Note on δ –semiopen sets

K. Thanalakshmi*

Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar-626001, P. B. No: 12, Tamil-Nadu, India

E-mail: thanalakshmi_kasi@yahoo.co.in

(Received on: 22-04-11; Accepted on: 28-04-11)

(Necesveu om 22-04-11, Accepteu om 20-04-11)

ABSTRACT

We characterize preopen sets via δ – semiopen sets. Also, we characterize spaces which are s– closed, semiconnected, semi – T_2 , s – Urysohn, s – regular, semi – regular, s –normal and semi – normal by δ – semiopen sets.

Key words and Phrases: δ – semiopen, δ – open, semiopen, preopen, b – open and β – open sets, δ – semiclosure and δ – semiinterior, s – closed, semiconnected, semi – T_2 , s – Urysohn, s – regular, semi – regular, s – normal and semi – normal spaces.

2000 AMS subject Classification: Primary: 54 A 05

Secondary: 54 D 10, 54 D 15

1. INTRODUCTION AND PRELIMINARIES:

In 1997, Park, Lee and Son [9] have introduced and studied δ – semiopen sets in topological spaces. Also, in 1997, A. $Cs\acute{a}sz\acute{a}r$ [4] have introduced and studied generalized open subsets of a set X defined in terms of monotonic functions $\gamma: \wp(X) \rightarrow \wp(X)$. The family $\mu = \{A \subset X \mid A \subset \gamma(A)\}$ is called the family of γ – open sets which is closed under arbitrary union and $\emptyset \in \mu$. μ is called a *generalized topology*. The family of δ – semiopen sets in a space is a particular kind of generalized topology but is different from the well known family of generalized open sets, namely semiopen sets, preopen sets, δ – open sets and δ – open sets. In this paper, we characterize spaces which are δ – closed, semiconnected, semi – δ – Urysohn, δ – regular, semi – regular, δ – normal and semi – normal by δ – semiopen sets.

By a space X, we will *always* mean the topological space (X, τ) . A subset A of a space X is said to be *regular open* if A=int(cl(A)) where int and cl are the *interior* and *closure* operators in the space X. The family of all regular open sets is a base for a topology τ_s coarser than τ , which is called the *semiregularization* of the topology τ . Elements of τ_s are called δ – open sets. δ *int* and δ cl are the *interior* and *closure* operators in (X, τ_s) . A space (X, τ) is said to be *semiregular* if $\tau = \tau_s$. A subset A of a space X is said to be α – *open* [15](resp. *semiopen* [10], *preopen* [14], b – *open* [1], β – *open* [2]) if $A \subset int(cl(int(A)))$ (resp. $A \subset cl(int(A))$, $A \subset int(cl(A))$, $A \subset int(cl(A)) \cup cl(int(A))$, $A \subset cl(int(cl(A)))$). A subset A of a space X is said to be α – *closed* (resp. *semiclosed*, *preclosed*, b – *closed*, β – *closed*) if X – *A* is α – open (resp. semiopen, preopen, α – open, α – open of a space will be denoted by α and α open, α – open of a space will be denoted by α and α open of a space α is said to be α – *semiopen* [18] if α – *cl*(α). A is said to be α – *semiclosed* if α – *semiopen*. We will denote the family of all α – *semiopen* sets by α . For any subset α of α , the α – *semiopen* set but the converses are not true. The following lemma will be useful in the sequel.

LEMMA: 1.1 *Let* X *be a space and* $A \subset X$. *Then the following hold.*

- (a) If A is semiopen, then $cl(A) = c_a(A)$ [19, Lemma 1].
- (b) If A is semiopen, then $cl(A) = \delta cl(A) = c_a(A)$ [8, Proposition 2.2].
- (c) A is preopen if and only if $c_{\sigma}(A) = int(cl(A))$ [8, Proposition .7(a)].

2. δ – SEMIOPEN SETS:

We state the following Theorem 2.1 without proof, which gives the relation between the operators c_{ξ} and i_{ξ} with other operators which are essential to characterize the spaces already stated.

Theorem: 2.1 *Let* X *be a space and* $A \subset X$. *Then the following hold.*

- (a) $\delta int(c_{\sigma}(A)) = \delta int(cl(A))$.
- (b) $c_b(i_{\ell}(A)) = c_{\sigma}(i_{\ell}(A)).$
- (c) $c_{\xi}(i_{\sigma}(A)) = i_{\sigma}(A) \cup int(\delta cl(int(A))).$
- (d) $c_{\beta}(i_{\xi}(A)) = c_{\xi}(i_{\xi}(A)).$
- (e) $cl(i_{\xi}(A)) = cl(\delta int(A)).$
- (f) $c_{\xi}(i_{\pi}(A)) = int(cl(A)).$
- (g) $c_{\pi}(i_{\xi}(A)) = cl(\delta int(A)).$
- (h) $c_{\xi}(i_{\alpha}(A)) = int(\delta cl(int(A))).$

The following Theorem 2.2 gives characterizations of preopen and δ – open sets. Also, it gives properties of semiopen, δ – semiopen and δ – open sets.

Theorem: 2.2 *Let* X *be a space and* $A \subset X$. *Then the following hold.*

- (a) If A is δ semiopen, then $c_b(A) = c_\sigma(A)$.
- (b) If A is semiopen, then $c_{\xi}(A) = c_{\sigma}(A)$ [16, Theorem 3.3].
- (c) If A is δ semiopen, then $c_{\xi}(A) = c_{\sigma}(A) = c_{b}(A)$.
- (d) If A is δ semiopen, then $c_{\beta}(A) = c_{\xi}(A)$ and so $c_{\beta}(A) = c_{b}(A) = c_{\sigma}(A) = c_{\xi}(A)$.
- (e) A is δ semiopen if and only if $cl(A) = cl(\delta int(A))$ if and only if $cl(\delta int(A)) = \delta cl(A)$ if and only if $cl(\delta int(A)) = c_{\alpha}(A)$ if and only if $cl(\delta int(A)) = c_{\alpha}(A)$.
- (f) A is preopen if and only if $c_{\xi}(A) = int(cl(A))$ if and only if $int(cl(A)) = c_{\sigma}(A)$ Lemma 1.1(c).
- (g) If A is α –open, then $c_{\xi}(A) = c_{\beta}(A)$ and so $c_{\xi}(A) = c_{\beta}(A) = c_{\delta}(A) = c_{\sigma}(A)$.

Proof: (a) The proof follows from Theorem 2.1(b).

- (b) By Theorem 2.1(c), $c_f(A) = A \cup int(\delta cl(int(A))) = A \cup int(cl(int(A))) = A \cup int(cl(A)) = c_\sigma(A)$.
- (c) The proof follows from (a) and (b), since every δ –semiopen set is a semiopen set.
- (d) The proof follows from Theorem 2.1(d) and the fact that $\xi(X) \subset \sigma(X) \subset b(X) \subset \beta(X)$.
- (e) By Theorem 2.1(e), it follows that $cl(A) = cl(\delta int(A))$. Since A is δ semiopen, $\delta cl(A) = cl(\delta int(A))$. Again, by Theorem 2.1(g), $c_{\pi}(A) = cl(\delta int(A))$ and by Lemma 1.1(a), $c_{\alpha}(A) = cl(A)$. Hence the proof follows. The converses are clear.
- (f) If A is preopen, then by Theorem 2.1(f), $c_{\xi}(A) = int(cl(A))$ and so $c_{\xi}(A) = A \cup int(cl(A)) = c_{\sigma}(A)$. The converses are clear
- (g) If A is α –open, then by Theorem 2.1(h), $c_{\xi}(A) = int(\delta cl(int(A))) = A \cup int(cl(int(A))) = c_{\beta}(A)$ and so $c_{\xi}(A) = c_{\beta}(A) = c_{\delta}(A)$.

Remark: 2.1 Theorem 2.2(e) is a generalization of Lemma 1.1(b) and characterizes δ -semiopens. Theorem 2.2(f) is a generalization of Lemma 1.1(c) which characterizes preopen sets in terms of δ -semiopen sets and also shows that

K. Thanalakshmi*/Note on δ -semiopen sets/IJMA- 2(5), May.-2011, Page: 740-744

Theorem 3.3 of [18] is partially true for preopen sets. Theorem 2.2(g) shows that Theorem 2.2 (d) is also true for α – open sets.

A space X is said to be s-closed [5] if for every cover $\{V_{\alpha} \mid \alpha \in \Delta\}$ of X by semiopen sets of X, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{c_{\sigma}(V_{\alpha}) \mid \alpha \in \Delta_0\}$ or equivalently, for every cover $\{V_{\alpha} \mid \alpha \in \Delta\}$ of X by δ – semiopen sets of X, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{c_{\sigma}(V_{\alpha}) \mid \alpha \in \Delta_0\}$ [16, Theorem 6.1(2)]. The following Theorem 2.3 gives more characterizations of s – closed spaces, the proof of which follows from Theorem 2.2(d).

Theorem: 2.3 *Let X be a space. Then the following are equivalent.*

- (a) X is s closed.
- (b) For every cover $\{V_{\alpha} \mid \alpha \in \Delta\}$ of X by δ semiopen sets of X, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{c_b(V_{\alpha}) \mid \alpha \in \Delta_0\}$.
- (c) For every cover $\{V_{\alpha} \mid \alpha \in \Delta\}$ of X by δ semiopen sets of X, there exists a finite subset Δ_0 of Δ such that $X = \bigcup \{c_{\beta}(V_{\alpha}) \mid \alpha \in \Delta_0\}$.

A space X is said to be *semiconnected* [17] if X cannot be expressed as the disjoint union of two nonempty semiopen sets. The following Theorem 2.4 gives more characterizations of semi-connected spaces.

Theorem: 2.4 Let X be a space. Then the following are equivalent.

- (a) X is semiconnected.
- (b) $c_{\xi}(A) = X$ for every nonempty δ semiopen set A.
- (c) $c_{\sigma}(A) = X$ for every nonempty δ semiopen set A.
- (d) $c_b(A) = X$ for every nonempty δ semiopen set A.
- (e) $c_{\beta}(A) = X$ for every nonempty δ semiopen set A.

Proof: (a) and (b) are equivalent by Theorem 6.3 of [16]. (b), (c), (d) and (e) are equivalent by Theorem 2.2(d). A space X is said to be $semi-T_2$ [12] if for each pair of distinct points x and y, there exist semiopen sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Theorem 6.5 of [16] gives some characterizations of semi $-T_2$ spaces in terms of δ – semiopen sets. The following Theorem 2.5 gives some more characterizations of semi $-T_2$ spaces in terms of δ – semiopen sets.

Theorem: 2.5 Let *X* be a space. Then the following are equivalent.

- (a) X is semi- T_2 .
- (b) For each pair of distinct points x and y, there exist δ semiopen sets U and V such that $x \in U$, $y \in V$ and $c_{\xi}(U) \cap c_{\xi}(V) = \emptyset$.
- (c) For each pair of distinct points x and y, there exist δ semiopen sets U and V such that $x \in U$, $y \in V$ and $c_{\beta}(U) \cap c_{\beta}(V) = \emptyset$.
- (d) For each pair of distinct points x and y, there exist δ semiopen sets U and V such that $x \in U$, $y \in V$ and $c_b(U) \cap c_b(V) = \emptyset$.

Proof: (a) and (b) are equivalent by Theorem 6.5(3) of [16]. (b), (c) and (d) are equivalent by Theorem 2.2(d). A space X is said to be s –Urysohn [3] if for each pair of distinct points x and y, there exist semiopen sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \emptyset$. In Theorem 6.6 of [16], it is established that a space X is s –Urysohn if and only if for each pair of distinct points x and y, there exist δ – semiopen sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \emptyset$. The following Theorem 2.6 gives more characterizations.

Theorem: 2.6 Let X be a space. Then the following are equivalent.

- (a) X is s Urysohn.
- (b) For each pair of distinct points x and y, there exist δ semiopen sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \emptyset$.

K. Thanalakshmi*/Note on δ -semiopen sets/IJMA- 2(5), May.-2011, Page: 740-744

- (c) For each pair of distinct points x and y, there exist δ semiopen sets U and V such that $x \in U$, $y \in V$ and $\delta cl(U) \cap \delta cl(V) = \emptyset$.
- (d) For each pair of distinct points x and y, there exist δ semiopen sets U and V such that $x \in U$, $y \in V$ and $c_{\alpha}(U) \cap c_{\alpha}(V) = \emptyset$.
- (e) For each pair of distinct points x and y, there exist δ semiopen sets U and V such that $x \in U$, $y \in V$ and $c_{\pi}(U) \cap c_{\pi}(V) = \emptyset$.

Proof: (a) and (b) are equivalent by Theorem 6.6 of [16]. (b), (c), (d) and (e) are equivalent by Theorem 2.2(e). A space X is said to be s –regular [11] (resp. semi – regular [6]) if for each closed (resp. semi – semi semiclosed) set F of X and a point $x \notin F$, there exist semiopen sets U and V such that $x \in U$, $F \subset V$ and $U \cap V = \emptyset$. The following Theorem 2.7 gives more characterizations of s –regular and semi – semi regular spaces in terms of s – semi open sets.

Theorem: 2.7 *Let X be a space. Then the following are equivalent.*

- (a) X is s regular (resp. semi regular).
- (b) For each point $x \in X$ and each open (resp. semiopen) set V containing x, there exists a δ semiopen set U such that $x \in U \subset c_{\sigma}(U) \subset V$.
- (c) For each point $x \in X$ and each open (resp. semiopen) set V containing x, there exists a δ semiopen set U such that $x \in U \subset c_b(U) \subset V$.
- (d) For each point $x \in X$ and each open (resp. semiopen) set V containing x, there exists a δ semiopen set U such that $x \in U \subset c_{\beta}(U) \subset V$.

Proof: The proof follows from Theorem 6.7(3) of [16] and Theorem 2.2(d). A space X is said to be s –normal [15] (resp. sem –normal [7]) if for each disjoint closed (resp. semiclosed) sets F and K of X, there exist semiopen sets U and V such that $F \subset U$, $K \subset V$ and $U \cap V = \emptyset$. The following Theorem 2.8 gives more characterizations of s–normal and semi–normal spaces in terms of δ – semiopen sets.

Theorem: 2.8 *Let X be a space. Then the following are equivalent.*

- (a) X is s normal (resp. semi –normal).
- (b) For each closed (resp. semiclosed) set F and each open (resp. semiopen) set V containing F, there exists a δ semiopen set U such that $F \subset U \subset c_{\sigma}(U) \subset V$.
- (c) For each closed (resp. semiclosed) set F and each open (resp. semiopen) set V containing F, there exists a δ -semiopen set U such that $F \subset U \subset c_B(U) \subset V$.
- (d) For each closed (resp. semiclosed) set F and each open (resp. semiopen) set V containing F, there exists a δ semiopen set U such that $F \subset U \subset C_8(U) \subset V$.

Proof: The proof follows from Theorem 6.8(3) of [16] and Theorem 2.2(d).

REFERENCES:

- [1] D. Andrijević, On b-open sets, *Mat. Vesnik*, 48(1996), 59 64.
- [2] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β open sets and β continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12 (1983), 77 90.
- [3] M.P. Bhamani, The role of semiopen sets in Topology, Ph.D Thesis, Univ. of Delhi, 1983.
- [4] Á. *Császár*, Generalized Open Sets, *Acta Math. Hungar.*, 75(1-2)(1997), 65 87.
- [5] G. Di Maio and T. Noiri, On s closed spaces, Indian J. Pure Appl. Math., 18(1987), 226 233.
- [6] C. Dorsett, Semi-regular spaces, Soochow J. Math., 8(1982), 45 53.

K. Thanalakshmi*/Note on δ -semiopen sets/IJMA- 2(5), May.-2011, Page: 740-744

- [7] C. Dorsett, Semi-normal spaces, Kyungpook Math. J., 25(1985), 173 180.
- [8] D.S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46(1-2) (1985), 83 92.
- [9] B.Y. Lee, M.J. Son and J.H. Park, δ semiopen sets and its applications, Far East J. Math. Sci., 3(5)(2001), 745 759.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36 41.
- [11] S. Maheswari and R. Prasad, On s regular spaces, Glasnik Mat., 10(30) (1970), 347 350.
- [12] S. Maheswari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395 402.
- [13] S. Maheswari and R. Prasad, On s normal spaces, *Bull. Math. Soc. Sci. Math.* R.S. Roumanie (N.S), 22(68)(1978), 27 29.
- [14] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phy. soc. Egypt*, 53(1982), 47 53.
- [15] O. Njåstad, On some Classes of Nearly Open Sets, Pacific J. Math., 15(1965), 961 970.
- [16] T. Noiri, Remarks on δ semiopen sets and δ preopen sets, *Demonstratio Math.*, 36(2003), 1070 1020.
- [17] V. Pipitone and G. Russo, Spazi semiconnessi e spazi semiaperti, Rend. Circ.Mat. Palermo (2), 24(1975), 273 285
- [18] J.H. Park, B.Y. Lee and M.J. Son, On δ semiopen sets in topological space, *J. Indian Acad. Math.*, 19(1)(1997), 59 67.
- [19] D. Sivaraj, A note on S-closed spaces, Acta Math. Hungar, 44(3-4) (1984), 207 213.
