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ABSTRACT

The objective of this paper is to obtain some common fixed point theorems for occasionally weakly compatible
mappings in intuitionistic fuzzy metric space satisfying generalized contractive condition of integral type.
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1. INTRODUCTION

The study of fixed point theorems, involving four single-valued maps, began with the assumption that all of the maps
are commuted. Sessa [15] weakened the condition of commutativity to that of pairwise weakly commuting. Jungck
generalized the notion of weak commutativity to that of pairwise compatible [3] and then pairwise weakly compatible
maps [4]. Jungck and Rhoades [6] introduced the concept of occasionally weakly compatible maps.

The concept of fuzzy set was developed extensively by many authors and used in various fields. Several authors have
defined fuzzy metric space ([7] etc.) with various methods to use this concept in analysis. Recently, Park et. al. [8]
defined the upgraded intuitionistic fuzzy metric space and Park et. al. ([9],[10],[12],[13]) studied several theories in this
space. Also, Park and Kim [11] proved common fixed point theorem for self maps in intuitionistic fuzzy metric space.
This paper presents some common fixed point theorems for more general commutative condition i.e. occasionally
weakly compatible mappings in intuitionistic fuzzy metric space of integral type.

2. PRELIMINARY NOTES

Definition: 2.1 [14]

A binary operation *: [0,1]x[0,1] —[0,1] is a continuous t — norm if * is satisfying conditions:
(i) = is commutative and associative;

(ii) = is continuous;

(iii) a*x1=aforallae [0,1];

(iv) a * b<c *d whenever a < Cand b<dandab,cde [0,1].

Definition: 2.2 [14]

A binary operation <:[0,1]x[0,1] —[0,1] is a continuous t — conorm if ¢ is satisfying conditions:
(i) < iscommutative and associative;

(ii) < is continuous;

(iii) a$ 0 =aforallae [0,1];

(iv) a$ b = c $ d whenever a < Cand b<dandab,cde [0,1].
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Definitions: 2.3 [8] A 5-tuple (X, M, N,*,$) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, « is
a continuous t-norm, < is a continuous t-conorm and M, N are fuzzy set on X? x (0, «) satisfying the following
conditions, forall x,y,z € X,s,t >0,

(i) Mx,yt)>0;

@iy M(x,y,t) =1 ifandonlyif x = y;

(i) M(x,y,t) = M(y,x,t);

(iv) M(x,y,t)*M(y,z,5) < M(x,z,t +5);

(v) M(x,y,):(0,00) — (0,1] is continuous;

(vi) N(x,y,t)>0;

(vii) N(x,y,t) =0ifandonly if x = y;

(viii) N(x,y,t) = N(y,x,t);

(iX) N,y t)$N@,zs)=N(xzt+s);

(X)  N(x,y,):(0,00) — (0,1] is continuous.

Note that (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the degree
of nearness and the degree of non nearness between x and y with respect to ¢, respectively.

Lemma: 2.4 Let (X,M,N,x<$) be an intuitionistic fuzzy metric space. If there exists g € (0,1) such that
M(x,y,qt) = M(x,y,t)and N(x,y,qt) < N(x,y,t) forall x,y € X andt > 0, thenx = y.

Definition: 2.5 [1] Let X be a set, f, g self maps of X. A point x in X is called a coincidence point of f and g iff
fx = gx.Weshallcallw = fx = gx apointof coincidence of f and g.

Definition: 2.6 [5] A pair of maps S and T is called weakly compatible pair if they commute at coincidence points.

Definition: 2.7[1] Two self maps f and g of a set X are occasionally weakly compatible (owc) iff there is a point x in
X which is a coincidence point of f and g at which f and g commute.

Al-Thagafi and Naseer Shahzad [2] shown that occasionally weakly is weakly compatible but converse is not true.

Definition: 2.8 [2] Let R be the usual metric space. Define S,T: R—>R by Sx = 2x and Tx = x? forall x € R. Then

Sx = Tx for x = 0,2 butSTO =TS0, and ST2 #TS2. Hence S & T are occasionally weakly compatible self
maps but not weakly compatible.

Lemma: 2.9 [4] Let X be a set, f,g owc self maps of X. If fand g have a unique point of coincidence,
w = fx = gx, then w is the unique common fixed point of f and g.

3. MAIN RESULTS

In this section, we establish several common fixed point theorems for self maps on intuitionistic fuzzy metric space.
Define @:RT™ — R is a Lebesgue-integrable mapping which is summable, nonnegative satisfies fO'S(p(t)dt for
each € > 0.

Theorem: 3.1 Let (X, M, N,*,<) be an intuitionistic fuzzy metric space and 4, B, S and T be the self-mappings of X and
let the pairs {4, S} and {B, T} be owc. If there exists g  (0,1) such that

M (Ax,By qt) a1 M(Sx,Ty,t) +ay; M(Ax,Ty,t) + az3 M(By,Sx,t)
Jo pt)dt = [ ’ ? p(t) dt 1)
and

N(Ax,By,qt) ay N(Sx,Ty,t) +as N(Ax,Ty,t)+ag N(By,Sx,t)
Jo p®)ydt< [ ) ¢ p(t) dt @)

for all x,ye X, where aq,a;, a3, a4, as, g are such that (a; + a, + @3) > 1and (a, + as + @) < 0. Then there
exist a unique point weX such that Aw = Sw = w and a unique point zeX such thatBz =Tz = z.
Moreoverz = w, so that there is a unique common fixed point of A,B,Sand T.

Proof: Let the pairs {4, S} and {B, T} be owc, so there are points x,y X such that Ax = Sx and By = Ty. We claim
that Ax = By. If not, by inequality (1) and (2)

M (Ax,By ,qt) a1 M(Sx,Ty,t) +ay; M(Ax,Ty,t) + az3 M(By,Sx,t)
f @) dt = f @(t) dt
0 0
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a1 M(Ax,By,t) +a, M(Ax,By,t)+ a3 M(By,Ax,t)
f p(t)dt
0

(a1+az+a3)M(Ax,By,t)
| POt
0

and

N(Ax,By,qt) ay N(Sx,Ty,t) +as N(Ax,Ty,t) +ag N(By,Sx,t)
J- p(t)dt < f e(t) dt
0 0

= J; N(xByt) +as N(axBy.t) +as NByAD 0y g

(ag+as+ag)N(Ax,By,t)
f @(t)dt
0

a contradiction, since (a; + a, + a3) > 1and (a4 + a5 + ag) < 0. And by Lemma 2. 4 Ax = By, ie. Ax = Sx =
By = Ty. Suppose that there is an another point z such that Az = Sz then by (1) and (2) we have Az = Sz =
By = Ty,s0 Ax = Azand w = Ax = Sx is the unique point of coincidence of A and S. By Lemma 2.9 w is the
only fixed point of A and S i.e. w = Aw = Sw. Similarly there is a unique point zeX suchthatz = Bz = Tz.

Assume that w # z.We have

M(w,z,qt) M(Aw,Bz,qt)
[ ewa=| o (0) dt
0 0

a1 M(Sw,Tz,t) +a; M(Aw,Tz,t) + a3 M(Bz,Sw,t)
> [ : : o(0) dt

_ fa1 Mw,z,t) +ap M(w,zt)+a3 M(zw,t)
—Jo

e(t) dt
_ fo(a1+az+a3)M(w,z,t) (p(t)dt

and

fON(w,z,qt)(p(t) dt = fON(Aw,Bz,qt)(p(t) dt

ag N(Sw,Tz,t) +as N(Aw,Tz,t) +ag N(Bz,Sw,t)
< o ; : p(0) dt

_ fa4 Nw,zt)+as Nw,zt)+ag N(zw,t)
—Jo

p(t) dt
_ fo(a4+a5+a6)N(w,z,t) (p(t)dt

a contradiction, since (a; + a, + a3) > 1and (a; + a5 + @) < 0. And by Lemma 2.9 z = w is the unique common
fixed point of A, B, S and T. The uniqueness of the fixed point holds from (1) and (2).

Theorem: 3.2 Let (X, M, N,*,<) be an intuitionistic fuzzy metric space and 4, B, S and T be the self-mappings of X. Let
the pairs {4, S} and {B, T} be owc. If there exists g € (0,1) such that

fOM (Ax,By,qt) (p(t) dt > fomin {M(Sx,Ty,t),M(Ax,Sx,t),M(Ty,Ax,t),M (By, Ty t),M(By,Sx,t)} ® (t) dt (3)
and
fON(Ax,By,qt) (p(t) dt < fomax {N(Sx,Ty,t),N(Ax,Sx,t),N(Ty,Ax,t),N(By,Ty,t),N(By,Sx,t)} (p(t) dt (4)

for all x,y e X. Then there exist a unique point we X such that Aw = Sw = w and a unique point zeX such that
Bz = Tz = z.Moreover, z = w, so that there is a unique common fixed point of A,B,S and T.
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Proof: Let the pairs {4, S} and {B, T} be owc, so there are points x,y €X such that Ax = Sx and By = Ty. We claim
that Ax = By. If not, by inequality (3) and (4)

M (Ax,By ,qt) min {M(Sx,Ty,t),M (Ax,Sx,t),M (Ty ,Ax,t),M(By,Ty,t),M(By,Sx,t)}
f @(t) dt zf o(t) dt
0 0

min {M(Ax,By ,t),M(Ax,Ax,t),M (By,Ax,t),M(By,By,t),M(By,Ax,t)}
=N p®) dt

min {M (Ax,By,t),1,M(By ,Ax,t),1,M(By,Ax,t)}
> [, @(t) dt

> fOM (Ax,By,t) (p(t) dt
and
N (Ax,By,qt) max { N(Sx,Ty,t),N(Ax,Sx,t),N(Ty,Ax,t),N(By,Ty,t),N(By,Sx,t)}
f p(t) dt Sf @(t) dt
0

0

max { N(4x,By,t),N(Ax,Ax,t),N(By,Ax,t),N(By,By,t),N(By ,Ax,t)}
< o(t) dt

max { N(4x,By,t),0,N(By,Ax,t),0,N(By,Ax,t)}
<l o(t) dt

N(Ax,By,
< [ o) de

a contradiction , and by Lemma 2.4 Ax = By, i.e. Ax = Sx = By = Tvy. Suppose that there is an another point z
such that Az = Sz then by (3) and (4) we have Az = Sz = By = Ty, s0 Ax = Az and w = Ax = Sx s the
unique point of coincidence of A and S. By Lemma 2.9 w is the only fixed point of A and S i.e. w = Aw = Sw.
Similarly there is a unique point zeX suchthat z = Bz = Tz.

Assume thatw # z.We have

M(w,z,qt) M(Aw,Bz,qt)
[ ewa=| o (o) dt
0 0

min {M(Sw,Tz,t),M(Aw,Sw,t),M(Tz,Aw,t),M(Bz,Tz,t),M(Bz,Sw,t)}
=, o(t) dt

in {M(w,z,6),M(w,w,0),M(zw,t),M(zzt)M(zw,.t)}
2fomm w,z w,w z,w 7,2 z,w (p(f) dt

> [rinMOzOLMEOIMELO) ) 4y gy
> fy " (o) de

and

N(w,z,qt) N(Aw,Bz,qt)
[ ewa=| o(0) dt
0 0

max {N(Sw,Tz,t),N(Aw,Sw,t),N(Tz,Aw ,t),N(Bz,Tz,t),N(Bz,Sw,t)}

<J p(t) dt
max {N(w,z,t),N(w,w,t),N(zw,t)N(zz.t)N(zw,t)}

<J o(t) dt

N(w,z,t),1,N(zw,t),1,N(zw,t)}
Sfomax{ w,z zZ,w zZ,w (p(t) dt

< fON(W’Z’” o(t) dt

a contradiction. And by Lemma 2.9 z = w is the unique common fixed point of 4, B,S and T. The uniqueness of the
fixed point holds from (3) and (4).
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Theorem: 3.3 Let (X, M, N,,<) be an intuitionistic fuzzy metric space and 4, B, S and T be the self-mappings of X. Let
the pairs {4, S} and {B, T} be owc. If there exists q € (0,1) such that

fOM (Ax,By,qt) (p(t) dt > foot min {M (Sx,Ty,t),M(Sx,Ax,t)}+p min {M(By,Ty,t),M(Ax,Ty t)}+yM (By,Sx,t) ® (t) dt (5)
and

N(Ax,By,qt) 1 max {N (Sx,Ty,t),N(Sx,Ax,t)}+9 max {N(By,Ty,t),M(Ax,Ty,t)}+0N (By,Sx,t)
Jo p®)d < [ o(t) dt (6)

for all x,ye X, where (@ + B +vy) > 1and (u+9 + d) < 0. Then there exist a unique point w X such that Aw =
Sw = w and a unique point ze X suchthatBz = Tz = z. Moreover, z = w, so that there is a unique common
fixed point of A,B,Sand T.

Proof: Let the pairs {4,S} and {B,T} be owc, so there are points x,y X such that Ax = Sx and By = Ty. We
claimthat Ax = By. If not, by inequality (5) and (6)

M (Ax,By ,qt) amin {M(Sx,Ty,t),M(Sx,Ax,t)}+B min {M(By,Ty,t),M(Ax,Ty,t)}+yM (By ,Sx,t)}
f () dt = f @(t) dt
0 0

_ foot min {M (Ax,By ,t),M (Ax,Ax,t)}+B min {M (By,By,t),M(Ax,By t)}+yM (By ,Ax,t)} (p(t) dt

_ fo“ min {M (Ax By t),1}+f min {1,M (Ax By ,t)}+yM (Ax By t)} o(t) dt

_ fo(u+B+y)M(Ax,By,t) (p(t) dt

> fOM(Ax,By,t) (p(t)dt
and

N (Ax,By,qt) u max {N(Sx,Ty,t),N(Sx,Ax,t)}+9 max {N(By,Ty,t),M(Ax,Ty,t)}+3dN (By,Sx,t)
f p(t)dt Sf o(t) dt
0 0

e Ny N e A0 max N8y By ONAx By OWONBY A} 1y gy

wmax {N (Ax,By,t),1}+9 max {1,N (4x,By,t)}+0N (Ax,By,t)}
=h o) dt

_ fo(u+ﬂ+6)N (Ax,By,t) (p(t) dt
< fON(Ax,By,t) (p(t)dt

a contradiction, since (¢ +f+y)>1land(u+9+9)<0. And by Lemma 2.4 Ax = By,i.e. Ax = Sx =
By = Ty.Suppose that there is another point z such that Az = Sz then by (5) and (6) we have Az = Sz = By =

Ty, so Ax = Azand w = Ax = Sx is the unique point of coincidence of A and S. By Lemma 2.9 w is the only
fixed pointof Aand Si.e. w = Aw = Sw. Similarly there is a unique point ze X suchthatz = Bz = Tz.
Assume that w # z. We have

M(w,z,qt) M (Aw ,Bz,qt) amin {M(Sw,Tz,t),M(Sw,Az,t)}+p min {M(Bz,Tz,t),M(Aw,Tz,t)}+yM (Bz,Sw,t)}
f p(t)dt =f e(t) dt 2f p(t) dt
0 0 0

_ foamin {M(w,z,t),1}+B min {1,M(w,z,t)}+yM (w,z,t)} (p(t) dt

_ f(a+B+y)M(w,z,t)(p(t) dt

0

> [ g(t)at
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and
N(Ax,By,qt) u max {N(Sw,Tz,t),N(Sw,Aw,t)}+9 max {N (Bz,Tz,t),M(Aw,Tz,t)}+0N (Bz,Sw,t)
f p(t)dt < f @(t) dt
0

0

pmax {N (w,z,t),1}+9 max {1,N(w,z,t)}+dN (w,z,t)}
= o(t) dt

_ fo(u+ﬂ+6)N(w,z,t) (p(t) dt

< fON(W'Z't) p(D)dt

a contradiction, since (a + 3+ }/) >land(u+9+09)<0. And by Lemma 2.9 z = w. Also by Lemma 2.9

z = w is the unique common fixed point of 4, B, S and T. Therefore the uniqueness of the fixed point holds from (5)
and (6).

Theorem: 3.4 Let (X, M, N,*,<) be an intuitionistic fuzzy metric space and 4, B, S and T be the self-mappings of X. Let
the pairs {4, S} and {B, T} be owc. If there exists g € (0,1) such that

M (Ax,By qt) E(M (Sx,Ty,t),M(Sx,Ax,t),M(By,Ty,t),M(Ax,Ty,t),M(By,Sx,t)}
Jo p(t)dt = p(t) dt 7
and

N (Ax,By qt) y{N(Sx,Ty,t),N(Sx,Ax,t),N(By,Ty,t),N(Ax,Ty,t),N(By,Sx,t)}
Jo pt)dt < p(t) dt (8)

forall x,ye X, and £:[0,1]°> — [0,1] and ¥:[0,1]°> — [0,1] such that £(t,1,1,¢,t) >t and ¥(t,0,0,t,t) < t for all
0 < t < 1. Then there exist a unique point weX such that Aw = Sw = w and a unique point ze X such that
Bz = Tz = z.Moreover, z = w, s0 that there is a unique common fixed point of 4, B,S and T.

Theorem: 3.5 Let (X, M, N,*,$) be an intuitionistic fuzzy metric space and A, B, S and T be the self-mappings of X.
Let the pairs {4, S} and {B, T} be owc. If there exists g € (0,1) such that

fOM(Ax,By,qt)(p(t) it > foé{M(SX,Ty,r),M(Ax,Ty,r),M(By,sx,r)}(p(t) dt 9)
and
fON(Ax,By,qt)(p(t) dt < fow{N(Sx.Ty.t).N(Ax,Ty,t).N(By,Sx,t)}(p(t) dt (10)

for all x, yeX, and &:[0,1]® — [0,1] and ¥:[0,1]®> — [0,1] such that &(t,t,t) >t and P(t, t,t) <t for all
0 <t < 1. Then there exist a unique point weX such that Aw = Sw = w and a unique point zeX such that
Bz = Tz = z.Moreover, z = w, so that there is a unique common fixed point of 4, B, S and T.

Theorem: 3.6 Let (X, M, N,*,<) be an intuitionistic fuzzy metric space and 4, B, S and T be the self-mappings of X. Let
the pairs {4, S} and {B, T} be owc. If there exists q € (0,1) such that

fOM (Ax,By,qt) (p(t) dt > foimin {M(Sx,Ty,t),M(Sx,Ax,t )M (By,Ty,t),M(Ax,Ty,t),M(By,Sx,t)} (p(t) dt (11)
and
fON(Ax,By,qt) ® (t) dt < fo\umax {N(Sx,Ty,t),N(Sx,Ax,t),N(By,Ty,t)N(Ax,Ty,t),N(By,Sx,t)} (p(t) dt (12)

forall x,ye X, and ¢:[0,1] — [0,1] and ¥:[0,1] — [0,1] such that é(t) > t and Y(t) < tforall 0 <t < 1. Then
there exist a unique point we X such that Aw = Sw = w and aunique point zeX suchthat Bz = Tz = z.
Moreover, z = w, so that there is a unique common fixed point of A,B,S and T.

Theorem: 3.7 Let (X, M, N,*,$) be an intuitionistic fuzzy metric space and 4, B, S and T be the self-mappings of X and
let the pairs {4, S} and {B, T} be owc. If there exists q € (0,1) such that

AP g dt = [ o0) de (13)
and

0 oy de < [ o) dt (14)
for all x,ye X. Then there exist a unique point we X such that Aw = Sw = w and a unique point ze X such

that Bz = Tz = z.Moreover,z = w, so that there is a unique common fixed point of A,B,S and T.
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