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ABSTRACT 
The purpose of the present work is to study the influence of viscoelastic and mass transfer on unsteady MHD 
micropolar flow of incompressible and electrically conducting  micropolar fluid past a semi-infinite vertical porous 
plate in the presence of a transverse magnetic field and periodic suction. Closed form solutions have been obtained for 
the mean velocity, mean angular velocity, mean temperature and mean concentration using perturbation technique and 
these are presented in graphical form. The effects of different physical parameters such as magnetic Hartmann number, 
thermal and solutal Grashof number, Prandtl number, Schmidt number, skin friction, heat transfer coefficient and 
Sherwood number are presented and discussed. 
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INTRODUCTION 
 
In numerous industrial transport processes, convective heat and mass transfer takes place simountaneously. Phenomena 
involving stretching sheets feature very widely in for example aerospace component production metal casting Dieter 
[1]. In such processes metals or alloys are heated until molten, poured into mould or die, and the liquid metal is 
subsequently stretched to achieve the desire product. When the super heated melt issues from the dies it loses heat and 
contract as it cools, a stage in metellurgical processing reffered to as liquid state contraction. With futher cooling and 
the loss of latent heat of fusion, the atoms of the metallic alloy loss energy and are bound tightly together in a regular 
structure. The mechanical properties of the final product depend to a great extent on the heat and mass transfer 
phenomena, the cooling rate, surface mass transfer rate etc. Much numerical researchhas been conducted in metal 
sheets flow including studies by Lait et. al. [2], Goldschmit et. al. [3] who examined viscoelastic metal flows. 
Goldschmit [4] who provides a finite element methodology for general metal flow forming. 
 
Micropolar fluids are fluids with microstructure belonging to a class of complex fluids with nonsymmetrical stress 
tensor referred to as micromorphic fluids Aero et. al. [5]. Many numerical studies of micropolar heat and mass transfer 
have been communicated in the literature. Hassanian and Gorla [6] investigated the heat transfer to a micropolar fluid 
from a nonisothermal strectching sheet with suction and blowing. Flow over a porous strectching sheet with strong 
suction or injection was examined by Kelson and Farell [7]. Soudalgekar and Takher [8] have studied the effect of 
MHD forced and free convective flow past a semi-infinite plate. Raptis and Kafousias [9] studied the influence of a 
magnetic field upon the steady free convective flow through a porous medium bounded by an infinite vertical plate 
with a constant suction velocity and when the plate temperature is also constant. 
 
Quite recently, a numerical study of steady combined heat and mass transfer by mixed convection flow past a 
continuously moving infinite vertical porous plate under the action of strong magnetic field with constant suction 
velocity, constant heat and mass fluxes have been investigated by Alam et. al. [10]. These type of problems play a 
spercial role in nature, in many separation processes as in isotope separation, in mixtures between gases, in many 
industrial applications as solidification of binary alloy as well as in astrophysical and geophysical engineering.  
 

Corresponding author: *I. J. Uwanta 
*Department of Mathematics, Usmanu Danfodiyo University Sokoto, Nigeria. 

E-mail: imeuwanta@yahoo.com 

 
 

http://www.ijma.info/�
mailto:imeuwanta@yahoo.com�
mailto:abdulahihussaini@yahoo.com�
mailto:imeuwanta@yahoo.com�


*I. J. Uwanta and **A. Hussaini/ Micropolar Fluid Flow With Viscoelastic and Mass Transfer Effects/ IJMA- 5(3), March-2014. 

© 2014, IJMA. All Rights Reserved                                                                                                                                                                       235   

 
FORMULATION OF THE PROBLEM 
  
Consider the two-dimensional unsteady flow of a laminar, incompressible micropolar fluid past a semi-infinite vertical 
porous moving plate embedded in a porous medium and subjected to a transverse magnetic field in the presence of a 
pressure gradient. We assumed that there is no applied voltage which implies the absence of electric field. The 
transversely applied magnetic field and magnetic Reynolds number are very small and hence the induced magnetic 
field is neglegible Cowling [10]. It is also assumed that the size of the porous plate is significantly larger than a 
chracteristic microscopic length scale of the porous medium. Boussineq’s approximation for the equations of flow is 
governed as :  
 
Continuity equation  
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Angular momentum equation  
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Concentrationequation  
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where ,x y and t∗ ∗ ∗  are the dimensional distances along and perpendicular to the plate and dimensional time, 

respectively. u and v∗ ∗  are the components of dimensional velocities along x and y∗ ∗  direction, ρ  is the fluid 

density, σ is the fluid electrical conductivity, 0β  is the magnetic induction, j∗ the micro-inertia density of the 

component of the angular velocity vector normal to the xy plane− ,γ  the spine gradient viscosity, v  is the fluid 

kinematic viscosity, rv is the fluid kinematic rotational viscosity, g  is the acceleration due to gravity, f andβ β ∗  

are the coefficients of volume expansions for temperature and concentration, k∗  the permeability of the porous 
medium, 1

0k  is the elastic parameter, K  is the chemical reaction, ω∗  is the component of angular velocity, T  is the 

temperature, C  is the concentration , α  is the fluid thermal diffusivity.  
 
The boundary conditions for the velocity, temperature and concentration fields are  
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where pu∗  is the velocity of the moving plate, T and Cω ω

∗ ∗  are the temperature and the concentration respectively, U ∗
∞  

is the free stream velocity, and 0U and n∗  are constants. From equation (1), it is obvious that the suction velocity at 
the plate is either a constant or a function of time. Hence the suction velocity normal to the plate is assumedin the form  
 

( )0 1 n tv V Aeε
∗ ∗∗ = − +

                                                                                                                                                   
(7) 

where A  is a real positive constant, and Aε ε  is small values less than unity, and 0V  is the scale of suction velocity 
which is non-zero positive constant. The negative sign indicates that the suction is towards the plate.  
 
Outside the boundary layer, equation (2) gives  
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To write the governing equations and the boundary conditions in dimensionless form, the following non-dimensional 
quantities are introduced 
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In view of equations (7) – (9), equations (2) – (5) reduce to the following dimensional form.  
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where 1 , , , ,N M and Gr Gc Pr K and Sc
k

= +  are the thermal Grashof number, solutal Grashof number, Prandtl 

number, chemical reaction parameter and Schmidt number respectively. 
 
The dimensionless form of the boundary conditions (6) becomes  
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In order to reduce the system of partial differntial equations (10)–(13) to a system of ordinary differential equations in 
dimensionless form, we represent the linear velocity, angular velocity, temperature and concentration as  
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Substituting (15) in equations (10)–(13) and equating the harmonic and non–harmonic terms, and neglecting the higher 
order terms of ( )20 ε , we obtain  
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where primes denote ordinary differentiation with respect to y .  
 
The corresponding boundary conditions can be written as  
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Solving equations (16)–(23)  under the boundary conditions (24) we obtain the linear velocity, angular velocity, 
temperature and concentration distribution in the boundary layer as  
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It is essential to calculate the physical quantities of primary interest, which are the Skin – friction, Nusselt number and 
the Sherwood number. Given the velocity field in the boundary layer, we can calculate the Skin – friction given by  
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Knowing the temperature field,heat transfer coefficient can be obtained in terms of the Nusselt number, given by  
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Knowing the concentration field, the rate of mass transfer coefficient can be obtalned in terms of the Sherwood, is 
given by  

0 1

0 0

nt
h

y y

C CCS e
y y y

ε
= =

   ∂ ∂∂
= = +   ∂ ∂ ∂   

 

( )1 5 20 1 21
nt

hS m e m A m Aε = − + +                                                                                                                          
(31) 

 
RESULTS AND DISCUSSION 
 
Graphical representation of results is very useful to discuss the physical features presented by the solutions. In order to 
get a physical insight into the problem, factors such as streamline velocity, angular velocity, temperature, 
concentration, skin friction, nusselt number and sherwood number have been discussed by assigning numerical values 
to various parameters obtained in the mathematical formulation of the problem and the results are graphically presented 
in Figures 1- 17. Unless otherwise stated, throughout the computations we have chosen 0 0.3, 0.3, 1,rK K M= = =

2.0, 1.0, 0.71, 0.2, 0.2, 0.5, 1.0,pGc Gr Pr Sc U nβ= = = = = = = 1.0,t = 0.02.ε =   
 
The velocity distribution is shown in Figures 1- 11 for different values of the parameters 0, , , , , , , ,rM Gr Gc Sc Pr K K t

, pUβ and ε respectively. The increment of Hartmann magnetic number M decreases the velocity of the fluid. As 
usual the Grashof number for local heat and mass transfer boost the fluid velocity, hence is found that the effect of 
increasing Gr  and Gc  increase the velocity field as expected Figures 1- 3. Figures 4 and 5 reveals the mean velocity 
profiles due to variations in Sc and Pr . It is noticed that whenever Schmidt number increases the mean velocity 
decreases. It is further observed that  increases in Prandtl number causes the decrease in mean velocity. Figures 6 – 7 
are graphed to see the influence of viscoelastic parameter 0K and chemical reaction rK   respectively. It is observed 
that the increment of viscoelastic parameter and chemical reaction parameter  decrease the velocity of the fluid. In 
Figures 8,9,10 and 11 increasing the time t , viscosity ratio ,β velocity of the moving plate pU and material parameter 
epsilon ,ε increases the velocity.  
 
The variation of the angular velocity profile along the y  - axis are shown in figures 12,13 and 14 with different 

varying values of material parameter plate velocity pU , viscosity ratio β and time t  respectively. Results shows that 

an increase in the plate velocity, viscosity ratio decreases the angular velocity whereas increasing the values of t  
increases the angular velocity.  
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The variation of temperature field along the y  - axis is shown in Figure 15 indicates the effects of Prandtl number .Pr  
The Prandtl number defines the ratio of momentum diffusivity to thermal diffusivity. It is observed that increase in the 
Prandtl number results a decrease of the thermal boundary layer thickness and therefore lower average temperature 
within the flow because increasing values  of Prandtl number equivalent to increase the thermal conductivities and 
therefore heat is able to diffuse away from the heated plate more rapidly.  
 
The variation of the mass concentration along y axis−  is dipict in Figures 16 and 17 respectivily for different varying 

values of chemical reaction parameter rK  and Schmidt number Sc . It is observed that for the increase of chemical 
reaction and Schmidt number the concentration decreases.  
 
It is observed from  table (1) that as effects of ,M Gr and Gc  increases , the skin – friction coefficients increases 
whereas the Nusselt and the Sherwood numbers remain unchanged. As effect of Sc  increases the skin – friction 
coefficient decreases and the Sherwood number increases while the Nusselt number remain unchanged. It is noticed 
that as the Pr  increases both the Skin – friction coefficient and the Nusselt numbers decreases and the Sherwood 
number remain unchanged. Increasing the effects of  0K  results in a decreasing of the Skin – friction coefficient and 

both the Nusselt and the Sherwood numbers are unchanged. It is also observed from the table that as the effects of  rK  
increases the the skin - friction coefficient and the Sherwood number decreases whereas the Nusselt number is 
unchanged. 
 
CONCLUSION  
 
In this paper we have investigated the influence of viscoelastic and mass transfer on unsteady MHD micropolar fluid 
flow of incompressible and electrically conducting micropolar fluid past a semi-infinite vertical porous plate in the 
presence of transverse magnetic field by using perturbation method. The effects of various parameters entering into the 
problem have been discussed in detail. From the investigation we notice the following observations.  
 
When the Hartmann magnetic parameter is high and the dimensionless velocity gradient is lower, the magnetic effect 
will decrease the momentum force and the flow will move slowly with the whole flow field and the magnetic effect is 
not good for a larger magnetic parameter. It is observed that increasing the value of Prandtl number equivalent to 
increase the thermal conductivities and therefore heat is able to diffuseaway from the heated plate more rapidly. Hence 
in the case of increasing Prandtl number, the boundary layer is thinner and the heat transfer is reduced.  
 
When the thermal and solutal Grashof numbers were increased, the thermal and concentration buoyancy effects were 
enhenced and thus, the fluid velocity increased. 
 
 

 
Fig.1: Velocity profiles for different values of Hartmann magnetic number M, 
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Fig. 2: Velocity profiles for different values of thermal Grashof number ,Gr  

 

 
Fig. 3: Velocity profiles for different values of solutal Grashof number ,Gc  

 

 
Fig. 4: Velocity profiles for different values of Schmidt number ,Sc  

 

 
Fig. 5: Velocity profiles for different values of Prandtl number ,Pr  
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Fig. 6: Velocity profiles for different values of viscoelastic parameter 0 ,K  

 

 
Fig. 7: Velocity profiles for different values ofchemical reaction parameter ,rK  

 

 
Fig. 8: Velocity profiles for different values of time .t  

 

 
Fig. 9: Velocity profiles for different values of viscosity ratio ,β  
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Fig. 10: Velocity profiles for different values of velocity of moving plate ,pU  

 

 
Fig. 11: Velocity profiles for different values of velocity of epsilon ,ε  

 

 
Fig. 12: Angular velocity profiles for different values of moving plate velocity ,pU  

 

 
Fig. 13: Angular velocity profiles for different values of viscosity ratio ,β  
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Fig. 14: Angular velocity profiles for different values of time ,t  

 

 
Fig. 15: Temperature profiles for different values of Prandtl number ,Pr  

 

 
Fig. 16: Concentration profiles for different values of chemical reaction rK , 

 

 
Fig. 17: Concentration profiles fordifferent values of Schmidt ,Sc  

 
Table (1) shows the effects of the magnetic parameter, Grashof number, solutal Grashof number, Schmdit number, 
Prandtl number, viscoelastic parameter, chemical reaction parameter and porosity parameter on the Skin friction 
coefficient, Nusselt number and Sherwood.  
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M Gr Gc Sc Pr K0 Kr K Cf Nu Sh 
1.00 1.00 2.00 0.20 0.71 0.30 0.30 0.50 2.5138 -0.7867 -1.3122 
2.00 1.00 2.00 0.20 0.71 0.30 0.30 0.50 2.5461   
1.00 2.00 2.00 0.20 0.71 0.30 0.30 0.50 2.9374   
1.00 1.00 3.00 0.20 0.71 0.30 0.30 0.50 2.8628   
1.00 1.00 2.00 0.30 0.71 0.30 0.30 0.50 2.5006  -1.3707 
1.00 1.00 2.00 0.20 0.81 0.30 0.30 0.50 2.4952 -0.8961  
1.00 1.00 2.00 0.20 0.71 0.40 0.30 0.50 2.4985   
1.00 1.00 2.00 0.20 0.71 0.30 0.40 0.50 2.5036  -1.3574 
1.00 1.00 2.00 0.20 0.71 0.30 0.30 0.60 2.4911   
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