International Journal of Mathematical Archive-5(3), 2014, 290-294

$S_{\alpha-}$ OPEN SETS IN TOPOLOGICAL SPACES

A. Alex Francis Xavier¹ and Y. Palaniappan^{2*}

¹Assistant Professor of Mathematics, V.K.S College of Engineering and Technology Desiyamangalam, Karur-639120, Tamilnadu, India.

> ²Associate Professor of Mathematics (Retired), Arignar Anna Government Arts College, Musiri-621201, Tamilnadu, India.

> > (Received on: 10-03-14; Revised & Accepted on: 29-03-14)

ABSTRACT

In this paper, we investigate a new class of semi open sets called S_{α} open sets in topological spaces and its properties are studied.

Keywords: Semi open sets, α -closed sets, S_{α} -open sets.

2010 Mathematics subject classification: 54A05, 54A10, 54C05.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, a space means a topological space on which no separation axioms are assumed unless otherwise explicitly stated. In 1963 Levine [9] initiated semi open sets and gave their properties. Mathematicians gave in several papers interesting and different new types of sets. In 1965, O. Njastad [11] introduced α - closed sets. We recall the following definitions and characterizations. The closure (resp., interior) of a subset A of X is denoted by cl A (resp., int A), A subset A of X is said to be semi open [9] (resp, pre open [10], α - open [11], regular open [13]) set if A \subset cl int A (resp., A \subset int clA, A \subset int cl int A, A=int cl (A) The complement of semi open (resp., pre open, α - open, regular open) set is said to be semi closed (resp., pre closed, α - closed, regular closed) The intersection of all semi closed (resp., pre closed, α - closed, regular closed) sets of X containing A is called semi open (resp., pre open, α - open) sets of X contained in A is called the semi interior (resp., pre interior, α -interior) and denoted by s int A (resp., p int A α int A). The family of all semi open (resp., pre open, α - open, regular open, semi closed, pre closed, α - closed, regular closed by SO (X) (resp., PO (X), $\alpha O(X)$, RO (X), SC(X), PC(X), $\alpha C(X)$, RC(X)).

Definition: 1.1 A topological space (X, τ) is said to be

- 1. Extremally disconnected of cl $V \in \tau$, for every $V \in \tau$.
- 2. Locally indiscrete if every open subset of X is closed.
- 3. Hyperconnected if every nonempty open subset of X is dense.

Lemma: 1.2

- 1. If X is a locally is indiscrete space, then each semi open subset of X is closed and hence each semi closed subset of X is open [2].
- 2. A topological space X is hyperconnected if and only if $RO(X) = \{\emptyset, X\}$ [6]

Theorem 1.3.Let (X, τ) be a topological space. Then SO $(X, \tau) =$ SO $(X, \alpha O(X))$ [3].

Theorem: 1.4[9] Let (X, τ) be a topological space.

1. Let $A \subset X$. Then $A \in SO(X, \tau)$ if and only if cl A = cl int A.

2. If $\{A\gamma: \gamma \in \Gamma\}$ is a collection of semi open sets in a topological space (X, τ) , then $\cup \{A\gamma: \gamma \in \Gamma\}$ is semi open.

Corresponding author: Y. Palaniappan^{2*}

²Associate Professor of Mathematics (Retired), Arignar Anna Government Arts College, Musiri-621201, Tamilnadu, India. E-mail: palaniappany48@gmail.com

A. Alex Francis Xavier¹ and Y. Palaniappan^{2*}/ $S_{\alpha-}$ Open Sets in Topological Spaces / IJMA- 5(3), March-2014.

Theorem: 1.5 If Y is a semi open subspace of a space X, then a subset A of Y, is a semi open set in X if and only if A is semi open set in Y [12].

Theorem: 1.6 [4] Let (X, τ) be a topological space.

If $A \in \tau$, and $B \in SO(X)$, then $A \cap B \in SO(x)$.

Theorem: 1.7 Let X and Y be spaces. If A \subset X and B \subset Y then s int _{xxy} (AXB) =s int_x (A)X s int_y (B)[1].

Definition: 1.8 The subset A of a space X is said to be S_{p} open [13] if for each $x \in A$, there exists a pre closed set F such that $x \in F \subset A$.

Theorem: 1.9 [4] Let A be any subset of a space X. Then $A \in SC(X)$ if and only if int cl $A \subset A$.

Theorem: 1.10 [12] A subset A of a space X is dense in X if and only if A is semi dense in X.

Theorem: 1.11 [7] A space X is extremely disconnected if and only if RO(x) =RC(X).

2. Sa-open sets

In this section, we introduce and study the concept of $S\alpha$ - open sets in topological spaces and study some of its roperties.

Definition: 2.1 A semi open set A of a topological space X is said to be S α -open if for each $x \in A$, there exists a α -closed set F such that $x \in F \subset A$. A subset B of a topological space X is S_{α} -closed, if X-B is S_{α} -open.

The family of S_{α} -open subsets of X is denoted by $S_{\alpha}O(X)$.

Theorem: 2.2 A subset A of a topological space X is S_{α} open if and only if A is semi open and it is a union of α -closed sets.

Proof: Let A be S_{α} -open. Then A is semi open $x \in A$ implies, there exists α -closed set F_x Such that $x \in F_x \subset A$ Hence $\bigcup_{x \in A} F_x \subset A$. But $x \in A, x \in F_x$ implies $A \subset \bigcup_{x \in A} F_x$. This completes one half of the proof.

Let A be semi open and $A = \bigcup_{i \in I} F_i$, where each F_i is α -closed. Let $x \in A$. Then $x \in$ some $F_i \subset A$. Hence A is S_{α} -open.

The following result shows that any union of S_{α} -open sets in S_{α} -open.

Theorem: 2.3 Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of S_{α} -open sets in a topological space X. Then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is an S_{α} -open set.

Proof: The union of an arbitrary semi open sets is semi open by theorem 1.4. Suppose that $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$. This implies that there exists $\alpha_0 \in \Delta$ such that $x \in A_{\alpha 0}$ and as $A_{\alpha 0}$ is an S_{α} -open set, there exists a α -closed set F in X such that $x \in F \subset A_{\alpha 0} \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$. Therefore $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is a S_{α} -open set.

From theorem 2.3, it is clear that any intersection of S_{α} –closed sets of a topological space X is S_{α} –closed. The following example shows that the intersection of two S_{α} –open sets need not be S_{α} –open.

Example: 2.4 Let X= {a, b, c}

$$\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$$

 S_{α} -open sets = { \emptyset , {a, c}, {b, c}, X}{a, c} \cap {b, c}={c} is not an S_{α} -open set

A. Alex Francis Xavier¹ and Y. Palaniappan^{2*}/ $S_{\alpha-}$ Open Sets in Topological Spaces / IJMA- 5(3), March-2014.

Theorem 2.5: A subset G of the topological space X is S_{α} -open if and only if for each $x \in G$, there exists an S_{α} -open set H such that $x \in H \subset G$.

Proof: Let G be a S_{α} -open set in X. Then for each $x \in G$, we have G is an S_{α} -open set such that $x \in G \subset G$.

Conversely, let for each $x \in G$, there exists an S_{α} -open set H such that $x \in H \subset G$. Than G is a union of S_{α} -open sets, hence by theorem 2.3, G is S_{α} -open.

Theorem: 2.6

1. Regular closed set is S_{α} -open set.

2. Regular open set is S_{α} -closed set.

Proof:

- 1. Let A be regular closed in a topological space X. A=cl int A. A is semi open. A is α closed. x \in A implies x \in A \subset A. Hence A is S_{α} -open.
- 2. Obvious.

Theorem 2.7: If a space X is a T_1 -space, then $S_{\alpha}(X) = SO(X)$.

Proof: $S_{\alpha}(X) \square \subset SO(X)$. Let $A \in SO(X)$. Let $x \in A$. AS X is a T_1 -space, $\{x\}$ is closed. Every closed set in X is α -closed. Hence $x \in \{x\} \subset A \in S\alpha O(X)$. This completes the proof.

Theorem: 2.8 If the family of all semi open subsets of a topological space is a topology on X, then the family of S α O (X) is also a topology on X.

Proof: Obvious.

Theorem: 2.9 If a space X is hyperconnected, then the only S_{α} -open sets of X are \emptyset and X.

Proof: Let $A \subset X$ such that A is S_{α} -open in X. If A=X, there is nothing to prove. If $A \neq X$ we have to prove $A=\emptyset$. As A is S_{α} -open, for each $x \in A$, there exists a α -closed set F such that $x \in F \subset A$. So X-A $\subset X$ -F. X-A is semi closed. Therefore int $cl(X-A) \subset (X-A)$. Since X is hyper connected, then by definition 1.1 and theorem 1.10 scl(int cl (X-A))=X \subset X-A. Hence X-A=X. So $A=\emptyset$.

Theorem: 2.10 If a topological space X is locally indiscrete, then every semi open set is S_{α} -open.

Proof: Let A be semi open in X.

Then A \subset cl int A. As X is locally indiscrete, int A is closed. Hence int A=cl int A. So, cl int A= int A \subset A. So A is regular closed. By theorem 2.6(1)-A is S_a-open.

Theorem: 2.11 If a topological space (X,τ) is T_1 or locally indiscrete, then $\tau \subset S_{\alpha}0(X)$.

Proof: Let (X, τ) be T_1 . As every open set is semi open, $\tau \subseteq S0(x) = S_{\alpha}0(X)$.

Let (X, τ) be locally indiscrete then $\tau \subset SO(x) \subset S\alpha O(X)$.

Theorem: 2.12 If B in clopen subset of a space X and A is S_{α} -open in X, then $A \cap B \in S_{\alpha}O(X)$.

Proof: Let A be S_{α} -open .So A is semi open. B is open and closed in x. Then by theorem 1.6, A \cap B is semi open in X. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Since A is S_{α} -open, there exists a α -closed set F such that $x \in F \subset A$. B is closed and hence α -closed. F \cap B is α -closed. $x \in F \cap B \subset A \cap B$. So A \cap B is S_{α} -open.

Theorem: 2.13 Let X be a locally indiscrete and $A \subset X$, $B \subset X$. It $A \in S_{\alpha} 0(X)$ and B is open, and then $A \cap B$ is S_{α} -open in X.

Proof: Follows from theorem 2.12.

Theorem: 2.14 Let X be extremally disconnected and $A \subset X$, $B \subset X$. If $A \in S_{\alpha}0$ (X) and $B \in R0(X)$ then $A \cap B$ is S_{α} -open in X.

Proof: Let $A \in S_{\alpha}0$ (X) and $B \in R0(X)$. Hence A is semi open. By Theorem 1.6, $A \cap B \in S0$ (X). *©* 2014, IJMA. All Rights Reserved

A. Alex Francis Xavier¹ and Y. Palaniappan^{2*}/ $S_{\alpha-}$ Open Sets in Topological Spaces / IJMA- 5(3), March-2014.

Let $x \in A \cap B$. This implies $x \in A$ and $x \in B$. As A is S_{α} -open, there exists a α -closed set F such that $x \in F \subset A$. X is extremally disconnected. By Theorem 1.11. B is a regular closed set. This implies $F \cap B$ is α -closed. $x \in F \cap B \subset A \cap B$. So $A \cap B$ is S_{α} -open.

3. S_α- Operations

Definition: 3.1 A subset N of a topological space X is called S_{α} - neighborhood of a subset A of X, if there exists an S_{α} -open set U such that $A \subset U \subset N$. When $A = \{x\}$, we say N is S_{α} - neighborhood of x.

Definition: 3.2 A point $x \in X$ is said to be an S_{α} - interior point of A, if there exists an S_{α} -open set U containing x such that $x \in U \subset A$. The set of all S α -interior points of A is said to be S_{α} - interior of A and it is denoted by S_{α} - int A.

Theorem: 3.3 Let A be any subset of a topological space X. If x is a S_{α} -interior point of A, then there exists a semi closed set F of X containing x such that $F \subset A$.

Proof: Let $x \in S_{\alpha}$ - int A. Then there exists a S_{α} -open set U containing x such that $U \subset A$. Since U is in S_{α} -open set, there exists a α -closed set F such that $x \in F \subset U \subset A$.

Theorem: 3.4 For any subset A of a topological space X, the following statements are true

1. The $S_{\alpha}\text{-interior}$ of A is the union of all $S_{\alpha}\text{-open}$ sets contained in A.

2. $S_{\alpha}\text{-}$ int A is the largest $S_{\alpha}\text{-}\text{open}$ set contained in A.

3. A is S_{α} - open set if and only of $A=S_{\alpha}$ int A.

Proof: obvious.

From 3, are see S_{α} int S_{α} int $A = S_{\alpha}$ int A.

Theorem: 3.5 If A and B are any subsets of a topological space X. Then,

1. $S_{\alpha} \text{ int } \emptyset {=} \emptyset \text{ and } S_{\alpha} \text{ int } X {=} X$

2. S_{α} int A \subset A

3. if $A \subset B$, then S_{α} int $A \subset S_{\alpha}$ int B

4. S_{α} int AUS α int B \subset S α int (AUB)

5. S_{α} int $(A \cap B) \square \subset S_{\alpha}$ int $A \cap S_{\alpha}$ int B

6. S_{α} int (A-B) $\Box \subset S_{\alpha}$ int A-S_{α} int B

Proof: 1-5, obvious.

6. Let $x \in S_{\alpha}$ int (A-B). There exists an S_{α} -open set U such that $x \in U \subset A$ -B. That is $U \subset A$. $U \cap B = \emptyset$ and $x \notin B$. Hence $x \in S_{\alpha}$ int A, $x \notin S_{\alpha}$ int B. Hence $x \in S_{\alpha}$ int A-S_{α} int B. This completes the proof.

Definition: 3.6 Intersection of S_{α} -closed sets containing F is called the S_{α} -closure of F and is denoted by S_{α} cl F.

Theorem: 3.7 Let A be a subset of the space X. $x \in X$ is in S_{α} -closed of A if and only if $A \cap U \neq \emptyset$, for every S_{α} -open set U containing x.

Proof: To prove the theorem, let us prove the contra positive.

 $x \notin scl A \Leftrightarrow$ There exists an S_{α} -open set U containing x that does not intersect A. Let $x \notin S_{\alpha}$ cl A. X- S_{α} cl A is an S_{α} -open set containing x that does not intersect A. Let U be an S_{α} -open set set containing x that does not intersect A. X-U is a S_{α} -closed set containing A. S_{α} cl A \subset (X-U)

x∉X-U⇒x∉S_αcl A.

Theorem: 3.8 Let A be any subset of a space X $.A \cap F \neq \emptyset$ for every α closed set F of X containing x, then the point x is in the S_{α} - closure of A.

Proof: Let U be any S_{α} - open set containing x. So, there exists a α -closed set F such that $x \in F \subset U$. $A \cap F \neq \emptyset$ implies $A \cap U \neq \emptyset$ for every S_{α} -open set U containing x. Hence $x \in S_{\alpha}$ cl A, by theorem 3.7

Theorem: 3.9 For any subset F of a topological space X, the following statements are true.

1. S_{α} cl F is the intersection of all. S_{α} -closed sets in X containing F.

2. S_{α} cl F is the smallest . S_{α} -closed set containing F.

3. F is S_{α} closed if and only if $F = S_{\alpha}$ cl F.

Proof: Obvious.

© 2014, IJMA. All Rights Reserved

Theorem: 3.10 If F and E are any subsets of a topological space X, then

1. S_{α} cl $\emptyset = \emptyset$ and. S_{α} cl X = X2. For any subset F of X, $F \subset S_{\alpha}$ cl F.

3. If $F \subseteq E$, then S_{α} cl $F \subseteq S_{\alpha}$ cl E. 4. S_{α} cl $F \cup S_{\alpha}$ cl $E \subseteq S_{\alpha}$ cl $(F \cup E)$.

5. S_a cl (F \cap E) \subset S_a cl F \cap S_a cl E.

Proof: Obvious.

Theorem: 3.11 For any subset A of a topological space X, the following statements are true.

1. X- S_{α} cl A= S_{α} int(X-A).

2. X- S_{α} int A= S_{α} cl A.

3. S_{α} int A= X- S_{α} cl A.

Proof:

1. X- S_{α} cl A is a S_{α} -open set contained in (X-A). Hence X- S_{α} cl A \subset S_{α} int (X-A).

If X- S_{α} cl A \neq S_{α} int(X-A), then X- S_{α} int (X-A) is a S_{α} closed set properly contained in S_{α} cl A, a contradiction. Hence X- S_{α} cl A= S_{α} int(X-A). 2&3 follow from 1.

REFERENCES

- 1. N.K. Ahmed, On some type of separation axioms, M.Sc., Thesis, College of Science, Salahaddin Univ., 1990.
- 2. B.A. Asaad, Utilization of some types of pre open sets in topological space, M.Sc., Thesis, College of Science, Dohuk Univ., 2007.
- 3. D.E. Cameron, Properties of S-closed spaces, Proc. Amer.Math.Soc.72 (1978)581-586.
- 4. S.G. Crossley, S.K. Hildebrand, Semi closure, Texas J.Sci.22 (1971)99-112.
- 5. G. Dimaio, T.Noiri, On S closed spaces, Indian J. Pure. Appl. Math 18(3) (1987) 226-233 .
- 6. K. Dlaska, M. Ganster, S-sets and Co-S-closed topologies, Indian J. Pure. Appl. Math 23(10) (1992) 731-737.
- 7. J. Dontchev, Survey on pre open sets, The proceedings of Yatsushiro topological conference (1998) 1-18.
- 8. J.E. Joseph, M.H. Kwach, On S-closed spaces, Proc. Amer. Math. Soc. 80(2) (1980) 341-348.
- 9. N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math Monthly 70(1963) 36-41.
- A.S Mashhour, ME. Abd El- Monsef, S.N. Eldeeb, On pre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982)47-53.
- 11. O. Njastad, On some classes of nearly open sets, Pacific J. Math, 15(3) (1965)961-970.
- T. Noiri, On semi continuous mapping Accad. Naz. Luicei. Rend. CLSci. Fis. Mat. Natur 54(8091973)210-214.
- A.H. Shareef, S_p-open sets, S_p-continuity and, S_p-compactness in topological spaces, M.Sc., Thesis, College of science, Sulaimani Univ., 2007.
- 14. L.A. Steen , J.A. Seebach Jr., Counter examples in topology, Holt, Rinehart and Winston Inc., New York 1970.
- 15. N.V. Velicko, H-Closed topological spaces, Amer. Math Soc. Transl. 78(2) (1992)103-118.

Source of support: Nil, Conflict of interest: None Declared