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ABSTRACT
An iterative regularization method which converges quadratically in the setting of a finite-dimensional subspace has
been considered for obtaining stable approximate solution to nonlinear ill-posed operator equations T(x) = y. The

derived error estimate using an adaptive selection of the parameter in relation to the noise level are shown to be of
optimal order with respect to certain natural assumptions on the ill-posed-ness of the equation. A stopping rule for the
iteration index is provided. The results of computational experiments are provided which shows the reliability of our
method.
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1. INTRODUCTION:

We consider the problem of approximately solving the nonlinear ill-posed operator equation of the form
T(x)=y, (1.1)
where T : D(T) © X — X is a nonlinear monotone operator and X 1is a real Hilbert space. We shall denote the

inner product and the corresponding norm on X by <,> and H . H respectively.

Recall that 7' is monotone operator if it satisfies the relation

(T(x)-T(y),x—y)20, Vx,ye D(T).

We assume that (1.1) has a solution, namely X f .

In application, usually only noisy data y‘y are available, such that

ly=»|<s. (12)

Then the problem of recovery of x" from noisy equation 7T'(x) = y5 is ill-posed, in the sense that a small
perturbation in the data can cause large deviation in the solution.

Nonlinear ill-posed problems arise in a number of applications (see [4]). Since (1.1) is ill-posed, one has to replace the
equation (1.1) by nearby equation whose solution is less sensitive to perturbation in the right side y. This replacement

is known as regularization. A well known method for regularizing (1.1), when T is monotone is the method of
Lavrentiev regularization (see [19]). In this method approximation xi is obtained by solving the singularly perturbed

operator equation
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T(x)+a(x—x,)=y°, (1.3)

where ¢ 2 0, called the regularization parameter, and X, is the initial guess for the solution x'.

In practice one has to deal with some sequence (xf a), converging to the solution xi of (1.3). Many authors

considered such sequences (see [2, 3, 7, 8]). In [2] Bakushinsky and Smirnova considered an iteratively regularized
Lavrentiev method:

X0 =x (A + o) (T - v+ (x) —x,)) (1.4)

for k =0,1,2,---, where A,f = T'(x,f) and (@, ) is a sequence of positive real numbers such that lima, =0, as

k—oo
an approximate solution for (1.1). A general discrepancy principal, has been considered in [2] for choosing the stopping

index k s and showed that x,i — x" as § = 0. However no error estimate for "x,f — x%" has been given in [2].

Later in [9], Mahale and Nair considered the method (1.4) and obtained an error estimate for ”x,f —x' ", under weaker

assumptions than the assumptions in [2] (see [9]).

In ([6]), George and Elmahdy considered an iterative regularization method;

X g =X, (T ) +a) (T (2 )=y +auxl , — %)), (1.5)

n+l,a

where xg « = Xy, as a modified iteratively regularized Lavrentiev method, and by using a majorizing sequence (see

[1], page 28), proved that (1.5) converges quadratically to the unique solution xg of (1.3).

®

Recall that, a sequence (X, ) is said to be converges quadratically to x* if there exist a positive number M, not

necessarily less than 1, such that
2

’

* *
X — X ” < M"xn -X

®

for all n sufficiently large. And the convergence of (X, ) to x

M

is said to be linear if there exist a positive number

0» such that

*
X, =X |.

*
Xy — X " SM0|

Note that regardless of the value of M quadratic convergent sequence will always eventually converge faster than a
linearly convergent sequence. For an extensive discussion of convergence rate see Ortega and Rheinboldt [11]. One of
the advantage of the proposed method is that the analysis is based on a majorizing sequence and the stopping rule
(which is different from the classical discrepancy principle (c.f., [2, 3, 8, 9]) is independent of the proposed method.

More precisely, the proposed stopping rule, depends only on the choice of a real number ¢ € (0,1) which depends on
the starting point of the iteration. We provide an optimal order error estimate under a general source condition on

Xy —X ", Moreover we shall use the adaptive parameter selection procedure suggested by Pereverzev and Schock in

[12], for choosing the regularization parameter & in (xi o)

In ([6]), George and Elmahdy proved that (1.5) converges quadratically to the unique solution xf; of (1.3) under the

following Assumptions:

Assumption: 1.1 There exists 7 > 0 such that B, (x,) U Br(x"k) C D(T) and T is Frechet differentiable at all
xe B (x,)UB,(x").

Assumption: 1.2 There exists a constant k, >0 such that for every x,u€ B, (x,)U Br(x"—) and V€ X there
exists an element P(x,u,v) € X satisfying

[T7(x) = T )y = T"(w)P(x, u, v), [@Cx, u, v)| < ko vl x — ul-
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Assumption: 1.3 There exists a continuous, strictly monotonically increasing function @ :(0,a] — (0,00) with

az ||T'(x+)|| , satisfying 111n(1) @(A) =0 and there exist vE X with ||v|| <1 suchthat x,— x'= (T (x"))v
—

and supig"—(’;) <c,p@),  Vie(al

120 +

The analysis in ([6]) as well as in this paper is based on a majorizing sequence.

Recall (see [1], Definition 1.3.11) that a nonnegative sequence (f,) is said to be a majorizing sequence of a sequence
(x,) in X if
<t

- “n+

X X

| n+l ~ Mn
The main advantage of using the Assumption 1.2 is that, the majorizing sequence we are going to use in this paper is
independent of the regularization parameter . Further the majorizing sequence gives an a priori error estimate which
can be used to determine the number of iterations needed to achieve a prescribed solution accuracy before actual
computation take place.

L Vn20.

In Section 2 we consider the sequence (x:i a) defined in (1.5), using Assumption 1.2 we proved that the sequence

0 J . . ) 0 o
(xn’a) converges to X, and obtained an error estimate for |x, , — X, " . In application, one looks for a sequence

(xi a) in a finite dimensional subspace X, of X such that xi”’g - xi as h — 0 and n —> oo, In Section 3 we

. . . . L . héey . L .
considered an iteratively regularized projection method for obtaining a sequence (X)) in a finite dimensional

subspace X, of X and proved that xi’ ‘g - xi. Also in Section 3 we obtained an estimate for xi’ ’g - xg” . Using

) . . .
X, 0 — xT” in Section 4. The error analysis for

an error estimate for "xz —x' " (see [13]) we obtained an estimate for

the order optimal result using an adaptive selection of the parameter ¢ and a stopping rule using a majorizing
sequence are also given in Section 4. Implementation of the adaptive choice of the parameter and the choice of the
stopping rule are given in Section 5. Examples are given in Section 6. Finally the paper ends with some concluding
remarks in Section 7.

2. CONVERGENCE ANALYSIS:

In [6] the following majorizing sequence (Z,) defined iteratively by, t, =0, ¢, =1, and
3k
o =1, +—2° (t,—t,)’ (2.6)

where k,,,7] and g € [0,1) are nonnegative numbers such that

3]‘2077 4" <q. 2.7)
And
W= ”T(xo) - y5|| <na, (2.8)

where used for proving the quadratic convergence of the sequence (xf a) to the unique solution xi of equation (1.3).

For proving the results in [6] as well as the results in this paper we use the following Lemma on majorization, which is
a reformulation of Lemma 1.3.12 in [1].

Lemma: 2.1 Let (f,) be a majorizing sequence for (x,) in X . If lim t, = t ,then x = lim X, exists and

n—oo n—eo

| =x[<t =, wnzo0. (2.9)
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Throughout this paper we assume that the operator 7 satisfies the Assumptions 1.1, 1.2 and 1.3. The following
Lemma is essentially a reformulation of a Lemma in [6].

Lemma: 2.2 Assume there exist nonnegative numbers k,,77, and g € [0,1) such that

kot
2

q" <q. (2.10)

Then the iteration (¢,), n =0, givenby #, =0,¢, =17,

3k
by =1, + 21, —1,,)° 2.11)
2
is increasing, bounded above by t = N 4 , and converges to some t" such that 0< ¢t < IL Moreover, for
—-q —-q
n>0;
0<t, —t <q( —t_)<q'n, (2.12)
and
-1 <L g (2.13)
I-¢g

To prove the convergence of the sequence (x:i a,) defined in (1.5) we introduce the following notations:

R,(x)=T'(x,)+al and

G(x):=x—R,(x)'[T(x) - y° +a(x - x,)]. (2.14)
Note that with the above notation, G(x,i 2) = x,f 1o and
"Ra(x)’lT'(x)" <l. (2.15)

The following Lemma based on the Assumption 1.2 will be used in due course.

Lemma: 2.3 ([6] Lemma 2.3) For u,ve B, (x,)

T(u) =T =T (w)u=v) = T'() [ §v + 1 = v), u,u = v)d.
0

Theorem: 2.4 Suppose r = t*, and Assumption 1.2 and (2.8) hold. Also let the assumptions in Lemma 2.2 are
satisfied. Then the sequence (x,i ) defined in (1.5) is well defined and x,ia € B.(x,) for all n2>0. Further
(xi n) is Cauchy sequence in B.(x,) and hence converges to xg € B.(x)) € B.(x,) and

T(xg) + a’(xg —X,) = y‘y.

Moreover, the following estimate hold forall n =0,

xj+1,ar - xr(zs,ar | Sta—t, (216)
e, — x| <t =1, < an. (2.17)
, =g
And
30— 3o <2, - 2 (2.18)
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Proof: First we shall prove that

oy =xl (2.19)

n-l,a

P P 3k,
Xpita — xn,a" < 2

With G as in (2.14), we have for u,v€ B (),
Gu)=G()=u—v=R, )" [Tw) -y’ +a(u—x)+R, () [T~ y’ +a(v—x,)]
=u—v=[R, )" =R, 1T W)=y’ +a(v—2x,))-R, )" (T(w) = T(v) + at(u )
=R, )" [T w~v) =T @) ~TO)] -R, ) [T’ =T'm) "' IR, ) T -y’ +av—x,))

=R, ) [T w)(u—v)—(Tw)=TO)] -R,w) [T’ w)™" -T') "' 1v-G())
1
=R, () '[T"w)u—-v)+ jT'(u +t(v—u)v—uw)dt] -R,w) ' [T'(w)" —=T'() " 1v—G»))
0
1
= J‘Ra @) [T (w) +1(v—w) =T"W)v—w)dt] -R,w) [T’ -T'») " 1v-G(»))
0

The last, but one step follows from the Fundamental Theorem of Integral Calculus. So by Assumption 1.2 and the
estimate (2.15), we have

k 2
IG(w) = Gv)| < = |u—v|" +kyJu-v||v-G(v)]. (220)
a

Now by taking # = x° , and v = x’_,  in (2.20) , we obtain (2.19).

o N2

Next we shall prove that the sequence (f,), n =0 defined in Lemma 2.2 is a mojorizing sequence of the

sequence (XZ o)

_ w
Note that ”xfa - x0|| = ”Ra(xo) 1(T(xo) - y§)|| < ; <1m =t —t,, assume that

) 5
i~ Yia

”x " <t, —t,Vi<k forsome k. Then by (2.19),

3k |5 5 2<&

5 5 2
||xk+2,a - xk+1,a|| < || k+la — xk,(z” = (tk+] - tk) =l ~ -

2 2

J

Xotta ~ *na

Thus by induction | <t,,—t, forall n>0all and hence (¢,), n 20 is a majorizing sequence of
the sequence (x:i 2)- So by Lemma 2.1 (x:i ) n=0. is a Cauchy sequence and converges to some

x3€ B .(x,) ©B..(x,) and

<1 J .
To prove (2.18), we observe that G(xg) = xi, so (2.18) follows from (2.20), by taking u = xiw and v = xz . Now

by letting n—oo in (1.5) we obtain T(xg) + a’(xg —X,) = y‘s.
This completes the proof of the Theorem.

Remark: 2.5 Note that (2.18) implies (x:i ) converges quadratically to xi )
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3. ITERATIVELY REGULARIZED PROJECTION METHOD:

Let H be a bounded subset of positive real such that zero is a limit point of H , and let { P, },h€ H be a family of

orthogonal projections from X into itself. We assume that
b,:=|(I-P, )x,| =0 (321)
as h — 0. The above assumption is satisfied if P, — I pointwise. Let

Xta = Xna — (BT Goyp) +ad) B (T(x,70) = y° +axg = X)), (3.22)

h,o ._
where Xy, = P, x,. Then

[xi2 = P | = (BT + oty BT - v < LGRS P

Hereafter we assume that,

3k, -
TOq i<q. (3.23)
and let 77 = max{?],f]h}.
As in Section 2 one can prove that, the sequence (f,), 7 = 0 is a majorizing sequence of the sequence (xi'g) Hence
xf’g € B.(P,x,) wheret” < n , SO
s t 1_ q
xe P < (3.24)
s 1 _ q
To obtain an error estimate ”x:g - x:i o |, we observe that
ky x:ﬁ,a - xf—l,a" =k x:ﬁ,a = Bxo + (B, = Dxy + X, — xf—l,af"
<kl x:’j,a - Phx0|| + ||(Ph - I)'XO" + "xo - xffl,a”]
< kO[L +b, + L]
1- 1-¢g
<k, [L +b, + /-
—q I-q
27
<k -2l +b,]
—-q
4
<[ Tt kb,
31-9)
=Q. (3.25)

Theorem: 3.1 Let xfjg be as in (3.22) and xia be as in (1.5). Let Assumptions in Theorem 2.4 and (3.23) hold. Then

we have the following estimate,

2,
Y 2
X0 = x0,|< ()b, +(Q+b,)—=—n.
’ Y 2 (Q) —q
2
Proof:
x::g - xr?‘,a = x:ﬁ‘,a - jfl,a - (PhT’(x:f,tl) + al)_l Ph (T(xsja) - y§ + a('x:ﬁ,a - xO ))
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+(T(xn1a)+a'l) (T(xnla)—y +0{(xn1a Xy))
=xrlz1’fa_ Xo-la -[(P, T(ana)-i-al) P]—(T(ana)-i-a'l) (T('xnla) y +a('xnla xo))

_( ( n la)+al) (T(xn la) y +a('xn l,a x())) (T(‘xn 10!)+a('xn l,a _'xn—l,a))

_(PT(xnla)+aI) [T(xnla)(xnla_xnla) (T(xnla) T(xnla))]
—[(BT (xS P, +aP) ™" —(T'(x2, ) +a) T (x), ) — ¥ +alx), , — x,)]
=T, - T, (3.26)
Where
T = (BT (x5 )+ o) PIT (x4 (xS, = x2, ) = (TS ) = T(x), )]
and
L, =[(PT'(x}5 )P, +aP) " —(T'(x), )+ o) T (x), ) — ¥ +alx, = x,)]
=[BT (x) 5 )P, +aP) '[P, (T"(x;, )= BT (xS )PP, (T (x), )+ )]
[T(x,,m) y +a('xnla' X,)]
=(PT'(x"5 )P, +aP,) " PIT (x2, )~ T (x"5 VP, —x, )
_(PT(xnla')P +ab,)” P[(T( nla) T(xnlaf)](xna_xfla)
+(BT' (xS P, +aP,) " P(T (x5 )T = P)(x2, = X2, )
= (BT (x5 )+ ) P(T' (x5 VP, xS ox = X0 )
+(PT' (xS )P, +aP) " PT (xS )T - P)(x, —x7, )

Thus by Lemma 2.3 and Assumption 1.2 we have

h,0
[T < (BT )+ )™ BT () 1a>j¢<x,, PR CAPEE AR N A
h,0 ) ) h,0
S k() xn—l,a - xn 1,a + t('xn la - xn—l,a) - xn—l,a"dt

< kO x:jﬂ = X la"”(t - 1)('xn La ~ Xn- la)"dt

< %0 I (3.27)
and
[0 < (BT ) + @) BT S VPO o X0 = X200

|+ BT P, +aP) ! BT )T = P2, = x0 )|

<ol = x| — X+ ||(1 P )||||(xn 0= X000

<k xf,a - xf—l,a” n-ta ~ Xn- 1a| h - 'xn—l,a )”

<@ +b)|xy = x| (3.28)

Therefore by (3.26), (3.27) and (3.28) we have

R 5
xn,a _‘xn,a - n a n 1,

h,6 |<&
2

w8 =8 [ @b, x|
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0
S5xnlot_xn10{"4_(Q-’_bh) na_ jl,a”
f Xom = Xoa| + <%)"" (Q+b,)n+ (%)”‘Z(Q +b,)0g+++(Q +b,)g"”
<§) b, +(Q)"1(Q+bh)77+(Q)"2(Q+b Wig+-+(Q+b, )"
<Eyb, +@+o12)y '+ (QWq bt gy
2 2 2
0., <§>
<EVb+©@+b) G
( )—q

With 2g<Q <2
This completes the proof.

4. ERROR BOUNDS UNDER SOURCE CONDITIONS:

h,0 _

To obtain an error estimate for |x,’,

- . . 5 .
x*” it is enough to obtain an error estimate for ”xa - x*”. To obtain an error

. 5 i . 5 . . .
estimate for "xa - xT” we use the error estimate for”xa - xa" and ”xa - xT" where X, is the unique solution of

the equation 7'(x) + &(x — x,) = y . Itis known (cf. [13] Proposition 3.1) that

2 = x| < S (4.29)
o

and (cf. [6] Theorem 3.1) that
"xa —x' || < (kyr + e, p(a). (4.30)

Combining the estimates in Theorem 2.4 and Theorem 3.1, (4.29) and (4.30) we obtaining the following,

Theorem: 4.1 Let x,lfjg be as in (3.22) and let the assumptions in Theorem 2.4 and Theorem 3.1 be satisfied. Then we

have the following:

R N R R e R s R
o L
<@y +Q+h)—2—n+LN L2 Lk r i lye o). 4.31)
2 (g)_ 1-g « v
q
2
Let
Ey @y 5
nyi=min{n : max{(Q) b,.0 Q2 n+b, Q2 AP (4.32)
e (E-q 1T

Theorem: 4.2 Let xi’:g be as in (3.22) and let the assumptions in Theorem 2.4 and Theorem 3.1 be satisfied. Let 7
be as in (4.32). Then we have the following:

X T||<m.ax 5,(kor + De, }@(@) + ) (4.33)
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4.1. A PRIORI CHOICE OF THE PARAMETER:

o
Note that the error estimate @(€)+— in (4.33) is of optimal order if & := @ satisfies, @P(Qs5)0s = O . Now
a

using the function W(A)=A¢ (1), 0<A<a we have J= osp(a;)=y(p(a;)), so that
=g (Y (9)).

In view of the above observations we have the following.

Theorem: 4.4: Let W(A) =A@ ' (A) for 0< A<a and assumptions in Theorem 4.2 holds. For & >0, let
a5 =@ ' (W' (5)) and let ng be as in (4.32) then

X =3 [= 0@ (O)).

4.2 AN ADAPTIVE CHOICE OF THE PARAMETER:

Now, we will present a parameter choice rule based on the adaptive method studied in [10, 12].
In practice, the regularization parameter ¢ is often selected from some finite set

D, (o)={a =p'a,,i=0]1---,M} (4.34)
Where £ >1 and M is big enough but not too large.

Let
o, G & e
=min{n : max{( )'b,,Q —~=——n+b, —=—n, }<—1. (4.35)
G-g G-g 17T o
2 2
Then since i < i for i =0,1,---, M , we have
a, o
X~ ||<4—) Vi=0,1, -, M. (4.36)
&
Letx,; := x:f, o - The parameter choice strategy that we are going to consider in this paper, we select & = &; from

D,, (@) and operates only with corresponding x;, =0, 1, ---, M.

. o
Theorem: 4.4 Assume that there exists i € {0, 1, -+, M} such that @(&;) < — . Let assumptions of Theorem 4.2
&,

and Theorem 4.3 and (4.36) hold and let

l:=max{i:¢)(a'i)S£}<M,
o

i

k= max{i:|x, - x;| <25+ (k,r + 1)c¢)§, =01, i), (4.37)
Thenl < k and ]
”xT —xk” <cy(9).

where ¢ =3(5+ (k,r +1)c,) i

Proof: To see that [ < k | itis enough to show that, foreach i€ {1, ---, M },
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p(a) < LN e = x| < 2(5+(k0r+1)cq,)i, Vi=01,-,i.
a, a;
For j <1i,by (4.30) and (4.36) we have

[ = xf < s = 2+ " = x|
< (kyr + e, p(a,) + saﬁ + (kor + De, (@) +5ai

: J

<(5+ (k0r+1)c¢)£+(5+ (k0r+1)c¢)£
a. .

1 1

<25+ (kyr + 1)c¢)a£.

J

Thus the relation [ < k is proved. Next we observe that
. <[t
o' = <[ =]+ -

< (kyr + l)cw(p(a,) + 5£ +2(5+ (kyr + l)cq)) i
a a

1 1

<35+ (kor + 1)c¢)i.
a,

l

Now since @5 < @), < U@, , it follows that

5§ _ 6 _
— < pu— = ugp(ay) = uy ().
&, Us

Thus
" = x| <365+ (kor + e, )y ™ (5)

<cy(0).
This completes the proof of the theorem.
5. IMPLEMENTATION OF ADAPTIVE CHOICE RULE:

Here we provide an algorithm for the determination of a parameter fulfilling the balancing principle (4.37) and also
provide a starting point for the iteration (3.22) approximating the unique solution xz of (1.3). The choice of the

starting point involves the following five steps:

Choose &, := \/g and (£ >1.

3k
Choose?) >0 and g <1 such that 7077 <gq.

3k
Choose?], >0 and g <1 such that 7077}1 <gq.

® Choose’] = max{7,7,} and g <1 such that %ﬁ <gq.

e Choose x, € D(T') such that HT(xO)— y‘sH <fja,.
The choice of the stopping index #,, involves the following two steps:

®  Choose the parameter &,, = ,uM ¢, big enough with £ > 1, not too large.

© 2010, IJMA. All Rights Reserved 729



Atef. 1. Elmahdy*/An iterative method with quadratic convergence for nonlinear ill-posed problems: finite-dimensional
realizations /IJMA- 2(5), May.-2011, Page: 720-732

0 &y Gy
e Choose 1, such that 1, := min{n : max{(Z)"b,,0 —2—p+b, —2——5LMTy< 2y,
(Q)_ Q _ l-¢q ay
,) 74 (2) q

Finally the adaptive algorithm associated with the choice of the parameter specified in Theorem 4.4 involves the
following steps:

5.1. ALGORITHM:

e Seti<« 0
e Solve x; :=x°,, by using the iteration (3.22).

75

o o .
o If ”xl.—xj||£2(5+(k0r+l)c¢)—j, j<i,thentakek =i—1.
Y7
e Seti=i+1 and return to step 2.

6. EXAMPLES:

In this section we consider examples satisfying the assumptions made in the paper.

We consider the operator T': L*[0,1] — L*[0,1] defined by
T(x)(s)=K'K(s)+ f(s),x, f € L’[0,1], s € [0,1]. (6.38)

where K : L’[0,1] = L*[0,1]is a compact linear operator such that the range of K denoted by R(K) is not closed

in L*[0,1]. Then the equation T'(x) = y is ill-posed as K is compact with non-closed range, the Frechet derivative
T'(x) of T is given by

T'(x)z=K'Kz,x,z€ [*[0,1]. (6.39)
So, T is monotone on r [0,1]. Further for x, y,z € I2[0,1]
[T'(x) = T'(y)]z = 0 < kofx — y[, Vk, 2 0. (6.40)

Hence Assumption 1.2 follows trivially. Again note that, since (6.40) holds for any k, = 0 we can choose any 77 =0
in step 2 of the algorithm.

h,0

Lo Dieeds only one step to compute. This can be seen as follows:

Further we observe that, due to (6.39) the iteration Xx

X4 = X~ (BT ) + ) BT () = 3 +atalt, = x,)

m+l,a m,x m,x

(BT (xpo) +ad) " Py = (BT (o) + 0d) ™ Boxyt, = B (T(x,0) = y° + a(x), = X))
=(PK'K+al)"Px"° —P(K'Kx"° + f(s)— y° + (x> — x,))

h¥m,a m,ao m,o

=P,(f(5)—y° —ax,). (6.41)

Now we shall give the details for implementing the algorithm given in the above Section. Let (Vn) be a sequence of
finite dimensional subspaces of X and let P,,h =), denote the orthogonal projection on X with range
R(P,)=V . We assume that dimV =n+1, and ”Phx—x” —0 as h—>0 for all xe X . Let

{vi,vy,7=-,v,,,} beabasisof V ,n=12,---.
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n+l
is of the form Zﬂivi for some scalars ﬂl, ﬂz, v, ﬂnﬂ. It can be seen that
i=1

h,0
m+l,o

Note that x k.6

m+l,a

eV, . Thus x

h,0
m+l,a

X is a solution of (6.41) if and only if A= A, Ay A, )" is the unique solution of

(M, +aB,)i=a (642)
where
M, = ((Kv,. Kv,)), i,j=123n+1
B, =((v.v;) i,j=123n+1
and
a=((P,(y"+ax,— f(s).vi)", i=12,-,n+1

Note that (6.42) is uniquely solvable because M, is a positive definite matrix ( ie. xM nxT > 0 for all non-zero

vector x)and B, is an invertible matrix.

7. CONCLUDING REMARKS:

In this paper we consider the problem of approximately solving the nonlinear ill-posed operator equation 7'(x) =y,

and an iterative method in the finite dimensional setting when the available noisy data y§ in place of the exact data
y.
We assumed that 7' is Frechet differentiable at all x€ B, (x,)U B, (x").

The procedure involves finding the fixed point of the function

G(x)=x— (PhT'(xo) + 0(1)_1 P, (T(x)- y‘s +a(x—x,)),

in an iterative manner in a finite dimensional subspace X, of X. Here X, is an initial guess and P, is the orthogonal

projection onto X, . The error analysis for the order optimal result using an adaptive selection of the parameter & and

a stopping rule using a majorizing sequence we made use the adaptive method suggested by Pereversev and Schock in
[12].
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