(α, β) DERIVATIONS AND COMMUTATIVITY IN σ -PRIME RING

D. Bharathi* and P.V. Rama Krishna

Department of mathematics, Sri Venkateswara University, Tirupati-517502, (A.P.), India.

(Received on: 21-02-14; Revised & Accepted on: 12-03-14)

ABSTRACT

Let R be a σ -prime ring with characterstic $\neq 2$ and d be a nonzero (α, β) derivation of R commuting with σ . It is prove that a non-zero (α, β) -derivation d associated with be a non-zero σ -ideal I of R which commutes σ and i) if [d(x), x] = 0 $\forall x \in I$ then R is commutative ii) If $d^2(I) = 0$ then d = 0. Also we prove that R must be commutative under some suitable conditions.

Keywords: σ -prime ring, σ -ideals, (α, β) derivations.

1. INTRODUCTION

Through out the present paper all rings will be associative. A ring R equipped with an involution σ is said to be σ -prime if aRb=aR $\sigma(b)=0$ implies that a=0 or b=0. Recall that a ring R is prime if aRb=0 implies that a=0 or b=0. Obviously, every prime ring with involution σ is σ -prime but the converse is in general not true. An ideal I of R is a σ -ideal if I is invariant under σ i.e, $\sigma(I)=I$. Set of all symmetric and skew-symmetric elements of R is defined as $Sa_{\sigma}(R)=\{x\in R/\sigma(x)=\pm x\}$. We shall use the basic commutator identities: [xy,z]=x[y,z]+[x,z]y and [x,yz]=y[x,z]+x[y,z]. An additive mapping d from R to itself is a derivation if d(xy)=d(x)y+xd(y). holds for all pairs $x,y\in R$. An additive mapping d from R to itself said to be (α,β) derivation if d(xy)=d(x) and d(xy)=d(x) holds for all d(xy)=d(x) holds for all d(xy)=d(x) holds for all d(xy)=d(x). In the special case where d(x)=d(x) for all d(x)=d(x) for all d(x)=d(x) denotes the center of R;. In the special case where d(x)=d(x) for all d(x)=d(x) for all d(x)=d(x) for all d(x)=d(x) denotes the center of R;.

The history of commuting and centralizing mapping goes back to 1955 when Divinsky[1] prove that simple artinian ring is commutative if it has commuting non-trivial automorphism. Two years later Posner [2] have proved that the existence of non-zero centralizing derivation on a prime ring forces Ring to be commutative (Posner's second theorem). Mayne [3] prove the analogous result for centralizing automorphisms. P. H. Lee and T.K. Lee [4] have shown that if a prime ring of characterstic different from two has a noz-zero derivation d satisfying [d(R),d(R)] then R is commutative. Joso Vukman [5] have shown that a prime ring of characterstic not two possessing a non-zero derivation D from R to itself such that $x \rightarrow [D(x),x]$ is commuting on R then R is commutative. M. Bresar [6] describe the structure of arbitrary additive mapping which is centralizing on a prime ring. Later L. oukhtite and S. Salhi proved some conditions under which derivations of σ -prime ring are commutative (Refer[7], [8]). These results are motivation for our results.

We prove the following results

3. MAIN RESULTS

Lemma: 1 Let I be a non-zero σ -ideal of σ -prime ring R and $0 \neq d$ be a (α, β) derivation on R which commutes with σ , If [d(x),x] = 0. $\forall x \in I$ then R is commutative.

Proof: By Hypothesis [d(x), x] = 0 (1)

Corresponding author: P.V. Rama Krishna
Department of mathematics, Sri venkateswara University, Tirupati-517502, (A.P.), India.
E-mail: rampaduchuri@gmail.com

D. Bharathi* and P.V. Rama Krishna / (α, θ) Derivations and Commutativity in σ -prime ring/ IJMA-5(3), March-2014.

Linearizing equation (1) we get

[d(x+y), x+y] = 0.

[d(x)+d(y), x+y] = 0.

$$[d(x),y)+[d(y),x] = 0. (2)$$

Replace y by yx and $d\neq 0$ be a (α, β) derivation.

[d(x), yx] + [d(yx), x] = 0.

 $[d(x),y]x+y[d(x),x]+[d(y)\alpha(x)+\beta(y)d(x),x]=0.$

 $[d(x),\,y]x + [d(y)\,\alpha(x),\,x] + [\beta(y)d(x),\,x] = 0.$

$$[d(x), y]x + d(y)[\alpha(x), x] + [d(y), x]\alpha(x) + \beta(y)[d(x), x] + [\beta(y), x]d(x).$$
(3)

Replace $\alpha(x)$ by x in (3) and using (2) we obtain

$$[\beta(y), x]d(x) = 0. \tag{4}$$

For any $r \in R$, Replacing y by ry in above equation

$$[\beta(ry), x]d(x) = 0.$$

 $\Rightarrow [\beta(r)\beta y), x]d(x) = 0.$

$$\Rightarrow \beta(r) [\beta y), x]d(x) + [\beta(r), x]\beta(y)d(x) = 0$$
(4)

 $\Rightarrow [\beta(r), x] \beta(y)d(x) = 0 \forall r \in \mathbb{R}, x, y \in \mathbb{I}. (By (4))$

$$\Rightarrow 0 = \beta^{-1}([\beta(r), x]) I \beta^{-1}(d(x) = 0. \forall x \in I, r \in R.$$

Since d commutes with σ and I is σ -ideal of R we have

$$0 = \beta^{-1}([\beta(r), x]) I \beta^{-1}(d(x) = \beta^{-1}([\beta(r), x]) I \beta^{-1}(\sigma(d(x)).$$

By Lemma 1 of [7] we obtain $\beta^{-1}[\beta(r), x] = 0$ or $\beta^{-1}(d(x)) = 0$.

Case -1: if $\beta^{-1} [\beta(r), x] = 0 \ \forall \ x \in I, r \in R$.

Then $[\beta(r), x] = 0$ (since β is automorphism).

Since β is automorphism, this implies that I central and hence R is commutative.

Lemma: 2 Let d be a (α, β) - derivation of σ -prime ring R satisfies $d\sigma = \pm \sigma d$ and let I be a non-zero σ -ideal of R. If $d^2(I) = 0$ then d = 0.

Proof: for any $x \in I d^2(x) = 0$.

Replacing x by xy we obtain

$$d^2(xy) = 0$$
 that is $d(d(xy) = 0$.

$$\Rightarrow$$
 d(d(x)\alpha(y) + \beta(x)d(y)) = 0.

$$\Rightarrow d^2(x) \alpha^2(y) + \beta(d(x)) d(\alpha(y)) + d(\beta(x)) \alpha(d(y)) + \beta^2(x) d^2(y) = 0.$$

The fact that $d^2(I) = 0$ we get

$$\beta(d(x)) d(\alpha(y)) + d(\beta(x)) \alpha(d(y)) = 0. \tag{5}$$

If we assume that $\beta d = d\beta$, $d\alpha = \alpha d$. Then (5) is reduced to

$$2 \beta (d(x)) d(\alpha(y)) = 0 \text{ implie that } \beta(d(x)) d(\alpha(y)) = 0 \text{ (since char } R \neq 2)$$
 (6)

Replacing x by xz in (6) where $z \in I$ then we have

$$\beta (d(xz)) \alpha(d(y)) = 0. (d commutes with \alpha)$$

$$= \beta (d(x) \alpha(z) + \beta(x)d(z)) \alpha(d(y))$$

$$= \beta (d(x)) \beta (\alpha(z)) \alpha(d(y)) + \beta^{2}(x) \beta(d(z)) \alpha(d(y))$$

Replacing z by d(z) we get

$$\Rightarrow \beta (d(x)) \beta (\alpha (d(z))) \alpha (d(y)) + \beta^{2}(x) \beta (d^{2}(z)) \alpha (d(y)) = 0.$$

$$\Rightarrow \beta (d(x)) \beta (\alpha(d(z))) \alpha(d(y)) = 0$$
. (since $d^2(z) = 0$)

$$\Rightarrow \beta^{-1}(\beta(d(x)\beta(\alpha(d(z)))\alpha(d(y)) = 0.$$

$$\Rightarrow$$
 d(x) α (d(z)) $\beta^{-1}(\alpha$ (d(y))) = 0. \forall x \in U.

$$\Rightarrow$$
 d(U) α (d(z) $\beta^{-1}(\alpha(d(y))) = 0$

Now we use the following lemma without proof

Let d be a non-zero derivation of 2-torsion free σ -prime ring R which commutes with σ and U $\not\subset$ Z(R) be a σ -Lie ideal of R. If $t \in R$ verifies td(U) = 0. Or d(u)t = 0 then t = 0. and hence

$$\alpha(d(z)) \beta^{-1}(\alpha(d(y))) = 0.$$

$$\Rightarrow \beta (\alpha(d(z))) R\alpha(d(y)) = 0.$$

since d commutes with σ and I is σ - ideal we have $\beta(\alpha(d(z))) R \alpha(d(y)) = \beta(\alpha(d(z))) R \alpha(\sigma(d(y))) = 0$.

By the definition of σ -prime ring we have either $\beta(\alpha(d(z)) = 0$. Or $\alpha(d(y) = 0$.

If $\alpha(d(y)=0 \text{ then } d(y)=0 \forall y \in I \text{ (since } \alpha \text{ is automorphism)}$

Replace y by yr we have then

$$d(yr)=0.$$

$$\Rightarrow$$
 d(y) α (r)+ β (y)d(r) = 0.

$$\Rightarrow \beta(y)d(r) = 0. (d(y) = 0)$$

$$\Rightarrow \beta^{-1}(\beta(y)) d(r) = 0.$$

$$\Rightarrow$$
 IRd(r) = 0. \forall r \in R.

 \Rightarrow d(r) =0. \forall r \in R. This implies d= 0.

Lemma: 3 Let d_1 and d_2 be (α, β) -derivations of R such that $d_1\sigma = \pm \sigma d_1$ and $d_2\sigma = \pm \sigma d_2$ and d_1 commutes with β . If $I \neq 0$ is a σ - ideal of R such that $d_2(I) \subset I$ and $d_1d_2(I) = 0$ then $d_1 = 0$ or $d_2 = 0$.

Proof: Let $u, v \in I$ then

$$0 = d_1 d_2(uv) = d_1(d_2(u) \alpha(v) + \beta(u) d_2(v))$$

D. Bharathi* and P.V. Rama Krishna / (α, θ) Derivations and Commutativity in σ -prime ring/ IJMA-5(3), March-2014.

Again applying (α, β) -derivation d_1 then

$$= d_1(d_2(u)) \alpha^2(v) + \beta(d_2(u)) d_1(\alpha(v)) + d_1(\beta(u)) \alpha(d_2(v)) + \beta^2(u)d_1d_2(v).$$

Using the hypothesis the above equation can be written as

$$\beta (d_2(u)) d_1(\alpha(v)) + d_1(\beta(u)) \alpha(d_2(v)) = 0.$$

Replacing
$$\alpha(v)$$
 by $d_2(v)$ in the above equation we get $d_1(\beta(u))\alpha(d_2(v)) = 0$ (7)

Replacing v by vw where w∈I in equation (7) we get

$$\Rightarrow$$
 $d_1(\beta(u)) \alpha(d_2(vw)) = 0$.

$$\Rightarrow$$
 d₁($\beta(u)$) α (d₂(v) $\alpha(w) + \beta(v)$ d₂(w)) = 0.

$$\Rightarrow d_1(\beta(u))\alpha(d_2(v))\alpha^2(w) + d_1(\beta(u)\alpha(\beta(v)d_2(w)) = 0. \tag{8}$$

$$\Rightarrow$$
 d₁($\beta(u)$) $\alpha(\beta(v))$ $\alpha(d_2(w)) = 0$. (By (7))

$$\Rightarrow \alpha^{-1}(d_1(\beta(u))) R d_2(w) = 0. \ \forall u, w \in I$$

$$(9)$$

Now consider $\sigma(d_2(w) = d_2(\sigma(w)) = d_2(w)$ (since I is σ ideal.)

Since R is σ -prime then from equation (9) we obtain

$$\Rightarrow \alpha^{-1}(d_1(\beta(u)))R d_2(w) = 0 = \alpha^{-1}(d_1(\beta(u)))R \sigma(d_2(w))$$

By the definition of σ -prime we obtain either $\alpha^{-1}(d_1(\beta(u))) = 0$ or $d_2(w) = 0$

Case - 1: If $\alpha^{-1}(d_1(\beta(u))) = 0$ then

$$(d_1(\beta(u)) = 0 \text{ (since } \alpha^{-1} \text{ is an automorphism)}$$

$$\Rightarrow \beta (d_1(u) = 0 \ \forall \ u \in I.(d_1 \text{ commutes with } \beta)$$

$$\Rightarrow$$
 d₁ (u) = 0 \forall u \in I.

For any $r \in R$ we have $d_1(ur) = 0$ then $d_1(u)\alpha(r) + \beta(u)d_1(r) = 0$

Since $d_1(u) = 0 \ \forall \ u \in I$ the above equation reduces to $\beta(u)d_1(r) = 0$.

$$\beta^{-1}(\beta(u) d_1(r)) = 0 = I \beta - 1 (d_1(r)) = 0.$$

Since I is non-zero the last relation yields $d_1(r) = 0 \ \forall \ r \in \mathbb{R}$. Hence $d_1 = 0$.

Similarly for any $r \in R$ $d_2(wr) = 0$ then $\beta(w)d_2(r) = 0$. (Using definition of (α, β) derivation).

$$\beta^{-1}(\beta(w) d_2(r)) = 0 = I d_2(r) = 0.$$

Since $I \neq 0$ the last relation yields $d_2(r) = 0 \ \forall \ r \in R$ ie $d_2 = 0$ on R.

Theorem: Let R be a σ -prime ring with characteristic 2. I be a non-zero σ -ideal of R and d be a non-zero (α, β) derivation of R which commutes with σ . If $[d(x), x] \in Z(R) \ \forall \ x \in I$ then R is commutative.

Proof: Let $[d(x), x] \in Z(R) \forall x \in I$

By linearizing above equation we get
$$[d(x), y] + [d(y), x] \in Z(R) \ \forall \ x, y \in I.$$
 (10)

Replacing y by x^2 in (10) we have $[d(x), x^2] + [d(x)\alpha(x) + \beta(x)d(x), x] \in Z(R) \forall x \in I$

D. Bharathi* and P.V. Rama Krishna / (α, θ) Derivations and Commutativity in σ -prime ring/ IJMA-5(3), March-2014.

So $[d(x), x] \alpha(x) \in Z(R)$. For any $r \in R$ we have that

 $\alpha(r)\alpha(x) [d(x), x] = \alpha(x) [d(x), x] \alpha(r) = \alpha(x) \alpha(r) [d(x), x].$

$$[\alpha(x), \alpha(r)][d(x), x] = 0 \tag{11}$$

Since $[d(x), x] \in Z(R)$, we get from (11)

 $[\alpha(x), \alpha(r)]$ R[d(x), x] = 0. Also, I is σ - ideal so $\sigma([d(x),x]) = [d(x),x]$.

By σ -primeness of R we get either $[\alpha(x), \alpha(r)] = 0$ or [d(x), x] = 0

Case - 1: If [d(x), x] = 0 then by lemma 3 of [7] R is commutative.

Case - 2: If $[\alpha(x), \alpha(r)] = 0$ then $\alpha(x) \alpha(r)$ - $\alpha(r) \alpha(x) = 0$.

$$\alpha(xr)$$
- $\alpha(rx) = \alpha[x, r] = 0 \ \forall \ x \in I, r \in R.$

Since $\alpha \neq 0$ is automorphism we get $[x, r] = 0 \ \forall x \in I, r \in R$.

Therefore $I \subseteq Z(R)$. Replacing r by rs, where r, $s \in R$ in the above equation we get

[x, rs] = 0. Expanding this equation we get rsx = rxs = srx

We conclude that [r, s]x = 0 then [r, s]I = 0. $\forall r, s \in \mathbb{R}$.

$$[r, s] = 0 \ \forall \ r, s \in \mathbb{R}. \ (I \neq 0)$$

Hence R is commutative.

REFERENCES

- [1] N. Divinsky., On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III. 49 (1955), 19-22.
- [2] Posner.E.C., Derivation in prime rings, Proc. Amer. Math. Soc. 8(1957), 1093-1100.
- [3] J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19(1976), 113-115.
- [4] P. H. Lee. T. K. Lee., On derivations of prime rings, Chiness J. Math. 9(2) (1981), 107-110.
- [5] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109(1990), 47-52.
- [6] M. Bresar, centralizing mappings and derivations in prime rings, J. Algebra. 156(1993), 385-394.
- [7] L. Oukhtite and S.Salhi. Derivations and commutativity of σ -prime rings, Int, J. Contemp. Math. Sci., Vol.1, 2006, no.9, 439-448.
- [8] L. Oukhtite, S. Salhi., On commutativity of σ-prime rings. Glasnik Matematicki. Volume 41, No.1 (June 2006).
- [9] L. Oukhtite, S. Salhi., σ -prime rings with a special kind of automorphism. Submitted.

Source of support: Nil, Conflict of interest: None Declared