International Journal of Mathematical Archive-5(3), 2014, 222-226

άg Interior and άg Closure in Topological Spaces

¹V. Senthilkumaran, ²R. Krishnakumar and ³*Y. Palaniappan

¹Associate Professor of Mathematics, Arignar Anna Government Arts College, Musiri-621201, Tamilnadu, India.

²Assitant Professor of Mathematics, Urumu Dhanalakshmi College, Kattur, Trichy, Tamilnadu, India.

^{3*}Associate Professor of Mathematics(Retired), Arignar Anna Government Arts College, Musiri-621201, Tamilnadu, India.

(Received on: 12-03-14; Revised & Accepted on: 29-03-14)

ABSTRACT

In this paper we introduce $\hat{\alpha}g$ interior, $\hat{\alpha}g$ closure and study some of its properties.

Key words: âg open, âg closed, âg int A, âg cl A.

AMS subject classification: 54C10, 54C08, 54C05.

1. INTRODUCTION

Levine [6] introduced generalized closed sets in topology as a generalization of closed sets. Many authors like Arya *et al* [2], Balachandran *et.al* [3], Bhattacharya *et al* [4], Arokiarani[1], Ganambal[5], Malghan[7] and Nagaveni[8] have worked on generalized closed sets. Palaniappan *et al* [9] introduced regular $\hat{\alpha}$ generalized beta ($\hat{\alpha}g$) closed sets and worked on them. In this paper, $\hat{\alpha}g$ interior, $\hat{\alpha}g$ closure are introduced and their properties are investigated.

Throughout this paper X denote the topological space (X, τ) on which no separation axioms are assumed unless otherwise stated.

2. PRELIMINARIES

Definition: 2.1 A subset A of a topological space X is called

1) A pre open set if $A \subset$ int cl A and a preclosed set if cl int $A \subset A$.

2) A regular open set if A = int cl A and a regular closed set if A = cl int A.

3) A α open set if A \subset int cl int A and a α closed set if cl int cl A \subset A.

The intersection of all α closed subsets of X containing A is called the α closure of A and is denoted by α cl A. α cl A is a α closed set.

Definition: 2.2A subset A of a topological space X is called a $\hat{\alpha}$ generalized closed set ($\hat{\alpha}$ g–closed set) if int cl int A \subset U whenever A \subset U and U is open in X.

The complement of $\hat{\alpha}g$ closed set in X is $\hat{\alpha}g$ open in X.

The intersection of all $\hat{\alpha}g$ closed sets in X containing A is called $\hat{\alpha}$ generalized closure of A and is denoted by $\hat{\alpha}g$ cl A. In general $\hat{\alpha}g$ cl A is not $\hat{\alpha}g$ closed.

The union of all âg open sets contained in A is denoted by âg int A. In general âg int A is not âg open.

Corresponding author: ³*Y. Palaniappan ³*Associate Professor of Mathematics (Retired), Arignar Anna Government Arts College, Musiri-621201, Tamilnadu, India. E-mail: palaniappany48@gmail.com International Journal of Mathematical Archive- 5(3), March – 2014

¹V. Senthilkumaran, ²R. Krishnakumar and ^{3*}Y. Palaniappan/ âg Interior and âg Closure in Topological Spaces/ IJMA- 5(3), March-2014.

In what follows we assume that X is a topological space in which arbitrary intersections of $\hat{\alpha}g$ closed sets of X be $\hat{\alpha}g$ closed in X. Then $\hat{\alpha}g$ cl A will be a $\hat{\alpha}g$ closed set in X and $\hat{\alpha}g$ int A will be a $\hat{\alpha}g$ open set in X, for A \subset X.

Definition: 2.3 Let X be a topological space and let $x \in X$. A subset N of X is said to be a $\hat{\alpha}g$ neighbourhood of x if and only if there exists a $\hat{\alpha}g$ open set G such that $x \in G \subset N$

Definition: 2.4 Let X be a topological space and $A \subset X$. A point $x \in X$ is called a $\hat{\alpha}g$ limit point of X if and only if every $\hat{\alpha}g$ neighbourhood of x contains point of A other than x. The set of all $\hat{\alpha}g$ limit points of A is called the $\hat{\alpha}g$ derived set of A and shall be denoted by $D_{\hat{\alpha}g}(A)$.

Thus x will be a $\hat{\alpha}g$ limit point of A if and only if $(N-\{x\}) \cap A = \phi$, for every $\hat{\alpha}g$ neighbourhood N of x.

Definition: 2.5 Let A be a sub set of a topological space X and let $x \in X$. Then x is called an $\hat{\alpha}g$ adherent point of A if and only if every $\hat{\alpha}g$ neighbourhood of x contains point of A. The set of all $\hat{\alpha}g$ adherent points of A is called the $\hat{\alpha}g$ adherence of A and shall be denoted by $\hat{\alpha}g$ Adh A.

Definition: 2.6 A point x is said to be an $\hat{\alpha}g$ isolated point of a subset A of a topological space X if and only if $x \in A$ but is not a $\hat{\alpha}g$ limit point of A. That is, there exists some $\hat{\alpha}g$ neighbourhood N of x such that N contains no point of A other than x. A $\hat{\alpha}g$ closed set which has no $\hat{\alpha}g$ isolated points is said to be $\hat{\alpha}g$ perfect.

Remarks: 2.7 An $\hat{\alpha}g$ adherent point is either $\hat{\alpha}g$ limit point or $\hat{\alpha}g$ isolated point.

3. Properties of âg Limit Points

Theorem: 3.1 A set is $\hat{\alpha}g$ closed in X if and only if it contains all its $\hat{\alpha}g$ limit pts.

Proof: Let A be $\hat{\alpha}g$ closed in X. Then A' is $\hat{\alpha}g$ open. For each $x \in A'$, there exists $\hat{\alpha}g$ neighbourhood Nx of x such that $N_x \subset A'$. $A \cap A' = \phi$ implies N_X contains no point of A. So, x is not a $\hat{\alpha}g$ limit point of A. A' contains no $\hat{\alpha}g$ limit point of A. Hence $D_{\hat{\alpha}g}(A) \subset A$.

Conversely, let $D_{\hat{a}g}(A) \subset A$. Let $x \in A'$. Since $x \notin A$, $x \notin D_{\hat{a}g}(A)$. Therefore, there exises some $\hat{\alpha}g$ neighbourhood Nx of x such that $Nx \cap A = \varphi$. So $Nx \subset A'$. Hence A' contains a $\hat{\alpha}g$ neighbourhood of each of its points. That is A' is $\hat{\alpha}g$ open. So A is $\hat{\alpha}g$ closed.

Theorem: 3.2 Let X be a topological space and A \subset X. Then A= D_{$\hat{\alpha}g$} (A) if and only if A is $\hat{\alpha}g$ perfect.

Proof: Let A be $\hat{\alpha}g$ perfect. Then A has no $\hat{\alpha}g$ isolated point. $x \in A \Rightarrow x$ is not an $\hat{\alpha}g$ isolated point $\Rightarrow x$ is a $\hat{\alpha}g$ limit point. $\Rightarrow A \subset D_{\hat{\alpha}g}(A)$

Since A is $\hat{\alpha}g$ closed, $D_{\hat{\alpha}g}(A) \subset A$

Hence $A = D_{\hat{\alpha}g}(A)$

Conversely, let $A = D_{\hat{\alpha}g}$ (A). Let $x \in X$. $x \in X - A$ implies $x \notin A$. That is $x \notin D_{\hat{\alpha}g}$ (A). This implies there exists $\hat{\alpha}g$ neighbourhood N of x such that N \subset X-A. X-A contains a $\hat{\alpha}g$ neighbourhood of each of its points. So, X-A is $\hat{\alpha}g$ open. That is, A is $\hat{\alpha}g$ closed. Let $y \in A$. So $y \in D_{\hat{\alpha}g}$ (A). Hence y is a $\hat{\alpha}g$ limit point of A. This implies y is not an $\hat{\alpha}g$ isolated point of A. That is, no point of A is an $\hat{\alpha}g$ isolated point of A. A is a $\hat{\alpha}g$ closed set having no $\hat{\alpha}g$ isolated point. Hence A is $\hat{\alpha}g$ perfect.

Let X be any discrete topological space and A \subset X. If $x \in X$, $\{x\}$ is $\hat{\alpha}g$ open which contains no point of $\{x\}$ other than x. So x is not a $\hat{\alpha}g$ limit point of A. Hence $D_{\hat{\alpha}g}(A) = \varphi$.

Let X be any indiscrete topological space. Let $A \subset X$ containing two or more points. $x \in A$ is a $\hat{\alpha}g$ limit point of A, since the only $\hat{\alpha}g$ open set containing x is X, which contains all points of A, other than x. Hence $D_{\hat{\alpha}g}(A)=X$.

Theorem: 3.3 Let A and B be subsets of a topological space X. Then

- i) $D_{\hat{\alpha}g}(\phi)=\phi$
- ii) $A \subset B \Rightarrow D_{\hat{\alpha}g}(A) \subset D_{\hat{\alpha}g}(B)$
- iii) $D_{\hat{a}g}(A \cap B) \subset D_{\hat{a}g}(A) \cap D_{\hat{a}g}(B)$

© 2014, IJMA. All Rights Reserved

iv) $D_{\hat{\alpha}g}(A \cup B) = D_{\hat{\alpha}g}(A) \cup D_{\hat{\alpha}g}(B)$

Proof:

- $i) \quad \phi \text{ is closed. So } D_{\hat{\alpha}g}\left(\phi\right) \subset \phi. \text{ But } \phi \subset D_{\hat{\alpha}g}\left(\phi\right). \text{ Hence } D_{\hat{\alpha}g}\left(\phi\right) = \phi.$
- ii) Let p∈ D_{âg}
 (A). Every âg neighbourhood of p contains a point of A, other than p. Since A⊂ B, every âg neighbourhood of p contains a point of B, other than p. Hence p is a âg limit point of B. So, D_{âg} (A) ⊂ D_{âg}
 (B). A∩B ⊂ A. Hence D_{âg} (A∩B) ⊂ D_{âg} (A). Similarly, D_{âg} (A∩B) ⊂ D_{âg} (B).
- iii) $A \cap B \subset A$. Hence $D \hat{\alpha}g(A \cap B) \subset D \hat{\alpha}g(A)$. Similarly, $D \hat{\alpha}g(A \cap B) \subset D \hat{\alpha}g(B)$. So $D \hat{\alpha}g(A \cap B) \subset D \hat{\alpha}g(A) \cap D \hat{\alpha}g(B)$.
- $$\begin{split} \text{iv)} \quad & A \subset A \cup B. \text{ Hence } D_{\hat{\alpha}g}\left(A\right) \subset D_{\hat{\alpha}g}\left(A \cup B\right). \text{ Similarly, } D_{\hat{\alpha}g}(B) \subset D_{\hat{\alpha}g}\left(A \cup B\right). \\ & \text{ So } D_{\hat{\alpha}g}\left(A\right) \cup \quad D_{\hat{\alpha}g}\left(B\right) \subset D_{\hat{\alpha}g}\left(A \cup B\right). \\ & \text{ To prove the other way, we prove the contra positive.} \\ & x \notin D_{\hat{\alpha}g}\left(A\right) \cup \quad D_{\hat{\alpha}g}\left(B\right) \Rightarrow x \notin D_{\hat{\alpha}g}\left(A \cup B\right) \\ \end{split}$$

If $x \notin D_{\hat{a}g}(A) \cup D_{\hat{a}g}(B)$, then $x \notin D_{\hat{a}g}(A)$ and $x \notin D_{\hat{a}g}(B)$. That is, x is neither a $\hat{a}g$ limit point of A nor a $\hat{a}g$ limit point of B. Hence, there exist $\hat{a}g$ neighbourhoods N_1 and N_2 of x such that $(N_1 - \{x\}) \cap A = \phi$ and $(N_2 - \{x\}) \cap B = \phi$. $N=N_1 \cap N_2$ is a $\hat{a}g$ neighbourhood of x which contains no point of $A \cup B$ other than (possibly) x. So it follows that $x \notin D_{\hat{a}g}(A \cup B)$ as required.

Theorem: 3.4 $\hat{\alpha}$ g cl A = A \cup D_{$\hat{\alpha}$ g} (A)

Proof: Let us prove $A \cup D_{\hat{a}g}(A)$ is $\hat{a}g$ closed. That is, $(A \cup D_{\hat{a}g}(A))' = A' \cap D'_{\hat{a}g}(A)$ is $\hat{a}g$ open. Let $x \in A' \cap D'_{\hat{a}g}(A)$. Then $x \in A'$ and $x \in D'_{\hat{a}g}(A)$. So $x \notin A$ and $x \notin D_{\hat{a}g}(A)$. That is, x is not a $\hat{a}g$ limit point of A. Hence, there exists a $\hat{a}g$ neighbourhood N_x of x which contains no point of A. Hence $N_x \subset D'_{\hat{a}g}(A)$. But $N_x \subset A'$. So $N_x \subset A' \cap D'_{\hat{a}g}(A)$ A' $\cap D'_{\hat{a}g}(A)$ contains a $\hat{a}g$ neighbourhood of each of its points and hence $\hat{a}g$ open. We now show that $\hat{a}g$ cl A = $A \cup D_{\hat{a}g}(A)$. A $\cup D_{\hat{a}g}(A)$ is a $\hat{a}g$ closed set containing A.

Hence $\hat{\alpha}g \text{ cl } A \subset A \cup D_{\hat{\alpha}g}(A)$. $\hat{\alpha}g \text{ cl } A \text{ is rg}\beta \text{ closed}$. Hence $D_{\hat{\alpha}g}(A) \subset A$. But $A \subset \hat{\alpha}g \text{ cl } A$

So $Da_g(A) \subset \hat{a}g \text{ cl } A$.

Hence $A \cup D_{\hat{\alpha}g}(A) \subset \hat{\alpha}g$ cl A. This completes the proof.

Theorem: 3.5 $\hat{\alpha}$ g cl A = $\hat{\alpha}$ g Adh A.

Proof: $x \in \alpha \hat{g}$ Adh $A \Leftrightarrow \text{every } \alpha \hat{g}$ neighbourhood of x intersects $A \Leftrightarrow x \in A$ or every $\alpha \hat{g}$ neighbourhood of x intersects A in a point other than $x \Leftrightarrow x \in A$ or $x \in D_{\hat{\alpha}g}(A) \Leftrightarrow x \in A \cup D_{\hat{\alpha}g}(A) \Leftrightarrow x \in \hat{\alpha}g$ cl A.

Theorem: 3.6 Let X be a topological space and let G be an $\hat{\alpha}g$ open subset of X and A \subset X. Then G is disjoint from A if and only if G is disjoint from the $\hat{\alpha}g$ closure of A.

 $\begin{array}{ll} \mbox{Proof:} & \mbox{Let } G \cap \hat{\alpha}g \mbox{ cl } A = \phi \ . \\ & \mbox{ As } A \subset \hat{\alpha}g \mbox{ cl } A, \mbox{ G} \cap A = \phi . \end{array}$

Conversely, let $G \cap A = \varphi$. Let $x \in G \cap \hat{\alpha}g$ cl A $\hat{\alpha}g$ cl $A = A \cup D_{\hat{\alpha}g}(A)$. Hence $x \in D_{\hat{\alpha}g}(A)$.

As G is âg neighbourhood of x, it intersects A, a contradiction. This completes the proof.

4. PROPERTIES OF âg CLOSURE

Theorem: 4.1 Let X be a topological space and A and B be subsets of X.

- i) $\hat{\alpha}g \ cl \phi = \phi$
- ii) $A \subset \hat{\alpha}g \text{ cl } A$.
- iii) $A \subset B \Rightarrow \hat{\alpha}g \text{ cl } A \subset \hat{\alpha}g \text{ cl } B$
- iv) $\hat{\alpha}g \operatorname{cl}(A \cup B) = \hat{\alpha}g \operatorname{cl} A \cup \hat{\alpha}g \operatorname{cl} B.$
- v) $\hat{\alpha}g \operatorname{cl}(A \cap B) \subset \hat{\alpha}g \operatorname{cl} A \cap \hat{\alpha}g \operatorname{cl} B.$
- vi) $\hat{\alpha}g cl (\hat{\alpha}g cl A) = \hat{\alpha}g cl A$.

¹V. Senthilkumaran, ²R. Krishnakumar and ^{3*}Y. Palaniappan/ âg Interior and âg Closure in Topological Spaces/ IJMA- 5(3), March-2014.

Proof:

- i) Since ϕ is $\hat{\alpha}g$ closed, $\hat{\alpha}g$ cl $\phi = \phi$
- ii) By definition of $\hat{\alpha}g \operatorname{cl} A$, $A \subset \hat{\alpha}g \operatorname{cl} A$.
- iii) $A \subset B \subset \hat{\alpha}g$ cl B. Hence $\hat{\alpha}g$ cl $A \subset \hat{\alpha}g$ cl B.
- iv) $A \subset A \cup B$. Hence $\hat{\alpha}g$ cl $A \subset \hat{\alpha}g$ cl $(A \cup B)$
 - Similarly $\hat{a}g$ cl $B \subset \hat{a}g$ cl $(A \cup B)$ So $\hat{a}g$ cl $A \cup \hat{a}g$ cl $B \subset \hat{a}g$ cl $(A \cup B)$
 - $\hat{\alpha}$ g cl A \cup $\hat{\alpha}$ g cl B is a $\hat{\alpha}$ g closed set containing A \cup B.
 - Hence $\hat{\alpha}g \ cl (A \cup B) \subset \hat{\alpha}g \ cl A \cup \hat{\alpha}g \ cl B$. This completes the proof.
- v) A∩B ⊂ A, A∩B ⊂ B Hence âg cl (A∩B) ⊂ âg cl A ∩ âg cl B.
 vi) âg cl A is âg closed.
 - Hence $\hat{\alpha}g$ cl ($\hat{\alpha}g$ cl A) = $\hat{\alpha}g$ cl A.

5. âg interior points and âg interior of a set

Definition: 5.1 Let X be a topological space and $A \subset X$. A point $x \in A$ is said to be $\hat{\alpha}g$ interior point of A if and only if A is a $\hat{\alpha}g$ neighbourhood of x. That is, there exists an $\hat{\alpha}g$ open set G such that $x \in G \subset A$. The set of all $\hat{\alpha}g$ interior points of A is called the $\hat{\alpha}g$ interior A and is denoted by $\hat{\alpha}g$ int A.

Theorem: 5.2 $\hat{\alpha}g$ int $A = \bigcup \{G: G \text{ is } \hat{\alpha}g \text{ open, } G \subset A\}$

Proof: $x \in \hat{\alpha}g$ int $A \Leftrightarrow A$ is a $\hat{\alpha}g$ neighbourhood of x. \Leftrightarrow there exists an $\hat{\alpha}g$ open set G such that $x \in G \subset A \Leftrightarrow x \in \cup \{G: G \text{ is } \hat{\alpha}g \text{ open}, G \subset A\}$. Thus $A = \cup \{G: G \text{ is } \hat{\alpha}g \text{ open}, G \subset A\}$

Theorem: 5.3 Let X be a topological space and $A \subset X$. Then

- i) âg int A is âg open
- ii) $\hat{\alpha}g$ int A is the largest $\hat{\alpha}g$ open set contained in A.

Proof:

i) Let $x \in \hat{a}g$ int A. So there exists a $\hat{a}g$ open set G such that $x \in G \subset A$. Since G is $\hat{a}g$ open, it is a $\hat{a}g$ neighbourhood of each of its points. So A is also a $\hat{a}g$ neighbourhood of each of the points of G. It follows that every point of G is a $\hat{a}g$ interior point of A. Hence $G \subset \hat{a}g$ int A. $\hat{a}g$ int A contains a $\hat{a}g$ neighbourhood of each of its points. Hence $\hat{a}g$ int A is $\hat{a}g$ open.

ii) Let G be any $\hat{\alpha}g$ open set such that $G \subset A$. Let $x \in G$. A is $\hat{\alpha}g$ neighbourhood of x. Therefore $x \in \hat{\alpha}g$ int A. Hence $G \subset \hat{\alpha}g$ int A. So $\hat{\alpha}g$ int A is the largest $\hat{\alpha}g$ open set contained in A.

Remark: 5.4 If X be any discrete topological space, then every subset of X coincides with its $\hat{\alpha}g$ interior.

Theorem: 5.5 Let X be a topological space. Then $\hat{\alpha}g$ int A equals the set of all points of A which are not $\hat{\alpha}g$ limit points of A'

Proof: Let $x \in A$, which is not a $\hat{a}g$ limit point of A' Then, there exists a $\hat{a}g$ neighbourhood N of x, which contains no point of A'. So $N \subset A$. This implies A is also $\hat{a}g$ neighbourhood of x. Hence $x \in \hat{a}g$ int A. Let $x \in \hat{a}g$ int A. Since $\hat{a}g$ int A is $\hat{a}g$ open, $\hat{a}g$ int A is a $\hat{a}g$ neighbourhood of x. Also $\hat{a}g$ int A contains no point of A'. It follows x is not a $\hat{a}g$ limit point of A'. Thus no point of $\hat{a}g$ int A can be a $\hat{a}g$ limit point of A'. So $\hat{a}g$ int A consists precisely those points of A which are not $\hat{a}g$ limit points of A'.

6. Properties of âg interior

Theorem: 6.1 Let X be a topological space and let A,B be subsets of X

- i) $\hat{\alpha}g$ int X=X, $\hat{\alpha}g$ int $\phi = \phi$
- ii) $\hat{\alpha}g$ int $A \subset A$
- iii) $A \subset B \Longrightarrow \hat{\alpha}g$ int $A \subset \hat{\alpha}g$ int B
- iv) $\hat{\alpha}$ g int (A \cap B) = $\hat{\alpha}$ g int A $\cap \hat{\alpha}$ g int B
- v) $\hat{\alpha}g$ int $A \cup \hat{\alpha}g$ int $B \subset \hat{\alpha}g$ int $(A \cup B)$
- vi) $\hat{\alpha}g$ int ($\hat{\alpha}g$ int A) = $\hat{\alpha}g$ int A

© 2014, IJMA. All Rights Reserved

Proof:

- i) obvious
- ii) obvious
- iii) Let x ∈ âg int A. A is a âg neighbourhood of x. As A⊂ B, B is a âg neighbourhood of x. This implies x ∈ âg int B. Hence âg int A ⊂ âg int B.
- iv) A∩B⊂A, A∩B⊂B.
 Hence âg int (A∩B) ⊂ âg int A ∩ âg int B.
 Let x ∈ âg int A ∩ âg int B.
 x ∈ âg int A and x ∈ âg int B
 A and B are âg neighbourhoods of x. Hence A∩B is a âg neighbourhood of x.
 So x ∈ âg int (A∩B).
 Therefore âg int A∩ âg int B ⊂ âg int (A∩B). This complets the proof.
 v) A ⊂ A∪B, B ⊂ A∪B
 Hence âg int A∪ âg int B⊂ âg int (A∪B).
- vi) âg int A is âg open.Hence âg int (âg int A) = âg int A.

REFERENCES

[1] I.Arokiarani,, "Studies on Generalisations of Generalised closed sets and maps in Topological spaces", PhD, Thesis, Bharathiar university, Coimbatore(1997).

[2] S.P Arya and R.Gupta, "On strongly continuous mappings", Kyungpook Math J14 (1974), 131-143.

[3] K.Balachandran, P.Sundaram and H.Maki, "On Genrealised continuous maps in Topological spaces", Mem. I.ac.sci-Kochi, Univ Math 12(1991), 5-13.

[4] P.Bhattacharya and B.K.Lahiri, "Semi generalized closed sets in Topology", Indian, J. Math 29(1987) 376-382.

[5] Y.Gnanambal, "On Generalised pre-regular closed sets in Topological spaces", Indian. J. Pure Appl. Math. 28(1997) 351-360.

[6] N.Levine, "Generalised closed sets in Topology", Rend. Circ. Mat. Palermo 19(1970) 89-96.

[7] S.RMalghan, "Generalized closed maps", J. Karnatak Uni. Sci 27(1982) 82-88

[8] N.Nagaveni, "Studies on Generalisations of Homeomorphisms in Topological spaces", Ph. D Thesis. Bharathiyar University (1999)

[9] Y. Palaniappan, R. Krishnakumar and V. Senthilkumaran, "On $\hat{\alpha}$ Generalised closed sets", Intl J. Math. Archieve. Accepted.

Source of support: Nil, Conflict of interest: None Declared