} eitter £y} NW), or {6y} AN =g, a

contradiction.

5. ON CORONA OF GRAPHS

The corona GoH ofgraphs G and H is the graph obtained by taking one copy of G and |V (G)| copies of
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H , and then joining the ithvertex of G toevery vertexinthe ithcopyof H . Itiscustomary todenoteby H, that

copy of H whose vertices are adjoined with the vertex V of G . In effect, Go H is composed of the subgraphs

H, +V joined together by the edges of G . Moreover, V(GoH) = UVeV(G)\/ (H,+Vv).

Theorem: 5.1 Let G and H beanytwo graphsand let D be a near equitable dominating set of H such that for
any adjacent vertices Ue D and veV(H)-D, od 5 ()< Odv( o (v), D isnear equitable dominating set

of GoH.

H

Proof: Let D be anear equitable dominating set of H . Since for any adjacent vertices Ue€ D and veV (H)-D,
< i i oH)- - <
odD (u)< OdV(H)—D (V), we have for any adjacent vertices U € D and veV(GoH)-D, |od o (u) Od(GDH)_D (V) [<1.

Hence D is a near equitable dominating set of GoH .
Corollary: 5.2 InTheorem 5.1, if D isastned-setof H ,then D isa stned-setof GoH .

Theorem: 5.3 Let G and H be any two graphs such that G is a connected graph. Then V (G) is a stned- set of
GoH ifandonlyif H=nK,, n=12 or H =K,.

Proof: Let V(GeH)=(V,,V,), where V, =V (G) and V, =V (H). Suppose that V (G) is a stned- set of
GoH. Since V(GoH) =U LV (H, +V), it follows that for any ueV,, Odv (u)=1. since V(G) is a
Ve 1 2

stned- set of G o H , it follows that forany v eV,, OdV (v)<2.
1

Therefore |V (H)|<2.Hence H =nK;, n=1,2 or H =K,.

Conversely, suppose that H=nK,, n=1,2 or H =K, then forany veV,, OdV (V) <2 and forany U€V,,
1

Odv (u) =1. Therefore |OdV (v)—od (u)|<1. Since G is a connected graph, for any W eV, there exists
2 1 A
vV eV, such that |0dv (V)—Odv (W) [€1. Thus V (G) isastned-setof GoH.
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