International Journal of Mathematical Archive-2(5), May - 2011, Page: 681-687

Available online through **www.ijma.info ISSN 2229 - 5046**

b-OPEN SETS AND t-OPEN SETS IN BITOPOLOGICAL SPACES

*P. Thangavelu and G. Thamizharasi

Department of Mathematics, Aditanar College, Tiruchendur-628216, India

Department of Mathematics, RMD Engineering College, Chennai-601206, India

*E-mail: ptvelu12@gmail.com, pthangavelu 2004@yahoo.co.in

(Received on: 10-04-11; Accepted on: 17-04-11)

ABSTRACT

The purpose of this paper is to characterize b-open sets in bitopological spaces. The concepts of b_t -open sets and t-open sets are also introduced in bitopological spaces and they are studied with existing concepts in bitopological spaces.

Keywords: Bitopology, b-open sets, t-open sets, p-set, q-set etc.

MSC 2010: 54E55.

1. introduction and preliminaries:

Abo Khadra and Nasef [1] discussed b-open sets in bitopological spaces. In this paper we further characterize b-open sets in bitopological spaces. We also introduce the notions of b_t -open sets and t-open sets in bitopological spaces and investigate their basic properties. Throughout this paper (X, τ_1, τ_2) denotes a bitopological space, i, j=1, 2 and $i \neq j$. Let A be a subset of X. We use the following notations.

- (i) i-clA = the closure of A with respect to the topology τ_i
- (ii) *i-int*A = the interior of A with respect to the topology τ_i .
- (iii) A is open with respect to τ_i if and only if A is *i*-open in (X, τ_1, τ_2) .
- (iv) A is closed with respect to τ_i if and only if A is *i*-closed in (X, τ_1, τ_2) .

Definition: 1.1

A is called

- (i) *ij*-semi-open in (X, τ_1, τ_2) if there exists an *i*-open set U with $U \subseteq A \subseteq j$ -clU, [8]
- (ii) ij-pre-open in(X, τ_1 , τ_2) if there exists an i-open set U with $A \subseteq U \subseteq j$ -clA, [7]
- (iii) *ij*-b-open in (X, τ_1, τ_2) if $A \subseteq j\text{-}cl(i\text{-}intA) \cup i\text{-}int(j\text{-}clA), [1]$
- (iv) an *i*-p-set if i-cl(i-intA) $\subseteq i$ -int(i-clA), [11]
- (v) an *ij*-p-set if $i-cl(j-intA) \subseteq i-int(j-clA)$, [6]
- (vi) a contra *ij*-p-set in (X, τ_1, τ_2) if i-cl(j- $intA) \subseteq j$ -int(i-clA), [13]

*Corresponding author: *P. Thangavelu, *E-mail: ptvelu12@gmail.com

(vii) an *i*-q-set if *i*-int(i-clA) \subseteq i-cl(i-intA), [12]

(viii) an *ij*-q-set if *i-int*(*j-clA*) \subseteq *i-cl*(*j-intA*), [13]

(ix) a pair wise contra p-set in (X, τ_1, τ_2) if it is a contra 12-p-set and a contra 21-p-set, [13]

(x) a contra *ij*-q-set in (X, τ_1, τ_2) if *i-int(j-clA)* \subseteq *j-cl(i-intA)*, [13]

(xi) a pair wise contra q-set in (X, τ_1, τ_2) if it is a contra 12-q-set and a contra 21-q-set. [13]

The complement of an *ij*-b-open set is *ij*-b-closed. Also *ij*-semi-closed and *ij*-pre-closed sets can be analogously defined. The results in the following lemma follow immediately from the definitions.

Lemma: 1.2

Let A be a subset of (X, τ_1, τ_2) . Then A is

(a) *ij*-semi-open if and only if $A \subseteq j$ -cl (*i*-intA),

(b) *ij*-pre-open if and only if $A \subseteq i - int(j-clA)$,

(c) *ij*-b-closed if and only if j-int(i-clA) $\cap i$ -cl(j-intA) $\subseteq A$.

The concepts of *i-sint* A, *i-pint*A, *ij-sint*A, *ij-scl*A and *ij-pcl*A can be defined in a usual way.

Lemma: 1.3

Let A be a subset of (X, τ_1, τ_2) . Then

(i) *i-sint* $A = A \cap i-cl(i-int A)$, (ii) *i-pint* $A = A \cap i-int(i-clA)$. [2]

Lemma: 1.4

Let A be a subset of (X, τ_1, τ_2) . Then

(i) ij- $sintA = A \cap j$ -cl(i-intA), (ii) ij- $sclA = A \cup j$ -int(i-clA). [10]

Definition: 1.5

Let (X, τ) be a topological space. Let A and B be any two subsets of X. We say that (i) A is near to B in (X, τ) if intA = intB and (ii) A is closer to B in (X, τ) if clA = clB. [9]

Lemma: 1.6

If A is closer to A \cap *i-int*(*j-cl*A) in (X, τ_i) then A \cap *i-int*(*j-cl*A) = *ij-pint*A. [9]

Lemma: 1.7

If A is near to A \cup *i-cl*(*j-int*A) in (X, τ_j) then A \cup *i-cl*(*j-int*A)= *ij-pcl*A. [9]

Definition: 1.8

Let (X, τ_1, τ_2) be a bitopological space. Then

(i) τ_1 is coupled to τ_2 if $1-clU \subseteq 2-clU$ for every $U \in \tau_1$, [14]

(ii) τ_1 is near τ_2 if $1-clU \subseteq 2-clU$ for every $U \in \tau_2$. [4,5]

Lemma: 1.9

In a bitopological space (X, τ_1, τ_2) , the following are equivalent.

(i) τ_1 is coupled to τ_2 .

(ii) 2-intA \subseteq 1-intA for every 1-closed set A in (X, τ_1, τ_2) ,

- (iii) $1-cl(1-intA) \subseteq 2-cl(1-intA)$ for every subset A of X,
- (iv) 2-int(1-clA) \subseteq 1-int(1-clA) for every subset A of X. [13]

Lemma: 1.10

In a bitopological space (X, τ_1, τ_2) , the following are equivalent.

- (i) τ_1 is near τ_2 .
- (ii) 2-intA \subseteq 1-intA for every 2-closed set A in (X, τ_1, τ_2) ,
- (iii) $1-cl(2-intA) \subseteq 2-cl(2-intA)$ for every subset A of X,
- (iv) 2-int(2-clA) \subseteq 1-int(2-clA) for every subset A of X. [13]

Lemma: 1.11

Let B be a subset of (X, τ_1, τ_2) . Then B is a contra ij-q-set in (X, τ_1, τ_2) if and only if X\B is a contra ji-q-set in (X, τ_1, τ_2) .

Lemma: 1.12

If A is a contra *ij*-p-set and an *ij*-q- set then i-int(j-clA) $\subseteq j$ -int(i-clA). [13]

Lemma: 1.13.

If A is both an *ij*-p-set and a contra *ji*-q-set then j-int(i-clA) $\subseteq i$ -int(j-clA). [13]

2. ij-b-open sets:

Andrijevic [3] introduced the concept of b-open sets in unital topological spaces and Abo Khadra and Nasef [1] extended this notion to bitopological spaces. In this section we characterize *ij*-b-open sets using contra *ij*-p-sets, contra *ij*-q-sets and the corresponding pair wise sets. The concept of pair wise b-open sets is also introduced and studied in this section.

Proposition: 2.1

Let A be *ij*-b-open and a contra *ji*-p-set in (X, τ_1, τ_2) . Then it is *ij*-pre-open.

Proof: Since A is *ij*-b-open in (X, τ_1, τ_2) , by Definition 1.1(iii), $A \subseteq j\text{-}cl(i\text{-}intA) \cup i\text{-}int(j\text{-}clA)$. Since A is a contra *ji*-p-set, using Definition 1.1(vi), $j\text{-}cl(i\text{-}intA) \subseteq i\text{-}int(j\text{-}clA)$. This implies that $A \subseteq i\text{-}int(j\text{-}clA)$ so that A is ij-pre-open.

Corollary: 2.2

If A is *ij*-b-closed and a contra *ij*-p-set in (X, τ_1, τ_2) then it is *ij*-pre-closed.

Proof: Suppose A is ij-b-closed and a contra ij-p-set in (X, τ_1, τ_2) . Then X\A is ij-b-open and is a contra ji-p-set. Then using Proposition 2.1, X\A is ij-pre-open that implies A is ij-pre-closed.

Corollary: 2.3

If A is *ij*-b-clopen and a pair wise contra p-set in (X, τ_1, τ_2) then it is *ij*-pre-clopen.

Proof: Follows from Proposition 2.1 and Corollary 2.2.

Proposition: 2.4

If A is *ij*-b-open and a contra *ij*-q-set in (X, τ_1, τ_2) then it is a *ij*-semi-open set.

Proof: Since A is *ij*-b-open in (X, τ_1, τ_2) , by Definition 1.1(iii), $A \subseteq j\text{-}cl(i\text{-}intA) \cup i\text{-}int(j\text{-}clA)$. Since A is a contra *ij*-q-set, by Definition 1.1(x), $i\text{-}int(j\text{-}clA) \subseteq j\text{-}cl(i\text{-}intA)$. This implies that $A \subseteq j\text{-}cl(i\text{-}intA)$. Therefore A is *ij*-semi-open.

Corollary: 2.5

If A is *ij*-b-closed and a contra *ji*-q-set in (X, τ_1, τ_2) then it is a *ij*-semi-closed.

Proof: Follows from Proposition 2.4 and Lemma 1.11.

Corollary: 2.6

If A is *ij*-b-clopen and a pair wise contra-q-set in (X, τ_1, τ_2) then it is a *ij*-semi-clopen.

Proof: Follows from Proposition 2.4 and Corollary 2.5.

Proposition: 2.7

If A is ij-b-open in (X, τ_1, τ_2) and A is closer to $A \cap i$ -int(j-clA) in (X, τ_j) then A = ij-sint $A \cup ij$ -pintA.

Proof: Suppose A is *ij*-b-open in (X, τ_1, τ_2) . Then $A \subseteq j\text{-}cl(i\text{-}intA) \cup i\text{-}int(j\text{-}clA)$ so that $A = A \cap (j\text{-}cl(i\text{-}intA) \cup i\text{-}int(j\text{-}clA))$.

Then by using Proposition 1.4 (i) and lemma 1.6 we see that $A = ij\text{-}sintA \cup ij\text{-}pintA$,

Proposition: 2.8

If A is *ij*-b-closed in (X, τ_1, τ_2) and A is near to $A \cup i\text{-}cl(j\text{-}intA)$ in (X, τ_i) then $A = ij\text{-}sclA \cap ij\text{-}pclA$.

Proof: Suppose A is *ij*-b-closed in (X, τ_1, τ_2) . Then j-int(i- $clA) \cap i$ -cl(j-intA) $\subseteq A$. Therefore $A = A \cup (j$ -int(i- $clA) \cap i$ -cl(j-intA)) = $(A \cup j$ -int(i- $clA)) \cap (A \cup i$ -cl(j-intA)). Then by using Lemma 1.4(ii) and Lemma 1.7 we have A = ij- $sclA \cup ij$ -pclA,

Definition: 2.9

A subset B of a bitopological space (X, τ_1, τ_2) is called pair wise b-open in (X, τ_1, τ_2) if B is 12-b-open and 21-b-open.

The next proposition and the subsequent corollaries follow respectively from Proposition 2.4, Corollary 2.5 and Corollary 2.6.

Proposition: 2.10

If A is pair wise b-open and a pair wise contra q-set in (X, τ_1, τ_2) then it is pair wise semi-open.

Corollary: 2.11

If A is pair wise b-closed and a pair wise contra q-set in (X, τ_1, τ_2) then it is pair wise semi-closed.

Corollary: 2.12

If A is pair wise b-clopen and a pair wise contra-q-set in (X, τ_1, τ_2) then it is pair wise semi-clopen.

3. ij-b_t-open sets:

In this section the concepts of b_t -open sets and pair wise b_t -open sets in bitopological spaces are introduced and their properties are investigated.

Definition: 3.1

A subset B of a bitopological space (X, τ_1, τ_2) is called ij-b_t-open in (X, τ_1, τ_2) if B $\subseteq j$ -cl(i-intB) $\cup j$ -int(i-clB). The next proposition follows from Lemma 1.2 and Definition 3.1.

Proposition: 3.2

- (i) Every *ij*-semi-open set is *ij*-b_t-open.
- (ii) Every *ji*-pre-open set is *ij*-b_t-open.

The next lemma can be easily proved.

Lemma: 3.3

 $B \subseteq j\text{-}cl(i\text{-}intB) \cup j\text{-}int(i\text{-}clB)$ if and only if $j\text{-}cl(i\text{-}int(X\backslash B)) \cap j\text{-}int(i\text{-}cl(X\backslash B)) \subseteq X\backslash B$.

Proposition: 3.4

If A is a ji-q-set and ij-b_t-open then it is ij-semi-open.

Proof: Suppose A is a ji-q-set and ij-b_t-open. Then by Definition 1.1(viii) and by Definition 3.1, we get j-int(i-clA) $\subseteq j$ -cl(i-intA) and A $\subseteq j$ -cl(i-intA) $\cup j$ -int(i-clA). This implies that A $\subseteq j$ -cl(i-intA). Therefore A is ij-semi-open.

Proposition: 3.5

If A is a ji-p-set and ij-b_t-open then it is ji-pre-open.

Proof: Suppose A is a ji-p-set and ij-b_t-open. Then by Definition 1.1(v) and by Definition 3.1, we get j-int(i-clA) $\supseteq j$ -cl(i-intA) and $A \subseteq j$ -cl(i-intA) $\cup j$ -int(i-clA). This implies that $A \subseteq j$ -int(i-clA). Therefore A is ji-pre-open

Proposition: 3.6

Let B be ij-b_t-open in (X, τ_1, τ_2) and let B be closer to $B \cap j$ -int(i-clB) in (X, τ_i) . Then B = ij-sint $B \cup ji$ -pintB.

Proof: B = B \cap (*j-cl*(*i-int*B) \cup *j-int*(*i-cl*B)) = (B \cap *j-cl*(*i-int*B)) \cup (B \cap *j-int*(*i-cl*B)). Then by using Lemma 1.4(i) and Lemma 1.6 we see that B= *ij-sint*B \cup *ji-pint*B,

Proposition: 3.7

Suppose A is *ij*-b-open, a contra *ij*-p-set and an *ij*-q-set. Then A is *ij*-b_t-open.

Proof: Since A is *ij*-b-open, by Definition 1.1(iii), $A \subseteq j\text{-}cl(i\text{-}intA) \cup i\text{-}int(j\text{-}clA)$. Since A is a contra *ij*-p-set and an *ij*-q-set, by Lemma 1.12, $i\text{-}int(j\text{-}clA) \subseteq j\text{-}int(i\text{-}clA)$ that gives $A \subseteq j\text{-}cl(i\text{-}intA) \cup j\text{-}int(i\text{-}clA)$.

Then by Definition 3.1, A is ij-b_t-open.

Proposition: 3.8

Suppose A is *ji*-b-open, an *ij*-p-set and a contra *ji*-q-set. Then A is *ji*-b_t-open.

Proof: Since A is ji-b-open, by Definition 1.1(iii), A $\subseteq i$ -cl(j- $int(A) \cup j$ -int(i-cl(A). Since A is an ij-p-set and a contra ji-q-set, by Lemma 1.13. j-int(i- $cl(A) \subseteq i$ -int(j-cl(A) that gives A $\subseteq i$ -cl(j- $int(A) \cup i$ -int(j-cl(A).

Then by Definition 3.1, A is ji-b_t-open.

The complement of an ij-b_t-open set is ij-b_t-closed. It follows from Lemma 3.3 that B is ij-b_t-closed if and only if the relation j-cl(i-intB) \cap j-int(i-clB) \subseteq B holds. The next proposition follows from Proposition 3.2, Proposition 3.4 and Proposition 3.5.

Proposition: 3.9

- (i) Every *ij*-semi-closed set is *ij*-b_t-closed.
- (ii) Every *ji*-pre-closed set is *ij*-b_t-closed.
- (iii) If A is a *ji*-q-set and *ij*-b_t-closed then it is *ij*-semi-closed.
- (iv) If A is a ji-p-set and ij-b_t-closed then it is ji-pre-closed.

Proposition: 3.10

Suppose B is ij-b₁-closed, ij-semi-open and ji-pre-open in (X, τ_1, τ_2) . Then B = j-cl(i- $intB) \cap j$ -int(i-clB).

Proof: Since B is ij-b_t-closed, j-cl(i-intB) \cap j-int(i-clB) \subseteq B. Therefore B = B \cup (j-cl(i-intB) \cap j-int(i-clB)) = $(B \cup j$ -cl(i-intB)) \cap $(B \cup j$ -int(i-clB)) = j-cl(i-intB) \cap j-int(i-clB), using Lemma 1.2 (a) and Lemma 1.2(b).

Definition: 3.11

A subset B of a bitopological space (X, τ_1, τ_2) is called pair wise b_t -open in (X, τ_1, τ_2) if B is 12- b_t -open and 21- b_t -open.

The following proposition follows from Proposition 3.2 and Proposition 3.4.

Proposition: 3.12

- (i) Every pair wise semi-open set is pair wise b_t-open.
- (ii) Every pair wise pre-open set is pair wise b_t-open.
- (iii) If A is a pair wise q-set and pair wise b_t-open then it is pair wise semi-open.

Proposition: 3.13

If A is a pair wise p-set and pair wise b_t-open then it is pair wise pre-open.

Proof: Suppose A is a pair wise p-set and pair wise b_t-open set.

Since A is a ji-p-set and an ij-b_t-open set, by Proposition 3.5, A is ji-pre-open. Since A is an ij-p-set and a ji-b_t-open set, again by Proposition 3.5, A is ij-pre-open. Therefore A is pair wise pre-open.

4. *ij*-t-open sets:

In this section the notion of *ij*-t-open sets is introduced in bitopological spaces and their relationships with p-sets, q-sets, b-open sets, semi-open sets and pre-open sets are studied.

Definition: 4.1

A subset A of a bitopological space (X, τ_1, τ_2) is called *ij*-t-open if $A \subseteq i\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA)$.

Proposition: 4.2

If A is an *ij*-t-open set then A is a union of an *i*-semi-open set and a *j*-pre-open set.

Proof: Suppose A is an *ij*-t-open set. Then by Definition 4.1, $A \subseteq i\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA)$.

Therefore $A = A \cap (i\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA)) = (A \cap i\text{-}cl(i\text{-}intA)) \cup (A \cap j\text{-}int(j\text{-}clA) = i\text{-}sintA \cup j\text{-}pintA$, by Lemma 1.3(i) and Lemma 1.3(ii).

Proposition: 4.3

- (i) Every *i*-semi-open set is *ij*-t-open,
- (ii) Every *j*-pre-open set is *ij*-t-open.

Proof: Let A be *i*-semi-open. Then $A \subseteq i\text{-}cl(i\text{-}intA)$. Therefore $A \subseteq i\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA)$. Then by Definition 4.1, A is ij-t-open. Now let A be j-pre-open. Then $A \subseteq j\text{-}int(j\text{-}clA)$. Therefore $A \subseteq i\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA)$. Then by Definition 4.1, A is ij-t-open.

Proposition: 4.4

Suppose A is an *i*-p-set and a *j*-q-set. Then if A is *ij*-t-open then it is *ji*-t-open.

Proof: Since A is an *i*-p-set, using Definition 1.1(iv), $i\text{-}cl(i\text{-}intA) \subseteq i\text{-}int(i\text{-}clA)$. Since A is a j-q-set, using Definition 1.1(vii), $j\text{-}int(j\text{-}clA) \subseteq j\text{-}cl(j\text{-}intA)$. If A is ij-t-open, by Definition 4.1, A $\subseteq i\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA) \subseteq i\text{-}int(i\text{-}clA) \cup j\text{-}cl(j\text{-}intA)$ that implies A is ji-t-open.

Proposition: 4.5

Suppose τ_i is coupled to τ_i and τ_i is near τ_i then every *ij*-t-open set is *ij*-b-open.

Proof: Let A be *ij*-t-open. Then $A \subseteq i\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA)$. Then by using Lemma 1.9 and by Lemma 1.10 we see that $A \subseteq j\text{-}cl(i\text{-}intA) \cup j\text{-}int(j\text{-}clA) \subseteq j\text{-}cl(i\text{-}intA) \cup i\text{-}int(j\text{-}clA)$),

Now by Definition 1.1(iii), A is *ij*-b-open.

REFERENCES:

- [1] Abo Khadra A.A, Nasef A.A, On extension of certain concepts from a topological space to a bitopological space, *Proc. Math. Phys. Soc.Egypt* 79(2003), 91-102.
- [2] Andrijevic D, Semi-pre-open sets, Mat. Vesnik, 38(1986), 24-32.

- [3] Andrijevic D, On b-open sets, *Mat. Vesnik* 48(1996), 59-64.
- [4] Dvalishvili B.P, Bitopological spaces: Theory, Relations with Generalized Algebraic structures and applications, *North-Holland Mathematics Studies*, 199, Elsevier Science B.V., Amsterdam 2005.
- [5] Dvalishvili B.P, Zero-Bidimension and various classes of bitopological spaces, arXive: 0706.4186v1 [math.GN] 28 Jun 2007, 1-35.
- [6] Indira T and Rao K.C, Some pair wise maps on bitopological spaces, Ph.D Thesis, Alagappa *University, Karaikudi, India* (2004).
- [7] Jelic M, A decomposition of pair wise continuity, J.Inst.Math. Comput.Sci.Math. Ser. 3(1990), 25-29.
- [8] Maheshwari S.N and Prasad R, Semi-open sets and semi-continuous functions in bitopological spaces, *Math .Notae* 26 (1977/78), 29-37.
- [9] Thamizharasi G, Studies in bitopological spaces, Ph.D thesis (2010), M.S. University, Tirunelveli, India.
- [10] Thamizharasi G and Thangavelu P, Remarks on closure and interior operators in bitopological spaces, KBM Journal of Mathematical Sciences & Computer Applications, 1(1) (2010), 1-8.
- [11] Thangavelu P, Rao K.C, p-sets in topological spaces, Bull. Pure and Appl. Sci. 21(E)(2) (2002), 341-355.
- [12] Thangavelu P, Rao K.C, q-sets in topological spaces, *Prog. of Maths* 36(1&2)(2002), 159-165.
- [13] Thangavelu P and Thamizharasi G and, p-Sets and q-Sets in bitopological spaces, Indian Journal of Mathematical Sciences. 6(2).(2010), 179-191.
- [14] Weston J.D, On the Comparison of Topologies, J.London Math. Soc. 32(1957), 342-354.
