ON δ-H CONTINUOUS FUNCTIONS IN GTS WITH HEREDITARY CLASSES

K. Karuppayi*

Department of Mathematics, Bharathiar University Arts and Science College, Gudalur, The Nilgiris -643212, Tamilnadu, India.

(Received on: 28-02-14; Revised & Accepted on: 28-03-14)

ABSTRACT

In this paper, we introduce a new class of functions called δ-H continuous function. We obtain several characterizations and some of their properties. Also, we investigate its relationship with other types of functions.

Keywords: δ-H cluster points, R-H-open set, θ-H-continuous, strongly δH-continuous, almost-H-continuous, SH-R space, AH-R space with hereditary classes.

Mathematics Subject Classification 2010: 54A05, 54A10.

1. INTRODUCTION

In 2007, Csaśzár [3] defined a nonempty class of subsets of a nonempty set, called hereditary class and studied modification of generalized topology via hereditary classes. Also, it is studied in [8]. The aim of the paper is to extend the study of the properties of the generalized topologies via hereditary classes. A subfamily μ of $\mathcal{P}(X)$ is called a generalized topology (GT) [2] if $\emptyset \in \mu$ and μ is closed under arbitrary union. The pair (X, μ) is called a generalized topological space (GTS). Members of μ are called μ-open sets and its complement is called a μ-closed set.

The largest μ-open set contained in a subset A of X is denoted by $i_\mu(A)$ [1] and is called the μ-interior of A. The smallest μ-closed set containing A is called the μ-closure of A and is denoted by $c_\mu(A)$ [1].

A generalized topology μ is said to be a quasi-topology if μ is closed under finite intersection. Let X be a nonempty set. A hereditary class H of X is a nonempty collection of subset of X such that $A \subset B$, $B \in H$ implies $A \in H$ [3].

A hereditary class H of X is an ideal [8] if $A \cup B \in H$ whenever $A \in H$ and $B \in H$.

An ideal I in a topological space (X, τ) is said to be codense if $\tau \cap I = \{\emptyset\}$. With respect to the generalized topology μ of all μ-open sets and a hereditary class H, for each subset A of X, a subset $A^* (H)$ or simply A^* of X is defined by $A^* = \{x \in X: M \cap A \in H$ for every $M \in \mu$ such that $x \in M \}$ [3].

In this paper, we introduce the notions of δ-H-open sets and δ-H-continuous functions in GTS with hereditary classes. We obtain several characterizations and some properties of δ-H-continuous functions. Also, we investigate the relationships with other related functions.

Corresponding author: K. Karuppayi*

Department of Mathematics, Bharathiar University Arts and Science College, Gudalur, The Nilgiris -643212, Tamilnadu, India.

E-mail: karuppayimutharasu@yahoo.com
2. \(\delta - H \)-sets

In this section, we introduce \(\delta - H \)-open sets and the \(\delta - H \)-closure of a set in a GTS with hereditary class and investigate their basic properties. It turns out that they have similar properties with \(\delta - \) open and the \(\delta - \) closure [11].

A subset \(A \) of a GTS \((X, \mu)\) with hereditary class \(H \) is said to be an \(R - H \)-open set (resp. regular open set) if \(i_\mu (c^*(A)) = A \) (resp. \(i_\mu (c^*(A)) = A \)). We call a subset \(A \) of \(X \) is \(R - H \)-closed if its complement is \(R - H \)-open.

Let \(A \) be a subset of a GTS \((X, \mu)\) with a hereditary class \(H \). A point \(x \) of \(X \) is called a \(\delta - H \)-cluster point of \(A \) if \(A \cap i_\mu (c*(U)) \neq \emptyset \) for each \(\mu \)-open neighborhood \(U \) of \(x \). The family of all \(\delta - H \)-cluster points of \(A \) is called the \(\delta - H \)-closure of \(A \) and is denoted \([A] \). The complement of a \(\delta - H \)-closed set of \(X \) is said to be \(\delta - H \)-open.

Lemma: 2.1 Let \(A \) and \(B \) be subsets of a quasi topological space \((X, \mu)\) with a hereditary class \(H \). Then, the following properties hold,

(a) \(i_\mu (c^*(A)) \) is \(R - H \)-open,
(b) If \(A \) and \(B \) are \(R - H \)-open, then \(A \cap B \) is \(R - H \)-open,
(c) If \(A \) is regular open, then \(A \) is \(R - H \)-open,
(d) If \(A \) is \(R - H \)-open, then \(A \) is \(\delta - H \)-open,
(e) Every \(\delta - H \)-open set is the union of a family of \(R - H \)-open sets.

Proof:

(a) Let \(A \) be a subset of \(X \) and \(V = i_\mu (c^*(A)) \). Then, we have
\[
i_\mu (c^*(V)) = i_\mu (c^*(i_\mu (c^*(A)))) \subset i_\mu (c^*(c^*(A))) = i_\mu (c^*(A)) = V \quad \text{and also} \quad V = i_\mu (V) \subset i_\mu (c^*(V)).
\]
Therefore, \(i_\mu (c^*(V)) = V \).

(b) Let \(A \) and \(B \) be \(R - H \)-open. Then,
\[
A \cap B = i_\mu (c^*(A)) \cap i_\mu (c^*(B)) = i_\mu (c^*(A \cap c^*(B)) \supset i_\mu (c^*(A \cap B)) = A \cap B.
\]
Therefore \(A \cap B \) is \(R - H \)-open.

(c) Let \(A \) be regular open. Since \(\mu^* \supset \mu \), we have \(A = i_\mu (A) \subset i_\mu (c^*(A)) \subset i_\mu (c_\mu (A)) = A \) and hence \(i_\mu (c^*(A)) = A \). Therefore, \(A \) is \(R - H \)-open.

(d) Let \(A \) be any \(R - H \)-open set. For each \(x \in A \), \((X - A) \cap A = \emptyset \) and \(A \) is \(R - H \)-open. Hence \(x \notin [X - A] \) for each \(x \in A \). Therefore \(x \notin (X - A) \) implies \(x \notin [X - A] \). Therefore, \([X - A] \subset (X - A) \) since, \(S \subset [S] \) for any subset \(S \) of \(X \). Hence \(A \) is \(\delta - H \)-open.

(e) Let \(A \) be a \(\delta - H \)-open set. Then \(X - A \) is \(\delta - H \)-closed and hence \([X - A] \subset (X - A) \). For each \(x \in A \), there exists an \(\mu \)-open neighborhood \(V_x \) such that \(i_\mu (c^*(V_x)) \cap (X - A) = \emptyset \).

Therefore, \(x \in V_x \subseteq i_\mu (c^*(V_x)) \subset A \), hence \(A = \cup \{i_\mu (c^*(V_x)) \mid x \in A \} \). By (a),
\[
i_\mu (c^*(V_x)) \text{ is } R - H \text{-open for each } x \in A.
\]

Lemma: 2.2 Let \(A \) and \(B \) be subsets of a quasi topological space \((X, \mu)\) with a hereditary class \(H \). Then, the following properties hold:

(a) \(A \subseteq [A] \);
(b) If \(A \subseteq B \), then \([A] \subseteq [B] \);
(c) \([A] = \cap \{F \subseteq X \mid A \subseteq F \text{ and } F \text{ is } \delta - H \text{-closed}\};
(d) If \(A \) is a \(\delta - H \)-closed set of \(X \) for each \(\alpha \in \Delta \), then \(\cap \{A_\alpha \mid \alpha \in \Delta \} \) is \(\delta - H \)-closed;
(e) \([A] \subseteq [A] \).
Proof:
(a) For any $x \in A$ and any μ-open neighborhood V of x, we have $\emptyset \neq A \cap V \subset A \cap i_\mu (c_\mu^*(V))$ and hence $x \notin [A]_{\delta-H}$. Therefore, $A \subset [A]_{\delta-H}$.

(b) Suppose that $x \notin [B]_{\delta-H}$. There exists a μ-open neighborhood V of x such that $x \notin i_\mu (c_\mu^*(V)) \cap B$. Hence $i_\mu (c_\mu^*(V)) \cap A = \emptyset$. Therefore, $x \notin [A]_{\delta-H}$.

(c) Suppose that $x \in [A]_{\delta-H}$. For any μ-open neighborhood V of x and any $\delta-H$-closed set F containing A, $\emptyset \neq A \cap i_\mu (c_\mu^*(V)) \subset F \cap i_\mu (c_\mu^*(V))$ and hence $x \notin [F]_{\delta-H}$. Therefore $x \notin \cap \{ F \subset X \mid A \subset F \text{ and } F \text{ is } \delta-H\text{-closed} \}$. Conversely, suppose that $x \notin [A]_{\delta-H}$. There exists a μ-open neighborhood V of x such that $i_\mu (c_\mu^*(V)) \cap A = \emptyset$. By Lemma 2.1, $A = i_\mu (c_\mu^*(V))$, which implies that A is $\delta-H$-closed set which contains A and does not contain x. Therefore, $x \notin \cap \{ F \subset X \mid A \subset F \text{ and } F \text{ is } \delta-H\text{-closed} \}$.

(d) For each $\alpha \in \Delta [\cap \alpha \in \Delta A]_{\delta-H} \subset [A]_{\delta-H} = A_{\alpha}$ and hence $[\cap \alpha \in \Delta A]_{\delta-H} \subset [\cap \alpha \in \Delta A]_{\delta-H}$. By (a) $[\cap \alpha \in \Delta A]_{\delta-H}$ is $\delta-H$-closed.

(e) This follows immediately from (c) and (d).

A point x of a quasi topological space (X, μ) with a hereditary class H is called a δ-cluster point of a subset A of X if $i_\mu (c_\mu^*(V)) \cap A \neq \emptyset$ for every μ-open set V containing x. The set of all δ-cluster points of A is called the δ-closure of A and is denoted by $c_\delta(A)$. If $c_\delta(A) = A$, then A is said to be δ-closed [6]. The complement of a δ-closed set is said to be δ-open. It is well-known that the family of all regular open sets of (X, μ) with a hereditary class H is a basis for a quasi topological space which is weaker than μ. This is called the semi-regularization of μ and is denoted by μ_s.

Theorem 2.3 Let (X, μ) be a quasi topological space with a hereditary class H and $\mu_{\delta-H}\{A \subset X \mid A$ is a $\delta-H$-open set of $(X, \mu)\}$. Then $\mu_{\delta-H}$ is a topology such that $\mu_s \subset \mu_{\delta-H} \subset \mu$.

Proof: By Lemma 2.1, $\mu_s \subset \mu_{\delta-H} \subset \mu$. Next we show that $\mu_{\delta-H}$ is a topology.

(1) It is obvious that $\emptyset, X \in \mu_{\delta-H}$.

(2) Let $V_\alpha \in \mu_{\delta-H}$ for each $\alpha \in \Delta$. Then $X-V_\alpha$ is δ-H-closed for each $\alpha \in \Delta$. By Lemma 2.2, $\bigcap \alpha \in \Delta (X-V_\alpha)$ is a δ-H-closed and $\bigcap \alpha \in \Delta (X-V_\alpha) = X-\bigcup \alpha \in \Delta V_\alpha$. Hence $\bigcup \alpha \in \Delta V_\alpha$ is δ-H-open.

(3) Let $A,B \in \mu_{\delta-H}$. By Lemma 2.1, $A=\bigcup \alpha \in \Delta_1 A_\alpha$ and $B=\bigcup \beta \in \Delta_2 B_\beta$, where A_α and B_β are $R-H$-open sets for each $\alpha \in \Delta_1$ and $\beta \in \Delta_2$. Thus $A \cap B = \bigcup \{ A_\alpha \cap B_\beta \mid \alpha \in \Delta_1, \beta \in \Delta_2 \}$. Since $A_\alpha \cap B_\beta$ is $R-H$-open, $A \cap B$ is δ-H-open set by Lemma 2.1.

The following Example 2.4 shows that the δ-H-open set need not be a $R-H$-open set.

Example 2.4 Let $X = \{a,b,c,d\}, \mu = \{\emptyset, \{b\}, \{b,c,d\}\} \text{ and } H = \{\emptyset, \{c\}\}$. If $A = \{b, d\}$, then $i_\mu (c_\mu^*(A)) = \{b, c, d\}$ and so $c_\mu^*(i_\mu(A)) = \{b, c, d\}$ which implies that A is δ-H-closed. But A is not $R-H$-open, since $i_\mu (c_\mu^*(A)) = \{b, c, d\}$.

Proposition 2.5 Let (X, μ) be a quasi topological space with a hereditary class H.

(a) If $H = \{\emptyset\}$ or the hereditary class N of nowhere dense set of (X, μ), then $\mu_{\delta-H} = \mu_s$.

(b) If $H = P(X)$, then $\mu_{\delta-H} = \mu$.

Proof: Let $H = \{\emptyset\}$, then $S^* = c_\mu(S)$ for every subset S of X. Let A be $R-H$-open. Then $A = i_\mu (c_\mu^*(A)) = i_\mu (A \cup \mu^*) = i_\mu (c_\mu(A))$ and hence A is regular open. Therefore, every δ-H-open set is δ-open and we obtain $\mu_{\delta-H} \subset \mu_s$. By Theorem 2.1, $\mu_{\delta-H} \subset \mu_s$. Next, let $H = N$. It is well known that $S^* = c_\mu (i_\mu (c_\mu (S)))$ for every subset S of X. Let A be any
R–H-open set. Then A is µ-open A = i_\mu (c_\mu^*(A)) = i_\mu (A \cup c_\mu (i_\mu (c_\mu (A)))) = i_\mu (c_\mu (A)). Hence A is regular open. Similarly to the case of H = \emptyset, hence µδ–H = µS.

(b) Let H = P(X). Then S^* = \emptyset for every subset S of X. Now, let A be any µ-open set of X. Then A = i_\mu (A) = i_\mu (A \cup c_\mu (i_\mu (c_\mu (A)))) = i_\mu (c_\mu (A)). Hence A is regular open. Similarly to the case of H = \{\emptyset\}, hence µδ–H = µ.

3. δ–H-continuous functions

A function f: (X, µ1, H) → (Y, µ2, I) is said to be δ–H-continuous if for each x ∈ X and each µ-open neighborhood V of f(x), there exists a µ-open neighborhood U of x such that f(U) ⊂ i_\mu (c_\mu^*(V)).

Theorem: 3.1 For a function f: (X, µ1, H) → (Y, µ2, I), the following properties are equivalent:

(a) f is δ–H-continuous,

(b) For each x ∈ X and each R–H-open set V containing f(x), there exists an R–H-open set containing x such that f(U) ⊂ V.

(c) f([A]δ–H) ⊂ [f(A)]δ–H for every A ⊂ X,

(d) [f^{-1}(B)]δ–H ⊂ f^{-1}([B]δ–H) for every B ⊂ Y,

(e) For every δ–H-closed set F of Y, f^{-1}(F) is δ–H-closed in X;

(f) For every δ–H-open set V of Y, f^{-1}(V) is R–H-open in X;

(h) For every δ–H-open set F of Y, f^{-1}(F) is R–H-open in X.

Proof:

(a) ⇒ (b): The proof is obvious.

(b) ⇒ (c): Let x ∈ X and A ⊂ X such that f(x) ∈ f([A] δ–H). Suppose that f(x) ∉ [f(A)] δ–H. Then, there exists an R–H-open neighborhood V of f(x) such that f(A) ∩ V = \emptyset. By (b), there exists an R–H-open neighborhood U of x such that f(U) ⊂ V. Since f(A) ∩ f(U) ⊂ f(A) ∩ V = \emptyset, f(A) ∩ f(U) = \emptyset.

Hence U ∩ A ⊂ f^{-1}(f(U)) ∩ f^{-1}(f(A)) = f^{-1}(f(U) ∩ f(A)) = \emptyset. Hence U ∩ A = \emptyset and x ∉ [A] δ–H.

Therefore f(x) ∉ [f([A] δ–H)]. This is a contradiction. Therefore f(x) ∈ [f([A] δ–H)].

(c) ⇒ (d): Let B ⊂ Y such that A = f^{-1}(B). By (c), f([f^{-1}(B)] δ–H) ⊂ [f(f^{-1}(B)] δ–H) ⊂ [B] δ–H. Therefore [f^{-1}(B)] δ–H ⊂ [(f^{-1}(B)] δ–H) ⊂ [f^{-1}(B)] δ–H).

(d) ⇒ (e): Let F ⊂ Y be δ–H-closed. BY (d), [f^{-1}(F)] δ–H ⊂ f^{-1}([F] δ–H = f^{-1}(F).

Therefore f^{-1}(F) is δ–H-closed.

(e) ⇒ (f): Let V ⊂ Y be δ–H-open. Then Y – V is δ–H–closed. By (e) f^{-1}(Y – V) = X – f^{-1}(V) is δ–H-closed. Therefore, f^{-1}(V) is δ–H–open.

(f) ⇒ (g): Let V ⊂ Y be R–H-open. Since every R–H-open set is δ–H–open, V is δ–H–open, by (f), f^{-1}(V) is δ–H–open.
(g) ⇒ (h): Let $F \subset Y$ be $R-H$ closed. Then $Y - F$ is $R-H$ open. By (g) $f^{-1}(Y - F) = X - f^{-1}(F)$ is $R-H$-open. Therefore $X - f^{-1}(F)$ is $\delta - H$-open. Therefore, $f^{-1}(F)$ is $\delta - H$-closed.

(h) ⇒ (a): Let $x \in X$ and V be a μ-open set containing $f(x)$. Now, $V_0 = i_\mu(c^*(V))$, then by Lemma 2.1 $Y - V_0$ is an $R-H$-closed set. By (8), $f^{-1}(Y - V_0) = X - f^{-1}(V_0)$ is $\delta - H$-closed set. Therefore, $f^{-1}(V_0)$ is $\delta - H$-open. Hence $f(i_\mu(c_\mu(U))) \subset i_\mu(c_\mu(V))$. Hence f is a $\delta - H$-continuous function.

Corollary: 3.2 A function $f : (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is δ-H-continuous if and only if $f : (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is continuous.

Proof: This is an immediate consequence of Theorem 2.3.

Theorem: 3.3 If $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ and $g : (Y, \mu_2, I) \rightarrow (Z, \mu_3, J)$ are δ-H-continuous, then so is $g \circ f : (X, \mu_1, H) \rightarrow (Z, \mu_3, J)$.

Proof: It follows immediately from Corollary 3.1.

A function $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ from one GTS (X, μ_1) with a hereditary class H to another (Y, μ_2) with a hereditary class I is said to be strongly θ-H-continuous (resp. θ-H-continuous, almost-H-continuous) if for each $x \in X$ and each μ-open neighborhood V of $f(x)$, there exists a μ-open neighborhood U of x such that $f(c_\mu(U)) \subset V$ (resp. $f(c_\mu(U)) \subset c_\mu(V)$, $f(U) \subset i_\mu(c_\mu(V))$). A function $f : (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is said to be almost-H-open if for each $R-H$-open set U of X, $f(U)$ is μ-open in Y.

Theorem: 3.4 (a) If $f : (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is strongly θH-continuous and $g : (Y, \mu_2, I) \rightarrow (Z, \mu_3, J)$ almost-H-continuous, then $g \circ f : (X, \mu_1, H) \rightarrow (Z, \mu_3, J)$ is δ-H-continuous. (b) The following implications hold:

strongly θ-H-continuous \Rightarrow δ-H-continuous \Rightarrow almost-H-continuous.

Proof: (a) Let $x \in X$ and W be any μ-open set of Z containing $(g \circ f)(x)$. Since g is almost-H-continuous, there exists a μ-open neighborhood $V \subset Y$ of $f(x)$ such that $g(V) \subset i_\mu(c_\mu(W))$. Since f is strongly θH-continuous, there exists a μ-open neighborhood $U \subset X$ of x such that $f(c_\mu(U)) \subset V$. Hence $g(f(c_\mu(U))) \subset g(V)$ and $g(f(i_\mu(c_\mu(U)))) \subset g(f(c_\mu(U))) \subset g(V) \subset i_\mu(c_\mu(U))$. Hence, $g \circ f : (X, \mu_1, H) \rightarrow (Z, \mu_3, J)$ is δ-H-continuous.

(b) Let f be strongly θ-H-continuous. Let $x \in X$ and V be any μ-open neighborhood of $f(x)$. Then, there exists a μ-open neighborhood $U \subset X$ of x such that $f(c_\mu(U)) \subset V$. Also $f(i_\mu(c_\mu(U))) \subset f(c_\mu(U)) \subset V$. Since V is μ-open, $f(i_\mu(c_\mu(U))) \subset i_\mu(c_\mu(U))$. Thus f is δ-H-continuous. Let f be δ-H-continuous.

Now we prove that f is almost H-continuous. Then, for each $x \in X$ and each μ-open neighborhood $V \subset Y$ of $f(x)$, there exists a μ-open neighborhood $U \subset X$ of x such that $f(i_\mu(c_\mu(U))) \subset i_\mu(c_\mu(V))$. Since $U \subset i_\mu(c_\mu(U))$, $f(U) \subset i_\mu(c_\mu(V))$.

Hence f is almost H-continuous. A GTS (X, μ) with a hereditary class H is said to be SI-R space if for each $x \in X$ and each μ-open neighborhood V of x, there exists a μ-open neighborhood U of x such that $x \in U \subset i_\mu(c_\mu(U)) \subset V$.

© 2014, IJMA. All Rights Reserved 349
Theorem: 3.5 For a function $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$, the following are true:

(a) If Y is an SH-R space and f is δ-H-continuous, then f is continuous.
(b) If X is an SH-R space and f is almost H-continuous, then f is δ-H-continuous.

Proof:
(a) Let Y be an SH-R space. Then, for each μ-open neighborhood V of $f(x)$, there exists a μ-open neighborhood V_δ of $f(x)$ such that $f(x) \in V \cap (\mu_1^{-1}(c_\mu(V)) \cap V)$. Since f is δ-H-continuous, there exists a μ-open neighborhood U_δ of x such that $f(\mu_1^{-1}(c_\mu(U_\delta))) \subseteq f(U_\delta)$ and $f(U_\delta) \subseteq V$. Thus $f(U_\delta) \subseteq V$, hence f is continuous.

(b) Let $x \in X$ and V be a μ-open neighborhood of $f(x)$. Since f is almost-H continuous, there exists a μ-open neighborhood U_1 of x such that $\mu_1(c_\mu(U_1)) \subseteq U$. Thus $f(\mu_1^{-1}(c_\mu(U_1))) \subseteq f(U_1)$ and $f(U_1) \subseteq V$. Therefore, f is δ-H-continuous.

Corollary: 3.6 If (X, μ_1) with hereditary class H and (Y, μ_2) with hereditary class I are SH-R spaces, then the following concepts on a function $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$: δ-H-continuity, continuity, almost-H-continuity are equivalent.

Proof: The proof follows from Theorem 3.7. A quasi topological space (X, μ) with a hereditary class H is said to be an AH-R space if for each R-H-closed set $F \subseteq X$ and each $x \notin F$, there exist disjoint μ-open sets U and V in X such that $x \in U$ and $F \subseteq V$.

Theorem: 3.7 A quasi topological space (X, μ) with a hereditary class H is an AH-R space if and only if each $x \in X$ and each R-H-open neighborhood V of x, there exists an R-H-open neighborhood U of x such that $x \in U \cap c^*_\mu(U) \subseteq c_\mu(U) \subseteq V$.

Proof: Suppose (X, μ) with a hereditary class H is an AI-R space. Let $x \in V$ and V be R-H-open. Then $\{x\} \cap (X - V) = \emptyset$. Since X is an AI-R space, there exist μ-open sets U_1 and U_2 containing x and $X - V$ respectively, such that $U_1 \cap U_2 = \emptyset$. Then $c_\mu(U_1) \cap c_\mu(U_2) = \emptyset$ and hence $c_\mu(U_1) \subseteq c_\mu(U_1) \subseteq (X - U_2) \subseteq V$. Thus $x \in U_1 \subseteq c^*_\mu(U_1) \subseteq c_\mu(U_1) \subseteq V$ and we have $U_1 \subseteq c_\mu(U_1) \subseteq U_2$. Let $i_\mu(c_\mu(U_1)) = U$. Thus $c\mu(U_1) = c\mu(i_\mu(U_1)) \subseteq c\mu(c\mu(U_1)) < c\mu(c\mu(U_1)) < c\mu(U_1) \subseteq c_\mu(U_1) \subseteq (X - c^*_\mu(U_1)) \subseteq V$. Therefore, there exists an R-H-open set U such that $x \in U \subseteq c^*_\mu(U) \subseteq c_\mu(U) \subseteq V$. Conversely, let $x \in X$ and an R-H-closed set F such that $x \notin F$. Then, $X - F$ is an R-H-open neighborhood of x.

By hypothesis, there exists an R-H-open neighborhood V of x such that $x \notin V \subseteq c^*_\mu(V) \subseteq c_\mu(V) \subseteq X - F$. Thus $F \subseteq X - c_\mu(V) \subseteq (X - c^*_\mu(V))$. Hence $F \subseteq X - c_\mu(V) \subseteq (X - c^*_\mu(V)) \subseteq c_\mu(U) \subseteq c_\mu(U_2) \subseteq X - V$. Therefore, $V \cap (X - c_\mu(V)) = \emptyset$ and V is μ-open. Therefore, X is an AH-R space.

Theorem: 3.8 For a function $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$, the following are hold:

(a) If Y is an AI-R space and f is θ-H-continuous, then f is δ-H-continuous.
(b) If X is an AI-R space, Y is an SH-R space and f is δ-H-continuous, then f is strongly θ-H-continuous.

Proof:
(a) Let Y be an AH-R space. Then, for each $x \in X$ and each R-H-open neighborhood V of $f(x)$, there exists an R-H-open neighborhood V_θ of $f(x)$ such that $f(x) \in V_\theta \subseteq c_\theta(V) \subseteq V$. Since f is θ-H-continuous, there exists a μ-open neighborhood U of x such that $f(U) \subseteq c_\mu(V_\theta)$. Hence $f(i_\mu(c_\mu(U))) \subseteq f(c_\mu(U)) \subseteq c_\mu(V) \subseteq V$ and thus $f(i_\mu(c_\mu(U))) \subseteq V$. By Theorem 3.1, f is δ-H-continuous.
(b) Let X be an AHR space, Y an SH-R space. For each $x \in X$ and each μ-open neighborhood V of $f(x)$, there exists a μ-open set V_\circ such that $f(x) \in V_\circ \subset i_\mu(c_\mu*(V))$. Since Y is an SH-R space, since f is δ-H continuous, there exists a μ-open set U of x such that $f(i_\mu(c_\mu(U))) \subset i_\mu(c_\mu*(V))$. By Lemma 2.1, $i_\mu(c_\mu(U))$ is R-H-open and since X is an AI-R space, by Theorem 3.7, there exists an R-H-open set U_\circ such that $x \in U_\circ \subset c_\mu*(U) \subset i_\mu(c_\mu(U))$. But every R-H-open set is μ-open, hence U is μ-open. Also, $f(c_\mu(U)) \subset V$. Hence f is strongly θ-H-continuous.

Theorem: 3.9 If a function $f: (X, \mu_1, H) \rightarrow (Y, \mu_2, I)$ is θ-H-continuous and almost- H-open, then f is δ-H-continuous.

Proof: Let $x \in X$ and V be a μ-open neighborhood of $f(x)$. Since f is θ-H-continuous, there exists a μ-open neighborhood U of x such that $f(c_\mu(U)) \subset c_\mu*(V)$. Hence $f(i_\mu(c_\mu(U))) \subset c_\mu*(V)$. Since f is almost- H-open, $f(i_\mu(c_\mu(U))) \subset i_\mu(c_\mu*(V))$. This shows f is strongly θ-H-continuous.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared