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ABSTRACT 
In this paper, we investigate a new class of semi open sets called Sα-open sets in topological spaces and its properties 
are studied. 
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1. INTRODUCTION AND PRELIMINARIES 
 
Throughout this paper, a space means a topological space on which no separation axioms are assumed unless otherwise 
explicitly stated. In 1963 Levine [9] initiated semi open sets and gave their properties. Mathematicians gave in several 
papers interesting and different new types of sets.  In 1965,   O. Njastad [11] introduced α- closed sets. We recall the 
following definitions and characterizations. The closure  (resp., interior ) of a subset  A of X  is denoted by c l A (resp., 
int A),A subset A of X is said to be semi open [9] (resp, pre open  [10], α- open [11],  regular open [13]) set if A⊂ cl int 
A (resp., A⊂ int clA, A⊂ int cl int A, A=int cl (A) The complement  of semi open (resp., pre open, α- open, regular 
open) set is said to be semi closed ( resp., pre closed, α- closed, regular closed) The intersection of all semi closed 
(resp., pre closed, α- closed, regular closed) sets of X containing A is called semi closure  (resp., pre closure, α–closure, 
regular closure)  and denoted by scl A (resp., pcl A, αcl A, rcl A). The union of all semi open (resp., pre open, α- open) 
sets of X contained in A is called the semi interior (resp., pre interior, α-interior) and denoted by s int A (resp., p int A α 
int A). The family  of all semi open (resp., pre open, α- open, regular open, semi closed, pre closed, α- closed, regular 
closed) subsets of a topological space X is denoted by SO (X) (resp., PO (X), αO(X) ,RO (X), SC(X), PC(X), 
αC(X),RC(X) ). 
 
Definition: 1.1 A topological space (X, τ) is said to be 
1.  Extremally disconnected of cl V∈τ, for every V∈τ.              
2.  Locally indiscrete if every open subset of X is closed.                                    
3.  Hyperconnected   if every nonempty open subset of X is dense. 
 
Lemma: 1.2 
1. If X is a locally is indiscrete space, then each semi open subset of X is closed and hence each semi closed subset of 

X is open [2]. 
2. A topological space X is hyperconnected if and only if R0(X) = {∅, X} [6] 
 
Theorem 1.3 .Let (X, τ)be a topological space. Then SO(X, τ) =SO(X, αO(X))[3]. 
 
Theorem: 1.4[9] Let (X, τ) be a topological space. 
1. Let A⊂X. Then A∈SO (X, τ) if and only if cl A = cl int A.  
2. If {Aγ: γ∈Γ} is a collection of semi open sets in a topological space (X, τ), then ∪{Aγ: γ∈Γ} is  semi open.  
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Theorem: 1. 5 If Y is a semi open subspace of a space X, then a subset A of Y, is a semi open set in X if and only if A 
is semi open set in Y [12]. 
 
Theorem: 1.6 [4] Let (X, τ) be a topological space.  
 
If A∈τ, and B∈SO(X), then A∩B∈SO(x). 
 
Theorem: 1.7 Let X and Y be spaces. If A⊂X and B⊂Y then s int xxy  (AXB) =s intx (A)X s inty (B)[1]. 
 
Definition: 1.8 The subset A of a space X is said to be Sp- open [13] if for each x∈A, there exists a pre closed set F 
such that x∈ F⊂A. 
 
Theorem: 1.9 [4] Let A be any subset of a space X. Then A∈SC(X) if and only if int cl A⊂A. 
 
Theorem: 1.10 [12] A subset A of a space X is dense in X if and only if A is semi dense in X. 
 
Theorem: 1.11 [7] A space X is extremely disconnected if and only if RO(x) =RC(X).  
 
2. Sα-open sets 
 
In this section, we introduce and study the concept of Sα- open sets in topological spaces and study some of its 
roperties.   
 
Definition: 2.1 A semi open set A of a topological space X is said to be Sα-open if for each x∈A, there exists a           
α-closed set F such that x∈F⊂A. A subset B of a topological space X is Sα –closed, if X-B is Sα-open. 
 
The family of Sα-open subsets of X is denoted by SαO(X). 
 
Theorem: 2.2 A subset A of a topological space X is Sα-open if and only if A is semi open and it is a union of α-closed 
sets. 
 
Proof: Let A be Sα-open. Then A is semi open x∈A implies, there exists α-closed set Fх Such that x∈Fx ⊂A Hence 



Α∈x
Fx ⊂A.  But x∈A, x∈Fx implies A⊂

x∈Α
 Fx.. This completes one half of the proof.  

 

Let A be semi open and A=
Ii∈

Fi, where each Fi is α-closed. Let x∈A. Then x∈ some  Fi ⊂A. Hence A is Sα-open. 

 
The following result shows that any union of Sα-open sets in Sα-open. 
 

Theorem: 2.3 Let {Aα : α∈Δ} be a family of Sα –open sets in a topological space X.  Then 
∆∈α

Aα is an Sα  -open set. 

Proof: The union of an arbitrary semi open sets is semi open by theorem 1.4.  Suppose that x∈
∆∈α

Aα . This implies that 

there exists α0 ∈Δ such that x∈Aα0 and as Aα0 is an Sα –open set, there exists a α-closed set F in X such that x∈F⊂ Aα0⊂



∆∈α
 Aα . Therefore 

∆∈α
 Aα is a Sα-open set.  

 
From theorem 2.3, it is clear that any intersection of Sα –closed sets of a topological space X is Sα –closed. The 
following example shows that the intersection of two Sα –open sets need not be Sα –open. 
 
Example: 2.4 Let X= {a, b, c} 
 
τ = {∅, {a}, {b}, {a, b}, X} 
 
Sα –open sets = {∅, {a, c}, {b, c}, X}{a, c} ∩{b, c}={c} is not an Sα –open set    
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Theorem  2.5: A subset G of the topological space X is Sα  -open if and only if for each x∈G, there exists an  Sα –open 
set H such that x∈H⊂G. 
 
Proof: Let G be a Sα –open set   in X. Then for each x∈G, we have G is an Sα –open set such that x∈G⊂G. 
 
Conversely, let for each x∈G, there exists an Sα –open set H such that x∈H⊂G. Than G is a union of Sα –open sets, 
hence by theorem 2.3, G is Sα –open. 
 
Theorem: 2.6  
1. Regular closed set is Sα –open set. 
2. Regular open set is Sα –closed set. 
 
Proof:  
1. 1. Let A be regular closed in a topological space X. A=cl int A. A is semi open. A is α- closed. x∈A implies 

x∈A⊂A. Hence A is   Sα –open. 
2. Obvious. 
 
Theorem 2.7: If a space X is a T1 –space, then Sα (X) = SO(X). 
 
Proof: Sα (X) ⊂ SO(X). Let A∈SO(X). Let x∈A. AS X is a T1 –space, {x} is closed. Every closed set in X is α-
closed. Hence x∈{x} ⊂ A∈ SαO(X). This completes the proof.  
 
Theorem: 2.8 If the family of all semi open subsets of a topological space is a topology on X, then the family of SαO 
(X) is also a topology on X. 
 
Proof: Obvious.  
 
Theorem: 2.9 If a space X is hyperconnected, then the only Sα –open sets of X are ∅ and X. 
 
Proof: Let A⊂X such that A is Sα –open in X. If A=X, there is nothing to prove. If A ≠X we have to prove A=∅. As A 
is Sα –open, for each x∈A, there exists a α–closed set F such that x∈F⊂A. So X-A ⊂X-F.  X-A is semi closed. 
Therefore int cl(X-A) ⊂ (X-A). Since X is hyper connected, then by definition 1.1 and theorem 1.10 scl(int cl (X-
A))=X⊂X-A. Hence X-A=X. So A=∅. 
 
Theorem: 2.10 If a topological space X is locally indiscrete, then every semi open set is Sα –open.  
 
Proof: Let A be semi open in X. 
 
Then A⊂ cl int A. As X is locally indiscrete, int A is closed. Hence int A=cl int A. So, cl int A= int A⊂A. So A is 
regular closed. By theorem 2.6(1)-A is Sα –open. 
 
Theorem: 2.11 If a topological space (X,τ) is T1 or locally indiscrete, then τ⊂ Sα0 (X). 
 
Proof: Let (X, τ) be T1 .As every open set is semi open, τ⊂S0(x) = Sα0 (X). 
 
Let (X, τ) be locally indiscrete then τ⊂SO(x) ⊂ SαO (X). 
 
Theorem: 2.12 If B in clopen subset of a space X and A is Sα –open in X, then A∩B∈Sα0(X). 
 
Proof: Let A be Sα –open .So A is semi open. B is open and closed in x. Then by theorem 1.6, A∩B is semi open in X.  
Let x ∈A∩B.  Then x∈A and x∈B. Since A is Sα –open, there exists a α –closed set F such that x∈F⊂A. B is closed 
and hence α –closed. F∩B is α –closed. x∈F∩B⊂A∩B. So A∩B is Sα –open. 
 
Theorem: 2.13 Let X be a locally indiscrete and   A⊂X, B⊂X. It A∈Sα0(X) and B is open, and then A∩B is Sα –open 
in X. 
 
Proof: Follows from theorem 2.12.  
 
Theorem: 2.14 Let X be extremally disconnected and A⊂X, B⊂X. If A∈Sα0 (X) and B∈R0(X) then A∩B is Sα –open 
in X.  
 
Proof: Let A∈ Sα0 (X) and B∈R0(X). Hence A is semi open. By Theorem 1.6, A∩B∈S0 (X). 
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Let x∈A∩B. This implies x∈A and x∈B. As A is Sα –open, there exists a α –closed set F such that x∈F⊂A.  X is 
extremally disconnected. By Theorem 1.11.  B is a regular closed set. This implies F∩B is α-closed. x∈F∩B⊂A∩B. So 
A∩B is Sα – open. 
 
3. Sα- Operations 
 
Definition: 3.1 A subset  N of a topological space X is called Sα - neighborhood of a subset A of X, if there exists an 
Sα-open  set  U such that A⊂U⊂N. When A={x}, we say N is Sα- neighborhood of x. 
 
Definition: 3.2 A point   x∈X is said to be an Sα- interior point of A, if there exists an Sα-open set   U containing x such 
that x∈U⊂A. The set of all Sα-interior points of A is said to be Sα- interior of A and it is denoted by Sα- int A. 
 
Theorem: 3.3 Let A be any subset of a topological space X. If x is a Sα-interior point of A, then there exists a semi 
closed set F of X containing x such that F⊂A. 
 
Proof: Let x∈Sα- int A. Then there exists a Sα-open set U containing x such that U⊂A. Since U is in Sα-open set, there 
exists a α-closed set F such that x∈F⊂U⊂A. 
 
Theorem: 3.4 For any subset A of a topological space X, the following statements are true 
1. The Sα-interior of A is the union of all Sα-open sets contained in A. 
2. Sα- int A is the largest Sα-open set contained in A. 
3. A is Sα- open set if and only of A=Sα int A. 
 
Proof:  obvious.   
 
From 3, are see Sα int Sα int A= Sα int A. 
 
Theorem: 3.5 If A and B are any subsets of a topological space X. Then, 
1. Sα int ∅=∅ and Sα int X=X 
2. Sα int A⊂A 
3. if A⊂B, then Sα int A⊂Sα int B 
4. Sα int A∪Sα int B⊂Sαint (A∪B) 
5. Sα int (A∩B) ⊂Sα int A∩Sα int B 
6. Sα int (A-B) ⊂Sα int A-Sα int B 
 
Proof: 1-5, obvious.   
6.  Let x∈Sα int (A-B). There exists an Sα-open set U such that x∈U⊂A-B. That is U⊂A. U∩B=∅ and x∉B . Hence 
x∈Sα int A, x∉Sα int B. Hence x∈Sα int A-Sα int B. This completes the proof. 
 
Definition: 3.6 Intersection of Sα-closed sets containing F is called the Sα-closure of F and is denoted by Sα cl F. 
 
Theorem: 3.7 Let A be a subset of the space X. x∈X is in Sα-closed of A if and only if A∩U≠∅, for every Sα-open set 
U containing x. 
 
Proof: To prove the theorem, let us prove the contra positive. 
x∉scl A ⇔There exists an Sα-open set U containing x that does not intersect A. Let x∉Sα cl A. X-Sα cl A is an Sα-open 
set containing x that does not intersect A. Let U be an Sα-open set set containing x that does not intersect A. X-U is a Sα 
–closed set containing A. Sα cl A⊂ (X-U) 
x∉X-U⇒x∉Sαcl A. 
 
Theorem: 3.8 Let A be any subset of a space X .A∩F≠∅ for every α closed set F of X containing x, then the point x is 
in the Sα- closure of A. 
 
Proof: Let U be any Sα- open set containing x. So, there exists a α-closed set F such that x∈F⊂U. A∩F≠∅ implies 
A∩U≠∅ for every Sα -open set U containing x. Hence x∈Sα cl A, by theorem 3.7 
 
Theorem: 3.9 For any subset F of a topological space X, the following statements are true. 
1. Sα cl F is the intersection of all. Sα- closed sets in X containing F. 
2. Sα  cl F is the smallest . Sα –closed set containing F. 
3. F is Sα closed if and only if F= Sα cl F.  
 
Proof: Obvious. 
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Theorem: 3.10 If F and E are any subsets of a topological space X, then 
1. Sα cl ∅=∅ and. Sα cl X=X 
2. For any subset F of X, F⊂ Sα cl F. 
3. If F⊂E, then Sα  cl F⊂ Sα cl E. 
4. Sα cl F∪ Sα cl E ⊂ Sα cl (F∪E). 
5. Sα cl (F∩E)⊂ Sα cl F ∩ Sα cl E. 
 
Proof: Obvious. 
 
Theorem: 3.11 For any subset A of a topological space X, the following statements are true. 
1. X- Sα cl A= Sα int(X-A). 
2. X- Sα int A= Sα cl A. 
3. Sα int A= X- Sα cl A.  
 
Proof:  
1. X- Sα cl A is a Sα-open set contained in (X-A). Hence X- Sα cl A ⊂ Sα int (X-A). 
 
If X- Sα cl A ≠ Sα int(X-A), then X- Sα int (X-A) is a Sα closed set properly contained in Sα cl A, a contradiction. Hence 
X- Sα cl A= Sα int(X-A). 2&3 follow from 1.     
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