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ABSTRACT 

An iterative regularization method which converges quadratically in the setting of a finite-dimensional subspace has 

been considered for obtaining stable approximate solution to nonlinear ill-posed operator equations .)( yxT =  The 

derived error estimate using an adaptive selection of the parameter in relation to the noise level are shown to be of 

optimal order with respect to certain natural assumptions on the ill-posed-ness of the equation. A stopping rule for the 

iteration index is provided. The results of computational experiments are provided which shows the reliability of our 

method. 
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1. INTRODUCTION: 

 

We consider the problem of approximately solving the nonlinear ill-posed operator equation of the form 

 

(1.1)                                                             ,)( yxT =  

 

where XXTDT →⊂)(:  is a nonlinear monotone operator and X  is a real Hilbert space. We shall denote the 

inner product and the corresponding norm on X  by ⋅��⋅,  and .  respectively. 

Recall that T  is monotone operator if it satisfies the relation 

 

).(,      0, ),()( TDyxyxyTxT ∈∀≥−−  

 

We assume that (1.1) has a solution, namely .†
x  

 

In application, usually only noisy data 
δ

y are available, such that 

                                                       (1.2)                                                            .δδ ≤− yy  

 

Then the problem of recovery of 
†

x  from noisy equation 
δyxT =)(  is ill-posed, in the sense that a small 

perturbation in the data can cause large deviation in the solution. 

 

Nonlinear ill-posed problems arise in a number of applications (see [4]). Since (1.1) is ill-posed, one has to replace the 

equation (1.1) by nearby equation whose solution is less sensitive to perturbation in the right side .y  This replacement 

is known as regularization. A well known method for regularizing (1.1), when T  is monotone is the method of  

Lavrentiev regularization (see [19]). In this method approximation 
δ
αx  is obtained by solving the singularly perturbed 

operator equation 
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(1.3)                                               ,)()( 0

δα yxxxT =−+  

where ,0≥α  called the regularization parameter, and 
0x  is the initial guess for the solution 

†
x . 

 

In practice one has to deal with some sequence )( ,

δ
αnx , converging to the solution 

δ
αx  of (1.3). Many authors 

considered such sequences (see [2, 3, 7, 8]). In [2] Bakushinsky and Smirnova considered an iteratively regularized 

Lavrentiev method: 

 

(1.4)                     ))()(()( 0

1

1 xxyxTIAxx kkkkkk −+−+−= −
+

δδδ
δ

δδδ αα  

 

for ,,2,1,0 �=k  where )( δδ
kk xTA ′=  and )( kα  is a sequence of positive real numbers such that 0 lim

k
=

∞→
kα , as 

an approximate solution for (1.1). A general discrepancy principal, has been considered in [2] for choosing the stopping 

index δk  and showed that 
†

xxk →δ

δ
 as .0→δ  However no error estimate for 

†
xxk −δ

 has been given in [2]. 

Later in [9], Mahale and Nair considered the method (1.4) and obtained an error estimate for ,†
xxk −δ

 under weaker 

assumptions than the assumptions in [2] (see [9]). 

 

In ([6]), George and Elmahdy considered an iterative regularization method; 

 

(1.5)                     )),()(())(( 0,,

1

,,,1 xxyxTIxTxx nnnnn −+−+′−= −
+

δ
α

δδ
α

δ
α

δ
α

δ
α αα  

where ,0,0 xx =δ
α  as a modified iteratively regularized Lavrentiev method, and by using a majorizing sequence (see 

[1], page 28), proved that (1.5) converges quadratically to the unique solution 
δ
αx  of (1.3). 

 

Recall that, a sequence  )(x n  is said to be converges quadratically to ∗
x  if there exist a positive number ,M  not 

necessarily less than 1, such that 

,
2

1

∗∗
+ −≤− xxMxx nn  

 

for all n  sufficiently large. And the convergence of  )(x n to ∗
x  is said to be linear if there exist a positive number 

,0M  such that 

.01

∗∗
+ −≤− xxMxx nn  

 

Note that regardless of the value of M  quadratic convergent sequence will always eventually converge faster than a 

linearly convergent sequence. For an extensive discussion of convergence rate see Ortega and Rheinboldt [11]. One of 

the advantage of the proposed method is that the analysis is based on a majorizing sequence and the stopping rule 

(which is different from the classical discrepancy principle (c.f., [2, 3, 8, 9]) is independent of the proposed method. 

More precisely, the proposed stopping rule, depends only on the choice of a real number )1,0(∈q  which depends on 

the starting point of the iteration. We provide an optimal order error estimate under a general source condition on 

.†

0 xx −  Moreover we shall use the adaptive parameter selection procedure suggested by Pereverzev and Schock in 

[12], for choosing the regularization parameter α  in )( ,

δ
αnx . 

 

In ([6]), George and Elmahdy proved that (1.5) converges quadratically to the unique solution 
δ
αx  of (1.3) under the 

following Assumptions: 

 

Assumption: 1.1 There exists 0>r  such that )()()( †

0 TDxBxB rr ⊆�  and T  is Frechet differentiable at all 

).()( †

0 xBxBx rr �∈  

 

Assumption: 1.2 There exists a constant 00 >k  such that for every )()(, †

0 xBxBux rr �∈  and Xv ∈  there 

exists an element Xvux ∈),,(φ satisfying 

.),,(),,,()()]()([ 0 uxvkvuxvuxuTvuTxT −≤′=′−′ φφ  
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Assumption: 1.3 There exists a continuous, strictly monotonically increasing function ),0(],0(: ∞→aϕ  with 

)( †xTa ′≥ , satisfying 0)(lim
0

=
→

λϕ
λ

 and there exist  Xv ∈ with 1≤v  such that     vxTxx ))(( ††

0
′=− ϕ      

and      a].(0,           ),(
)(

sup
0

∈∀≤
+≥

λαϕ
αλ

λαϕ
ϕ

λ

c  

 

The analysis in ([6]) as well as in this paper is based on a majorizing sequence. 

 

Recall (see [1], Definition 1.3.11) that a nonnegative sequence )( nt  is said to be a majorizing sequence of a sequence 

)( nx  in X  if 

        .0            11 ≥∀−≤− ++ nttxx nnnn  

 

The main advantage of using the Assumption 1.2 is that, the majorizing sequence we are going to use in this paper is 

independent of the regularization parameter .α  Further the majorizing sequence gives an a priori error estimate which 

can be used to determine the number of iterations needed to achieve a prescribed solution accuracy before actual 

computation take place. 

 

In Section 2 we consider the sequence )( ,

δ
αnx  defined in (1.5), using Assumption 1.2 we proved that the sequence 

)( ,

δ
αnx  converges to 

δ
αx  and obtained an error estimate for 

δ
α

δ
α xxn −, . In application, one looks for a sequence 

)( ,

δ
αnx  in a finite dimensional subspace hX  of X  such that 

δ
α

δ
α xx

h

n →,

,  as 0→h  and .∞→n  In Section 3 we 

considered an iteratively regularized projection method for obtaining a sequence )( ,

,

δ
α

h

nx  in a finite dimensional 

subspace hX  of X  and proved that 
δ
α

δ
α xx

h

n →,

, . Also in Section 3 we obtained an estimate for 
δ
α

δ
α xx

h

n −,

, . Using 

an error estimate for 
†

xx −δ
α (see [13]) we obtained an estimate for 

†,

, xx
h

n −δ
α  in Section 4. The error analysis for 

the order optimal result using an adaptive selection of the parameter α  and a stopping rule using a majorizing 

sequence are also given in Section 4. Implementation of the adaptive choice of the parameter and the choice of the 

stopping rule are given in Section 5. Examples are given in Section 6. Finally the paper ends with some concluding 

remarks in Section 7. 

 

2. CONVERGENCE ANALYSIS: 

 

In [6] the following majorizing sequence )( nt  defined iteratively by, 00 =t , ,1 η=t  and 

 

(2.6)                                                 )(
2

3 2

1
0

1 −+ −+= nnnn tt
k

tt  

 

where η,0k  and )1,0[∈q are nonnegative numbers such that 

 

(2.7)                                                     .
2

3 0 qq
k n ≤

η
 

And 

(2.8)                                                ,)(: 0 ηαω δ ≤−= yxT  

where used for proving the quadratic convergence of the sequence )( ,

δ
αnx  to the unique solution 

δ
αx  of equation (1.3). 

 

For proving the results in [6] as well as the results in this paper we use the following Lemma on majorization, which is 

a reformulation of Lemma 1.3.12 in [1]. 

 

Lemma: 2.1 Let )( nt  be a majorizing sequence for )( nx  in X . If 
*

n
 lim ttn =

∞→
, then nxx  lim

n

*

∞→
=  exists and 

                               (2.9)                                           .0        ** ≥∀−≤− nttxx nn
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Throughout this paper we assume that the operator T  satisfies the Assumptions 1.1, 1.2 and 1.3. The following 

Lemma is essentially a reformulation of a Lemma in [6]. 

 

Lemma: 2.2 Assume there exist nonnegative numbers )1,0[ and ,,0 ∈qk η  such that 

 

(2.10)                                                     .
2

3 0 qq
k n ≤

η
 

 

Then the iteration 0  ),( ≥ntn , given by ,,0 10 η== tt  

(2.11)                                                 )(
2

3 2

1
0

1 −+ −+= nnnn tt
k

tt  

 

is increasing, bounded above by 
q

t
−

=
1

:** η
, and converges to some 

*
t  such that 

q
t

−
≤<

1
0 * η

.  Moreover, for 

n�0; 

(2.12)                                         ,)(0 11 ηnnnnn qttqtt ≤−≤−≤ −+  

and 

(2.13)                                                       .
1

* η
q

q
tt

n

n
−

≤−  

 

To prove the convergence of the sequence )( ,

δ
αnx  defined in (1.5) we introduce the following notations: 

and )()( 0 IxTxR αα +′=  

(2.14)                           )].()([)(:)( 0

1
xxyxTxRxxG −+−−= − αδ

α  

 

Note that with the above notation, 
δ

α
δ

α ,1, )( += nn xxG  and 

 

(2.15)                                                    .1)()( 1 ≤′− xTxRα   

 

The following Lemma based on the Assumption 1.2 will be used in due course. 

 

Lemma: 2.3 ([6] Lemma 2.3) For )(, 0xBvu r∈  

� −−+′=−′−−
1

0

.),),(()())(()()( dtvuuvutvuTvuuTvTuT φ  

 

Theorem: 2.4 Suppose
∗≥ tr , and Assumption 1.2 and (2.8) hold. Also let the assumptions in Lemma 2.2 are 

satisfied. Then the sequence )( ,

δ
αnx  defined in (1.5) is well defined and )( 0, xBx

tn ∗∈δ
α  for all .0≥n  Further 

)( ,

δ
αnx  is Cauchy sequence in )( 0xB

t
∗  and hence converges to )()( 00 xBxBx

tt
∗∗∗ ⊂∈δ

α   and 

  .)()( 0

δδ
α

δ
α α yxxxT =−+  

 

Moreover, the following estimate hold for all 0≥n , 

 

2.16)(                                                      ,1,,1 nnnn ttxx −≤− ++
δ

α
δ

α  

2.17)(                                                   .
1

*

,
q

q
ttxx

n

nn
−

≤−≤−
ηδ

α
δ

α  

And 

2.18)(                                                   .
2

,2,1
0 δ

α
δ

α
δ
α

δ
α xxxx n

k

n −≤−+  
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Proof:  First we shall prove that 

 

2.19)(                                                   .
2

,1,2

3

,,1
0 δ

α
δ

α
δ

α
δ

α −+ −≤− nn

k

nn xxxx  

 

With G  as in (2.14), we have for ),(, 0xBvu
t
∗∈  

 

)]()([)()]()([)()()( 0

1

0

1
xvyvTvRxuyuTuRvuvGuG −+−+−+−−−=− −− αα δ

α
δ

α  

 

))()(]()()([                    0

11
xvyvTvRuRvu −+−−−−= −− αδ

αα - )()()(()( 1
vuvTuTuR −+−− αα  

 

))]()(())(([)(                       1 vTuTvuuTuR −−−′= −
α ))()(()(])()([)(- 0

1111
xvyvTvRvTuTuR −+−′−′ −−−− αδ

αα  

 

))]()(())(([)(                    1
vTuTvuuTuR −−−′= −

α ))(]()()([)(- 111
vGvvTuTuR −′−′ −−−

α  

 

])))((())(([)(                      

1

0

1
dtuvuvtuTvuuTuR � −−+′+−′= −

α ))(]()()([)(- 111
vGvvTuTuR −′−′ −−−

α  

])))(())()([)(                      

1

0

1 dtuvuTuvtuTuR −′−−+′= � −
α ))(]()()([)(- 111

vGvvTuTuR −′−′ −−−
α  

 

The last, but one step follows from the Fundamental Theorem of Integral Calculus. So by Assumption 1.2 and the 

estimate (2.15), we have 

 

).   (                              .         v-G(v)u-vk vu
�

k
G(v)G(u) 2020

20 +−≤−  

 

Now by taking 
δ

α,nxu =  and 
δ

α,1−= nxv  in (2.20) , we obtain (2.19). 

 

Next we shall prove that the sequence 0  ),( ≥ntn  defined in Lemma 2.2 is a mojorizing sequence of the 

sequence )( ,

δ
αnx . 

Note that ,))(()( 010

1

00,1 ttyxTxRxx −=<≤−=− − η
α

ωδ
α

δ
α  assume that  

 kittxx iiii ≤∀−≤− ++   ,1,,1

δ
α

δ
α  for some .k  Then by (2.19), 

 

. )(
2

3

2

3
12

2

1
0

2

,,1
0

,1,2 ++++++ −=−≤−≤− kkkkkkkk tttt
k

xx
k

xx
δ

α
δ

α
δ

α
δ

α  

 

Thus by induction  1,,1 nnnn ttxx −≤− ++
δ

α
δ

α for all 0 ≥n all and hence 0  ),( ≥ntn  is a majorizing sequence of 

the sequence )( ,

δ
αnx . So by Lemma 2.1  )( ,

δ
αnx  .0≥n  is a Cauchy sequence and converges to some 

)()( 00 xBxBx
tt

∗∗∗ ⊂∈δ
α  and 

.
1

*

,
q

q
ttxx

n

nn
−

≤−≤−
ηδ

α
δ

α  

To prove (2.18), we observe that 
δ
α

δ
α xxG =)( , so (2.18) follows from (2.20), by taking 

δ
α,nxu = and 

δ
αxv = . Now 

by letting n�� in (1.5) we obtain   .)()( 0

δδ
α

δ
α α yxxxT =−+  

This completes the proof of the Theorem. 

 

Remark: 2.5 Note that (2.18) implies )( ,

δ
αnx  converges quadratically to

δ
αx . 
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3. ITERATIVELY REGULARIZED PROJECTION METHOD: 

 

Let H  be a bounded subset of positive real such that zero is a limit point of H , and let { hP }, Hh ∈  be a family of 

orthogonal projections from X  into itself. We assume that 

 

).      (                                                   )x(I-P:b hh 21300 →=  

 

as .0→h  The above assumption is satisfied if IPh →  pointwise. Let 

 

(3.22)                     )),()(())(( 0

,

,

,

,

1,

,

,

,

,

,1 xxyxTPIxTPxx
h

n

h

nh

h

nh

h

n

h

n −+−+′−= −
+

δ
α

δδ
α

δ
α

δ
α

δ
α αα  

where .: 0

,

,0 xPx h

h =δ
α Then 

 .
)(

))(())((
0,

,0

1,

,00

,

,1 h

hh

h

h

hh

h
yxPT

yxTPIxTPxPx η
α

α

δ

δδ
α

δ
α

δ
α ≤

−
≤−+′=− −

 

 

Hereafter we assume that, 

(3.23)                                                                     .~

2

3 0 qq
k n ≤η  

and let  }.,max{~
hηηη =  

 

As in Section 2 one can prove that, the sequence 0  ),( ≥ntn  is a majorizing sequence of the sequence ).( ,

,

δ
α

h

nx  Hence 

)( 0

,

, xPBx ht

h

n ∗∈δ
α  where

q
t

−
≤

1

~
* η

, so 

(3.24)                                                                    .
1

~

0

,

,
q

xPx h

h

n
−

≤−
ηδ

α  

 

To obtain an error estimate ,,

,

,

δ
α

δ
α n

h

n xx − we observe that 

 

                       
δ

α
δ

α
δ

α
δ

α ,1000

,

,10,1

,

,10 )( −−−− −+−+−=− nhh

h

nn

h

n xxxIPxPxkxxk  

         ])([ ,1000

,

,10

δ
α

δ
α −− −+−+−≤ nhh

h

n xxxIPxPxk  

                                                        ]
11

~
[ 0

q
b

q
k h

−
++

−
≤

ηη
 

                                                        ]
1

~

1

~
[ 0

q
b

q
k h

−
++

−
≤

ηη
 

                                                        ]
1

~2
[ 0 hb

q
k +

−
≤

η
 

                                                        ]
)1(3

4
[ 0 hbk

q

q
+

−
≤  

                                                                 (3.25)                                                                                       .Q=  

Theorem: 3.1 Let 
δ
α
,

,

h

nx  be as in (3.22) and 
δ

α,nx  be as in (1.5). Let Assumptions in Theorem 2.4 and (3.23) hold. Then 

we have the following estimate, 

.

)
2

(

)
2

(

)()
2

(,

,

, ηδ
α

δ
α

q
Q

Q

bQb
Q

xx

n

hh

n

n

h

n

−

++≤−  

Proof:  

))()(())(( 0

,

,1

,

,1

1,

,1,1

,

,1,

,

, xxyxTPIxTPxxxx h

n

h

nh

h

nhn

h

nn

h

n −+−+′−−=− −−
−

−−−
δ

α
δδ

α
δ

α
δ

α
δ

α
δ

α
δ
α αα  
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                          ))()(())(( 0,1,1

1

,1 xxyxTIxT nnn −+−+′+ −−
−

−
δ

α
δδ

α
δ

α αα  

                  ))()(( ))(())([( 0

,

,1

,

,1

1

,1

1,

,1,1

,

,1 xxyxTIxTPIxTPxx
h

n

h

nnh

h

nhn

h

n −+−+′−+′−−= −−
−

−
−

−−−
δ

α
δδ

α
δ

α
δ

α
δ

α
δ

α ααα  

                     ))()(())()(())(( ,1

,

,1,10

,

,1

,

,1

1,

,1

δ
α

δ
α

δ
α

δ
α

δδ
α

δ
α ααα −−−−−

−
− −+−−+−+′− n

h

nn

h

n

h

nh

h

nh xxxTxxyxTPIxTP  

                  ))]()(())(([))(( ,1

,

,1,1

,

,1

,

,1

1,

,1

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α α −−−−−

−
− −−−′+′= n

h

nn

h

n

h

nh

h

nh xTxTxxxTPIxTP  

                      )]()(][))(())([( 0,1,1

1

,1

1,

,1 xxyxTIxTPPxTP nnnhh

h

nh −+−+′−+′− −−
−

−
−

−
δ

α
δδ

α
δ

α
δ

α ααα  

                   = (3.26)                                                                                                                        21 Γ−Γ  

Where 

))]()(())(([))(( ,1

,

,1,1

,

,1

,

,1

1,

,11

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α α −−−−−

−
− −−−′+′=Γ n

h

nn

h

n

h

nh

h

nh xTxTxxxTPIxTP  

 

and 

 

)]()(][))(())([( 0,1,1

1

,1

1,

,12 xxyxTIxTPPxTP nnnhh

h

nh −+−+′−+′=Γ −−
−

−
−

−
δ

α
δδ

α
δ

α
δ

α ααα  

)]()([              

]))((][)()(([))([(     

0,1,1

1

,1

,

,1,1

1,

,1

xxyxT

IxTPPxTPxTPPPxTP

nn

nhh

h

nhnhhh

h

nh

−+−

+′′−′+′=

−−

−
−−−

−
−

δ
α

δδ
α

δ
α

δ
α

δ
α

δ
α

α

αα
 

)]()()([())((     ,1,

,

,1,1

1,

,1

δ
α

δ
α

δ
α

δ
α

δ
α α −−−

−
− −′−′+′= nnh

h

nnhhh

h

nh xxPxTxTPPPxTP  

))()((())((              

))](()([())((     

,1,

,

,1

1,

,1

,1,

,

,1,1

1,

,1

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

α

α

−−

−

−

−−−
−

−

−−′+′+

−′−′+′=

nnh

h

nhhh

h

nh

nn

h

nnhhh

h

nh

xxPIxTPPPxTP

xxxTxTPPPxTP
 

))()(())((             

),,()(())((     

,1,

,

,1

1,

,1

,1,

,

,1,1

,

,1

1,

,1

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

δ
α

α

φα

−−

−

−

−−−−
−

−

−−′+′+

−′+′=

nnh

h

nhhh

h

nh

nn

h

nn

h

nh

h

nh

xxPIxTPPPxTP

xxxxxTPIxTP
 

 

Thus by Lemma 2.3 and Assumption 1.2 we have 
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Therefore by (3.26), (3.27) and (3.28) we have 
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This completes the proof. 

 

4.  ERROR BOUNDS UNDER SOURCE CONDITIONS: 

 

To obtain an error estimate for 
†,

, xx
h

n −δ
α  it is enough to obtain an error estimate for .†

xx −δ
α  To obtain an error 

estimate for 
†

xx −δ
α  we use the error estimate for α

δ
α xx −  and 

†
xx −α  where αx is the unique solution of 

the equation . )()( 0 yxxxT =−+ α  It is known  (cf. [13] Proposition 3.1) that 
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α

δ
α

δ
α ≤− xx  

and (cf. [6] Theorem 3.1) that 
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Combining the estimates in Theorem 2.4 and Theorem 3.1, (4.29) and (4.30) we obtaining the following, 

 

Theorem: 4.1 Let 
δ
α
,

,

h

nx  be as in (3.22) and let the assumptions in Theorem 2.4 and Theorem 3.1 be satisfied. Then we 

have the following: 
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Theorem: 4.2 Let 
δ
α
,

,

h

nx  be as in (3.22) and let the assumptions in Theorem 2.4 and Theorem 3.1 be satisfied. Let δn  

be as in (4.32). Then we have the following:  
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4.1. A PRIORI CHOICE OF THE PARAMETER: 

 

Note that the error estimate 
α

δ
αϕ +)(  in (4.33) is of optimal order if δαα =:  satisfies, δααϕ δδ =)( . Now 

using the function )(:)( 1 λλϕλψ −= , a≤< λ0  we have ))(()( δδδ αϕψαϕαδ == , so that 

))(( 11 δψϕαδ
−−= .  

 

In view of the above observations we have the following. 

 

Theorem: 4.4: Let )(:)( 1 λλϕλψ −=  for a≤< λ0  and assumptions in Theorem 4.2 holds. For 0>δ , let 

))(( 11 δψϕαδ
−−=  and let δn  be as in (4.32) then  

 

 )).(( 1†

, δψδ
αδ

−=− Oxxn  

 

4.2 AN ADAPTIVE CHOICE OF THE PARAMETER: 

 

Now, we will present a parameter choice rule based on the adaptive method studied in [10, 12]. 

In practice, the regularization parameter α  is often selected from some finite set 
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Where 1>µ  and M  is big enough but not too large. 
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Let
δ

α
,

,: h

ni iM
xx = . The parameter choice strategy that we are going to consider in this paper, we select iαα =  from 

)(αMD  and operates only with corresponding ix , , M., ,  i �10=   

 

Theorem: 4.4 Assume that there exists }10{ , M, , i �∈  such that 

i

i
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δ
αϕ ≤)( . Let assumptions of Theorem 4.2 

and Theorem 4.3 and (4.36) hold and let 
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Proof:  To see that   kl ≤ , it is enough to show that, for each }1{ , M, i �∈ , 
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Thus the relation   kl ≤  is proved. Next we observe that 
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Now since ll µαααδ ≤≤ +1 , it follows that 
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This completes the proof of the theorem. 

 

5. IMPLEMENTATION OF ADAPTIVE CHOICE RULE: 

 

Here we provide an algorithm for the determination of a parameter fulfilling the balancing principle (4.37) and also 

provide a starting point for the iteration (3.22) approximating the unique solution 
δ
αx  of (1.3). The choice of the 

starting point involves the following five steps: 

 

• Choose δα =:0  and .1>µ  

• Choose 0>η  and 1<q  such that .
2

3 0 q
k

≤η  

• Choose 0>hη  and 1<q  such that .
2

3 0 q
k

h ≤η  

• Choose },max{~
hηηη =  and 1<q  such that .~

2

3 0 q
k

≤η  

• Choose )(0 TDx ∈  such that 
00

~)( αηδ ≤− yxT . 

The choice of the stopping index Mn  involves the following two steps: 

• Choose the parameter 0αµα M

M =  big enough with 1>µ , not too large. 
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• Choose Mn  such that }}
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Finally the adaptive algorithm associated with the choice of the parameter specified in Theorem 4.4 involves the 

following steps: 

 

5.1. ALGORITHM: 

 

• Set 0←i  

• Solve 
δ

α
,

,: h

ni iM
xx =  by using the iteration (3.22). 

• If  1  take then,         ,))1(5(2 0 −=≤++≤− ikijcrkxx
jji

µ

δ
ϕ . 

• Set 1+= ii  and return to step 2. 

 

6.  EXAMPLES: 

 

In this section we consider examples satisfying the assumptions made in the paper. 

 

We consider the operator ]1,0[]1,0[: 22
LLT →  defined by 
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where ]1,0[]1,0[: 22
LLK → is a compact linear operator such that the range of K  denoted by )(KR  is not closed 

in ].1,0[2
L  Then the equation yxT =)(  is ill-posed as K  is compact with non-closed range, the Frechet derivative 

)(xT ′  of T  is given by 
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So, T  is monotone on ].1,0[2
L  Further for ]1,0[,, 2
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Hence Assumption 1.2 follows trivially. Again note that, since (6.40) holds for any 00 ≥k  we can choose any 0~ ≥η  

in step 2 of the algorithm.  

 

Further we observe that, due to (6.39) the iteration 
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mx +  needs only one step to compute. This can be seen as follows: 
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(6.41)                                                              ).)((                                              0xysfPh αδ −−=

 

Now we shall give the details for implementing the algorithm given in the above Section. Let )( nV  be a sequence of 

finite dimensional subspaces of X  and let nh hP 1, =  denote the orthogonal projection on X  with range 

.)( nh VPR =  We assume that , nVn 1dim +=  and 0→−  xxPh  as 0→h  for all Xx ∈ . Let 

},,,{ 121 +nvvv �  be a basis of  .,2,1, �=nVn  
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Note that  .,

,1 n

h

m Vx ∈+
δ

α  Thus 
δ

α
,

,1

h

mx +  is of the form �
+

=

1

1

n

i

iivλ for some scalars .,,, 121 +nλλλ �  It can be seen that 

δ
α

,

,1

h

mx +  is a solution of (6.41) if and only if  
T

n ),,,( 121 += λλλλ �  is the unique solution of 

 

).    (                                                            a�)�B(M nn 426=+  

where 

1,,3,2,1,             ),,( +== njiKvKvM jin �  

  1,,3,2,1,                    ),,( +== njivvB jin �  

and 

                       1,,2,1           ,))),((( 0 +=−+= nivisfxyPa
T

h �αδ
 

 

Note that (6.42) is uniquely solvable because nM  is a positive definite matrix ( i.e. 0>T

n xxM  for all non-zero 

vector x ) and nB  is an invertible matrix. 

 

7. CONCLUDING REMARKS: 

 

In this paper we consider the problem of approximately solving the nonlinear ill-posed operator equation ,)( yxT =  

and an iterative method in the finite dimensional setting when the available noisy data 
δ

y  in place of the exact data 

.y  

We assumed that T  is Frechet differentiable at all )()( †

0 xBxBx rr �∈ . 

 

The procedure involves finding the fixed point of the function 

 

)),()(())(()( 0

1

0 xxyxTPIxTPxxG hh −+−+′−= − αα δ
 

 

in an iterative manner in a finite dimensional subspace hX  of .X  Here 0x  is an initial guess and hP is the orthogonal 

projection onto .hX  The error analysis for the order optimal result using an adaptive selection of the parameter α  and 

a stopping rule using a majorizing sequence we made use the adaptive method suggested by Pereversev and Schock in 

[12]. 
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