International Journal of Mathematical Archive-2(5), May - 2011, Page: 745-752 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

ON T g"-SPACES

¹S. PIOUS MISSIER, ²O. RAVI, ³S. JEYASHRI AND ⁴P. HERIN WISE BELL

¹Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu (India)

^{2, 3}Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt., Tamil Nadu, (India)

⁴Department of Mathematics, Vivekananda College, Agasteswaram, Kanyakumari Dt. Tamil Nadu, (India)

E-mail: spmissier@yahoo.com, siingam@yahoo.com, jeyabala1@yahoo.com, herinewisebell@yahoo.com

(Recived on : 07-02-11; Accepted on : 28-04-11)

ABSTRACT

The aim of this paper is to introduce Tg''-spaces, ${}_{g}Tg''$ -spaces and $\alpha Tg''$ -spaces. Moreover, we obtain certain new characterizations for the Tg''-spaces, ${}_{g}Tg''$ -spaces and $\alpha Tg''$ -spaces.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05.

Key words and Phrases: Topological space, Tg''-space, ${}_{g}Tg'''$ -space and $\alpha Tg''$ -space.

1. INTRODUCTION:

Levine [10] introduced the notion of $T_{1/2}$ -spaces which properly lie between T_1 -spaces and T_0 -spaces. Many authors studied properties of $T_{1/2}$ -spaces: Dunham [8], Arenas et al. [3] etc. In this paper, we introduce the notions called T g'-spaces, ${}_{g}T g'$ -spaces and $\alpha T g'$ -spaces and obtain their properties and characterizations.

2. PRELIMINARIES:

Throughout this paper (X, τ) (or X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition: 2.1

A subset A of a space (X, τ) is called:

- (i) semi-open set [11] if $A \subseteq cl(int(A))$;
- (ii) preopen set [13] if $A \subseteq int(cl(A))$;
- (iii) α -open set [15] if A \subseteq int(cl(int(A)));

(iv) β -open set [1] (= semi-preopen [2]) if A \subseteq cl(int(cl(A))).

The complements of the above mentioned open sets are called their respective closed sets.

*Corresponding author: O. Ravi, *E-mail: <u>siingam@yahoo.com</u> Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt., Tamil Nadu, (India) International Journal of Mathematical Archive- 2 (5), May – 2011

The preclosure [16] (resp. semi-closure [5], α -closure [15], semi-pre-closure [2]) of a subset A of X, denoted by pcl(A) (resp. scl(A), α cl(A), spcl(A)), is defined to be the intersection of all preclosed (resp. semi-closed, α -closed, semi-preclosed) sets of (X, τ) containing A. It is known that pcl(A) (resp. scl(A), α cl(A), spcl(A)) is a preclosed (resp. semi-closed, α -closed, semi-preclosed) set. For any subset A of an arbitrarily chosen topological space, the semi-interior [5] (resp. α -interior [15], preinterior [16]) of A, denoted by sint(A) (resp. α int(A), pint(A)), is defined to be the union of all semi-open (resp. α -open, preopen) sets of (X, τ) contained in A.

Definition: 2.2

A subset A of a space (X, τ) is called:

- (i) a generalized closed (briefly g-closed) set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of g-closed set is called g-open set;
- (ii) a generalized semi-closed (briefly gs-closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gs-closed set is called gs-open set;
- (iii) an α -generalized closed (briefly α g-closed) set [12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ). The complement of α g-closed set is called α g-open set;
- (iv) a generalized semi-preclosed (briefly gsp-closed) set [16] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gsp-closed set is called gsp-open set;
- (v) a \hat{g} -closed set [19] (= ω -closed [18]) if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ). The complement of \hat{g} -closed set is called \hat{g} -open set;
- (vi) a g''-closed set [17] if cl(A) \subseteq U whenever A \subseteq U and U is gs-open in (X, τ). The complement of g''-closed set is called g''-open set;
- (vii) a g*-preclosed (briefly g*p-closed) set [20] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) . The complement of g*p-closed set is called g*p-open set.

The collection of all g''-closed (resp. ω -closed, α g-closed, gsp-closed, gsp-closed, g*p-closed) sets is denoted by G''' C(X) (resp. ω C(X), α G C(X), α G C(X), GSP C(X), α C(X), α C(X), G^*P C(X)).

The collection of all g''-open (resp. ω -open, α g-open, gsp-open, gs-open, α -open, g^* p-open) sets is denoted by G''' O(X) (resp. ω O(X), αG O(X), αG O(X), GSPO(X), αO (X), αO (X), αG^*P O(X)).

We denote the power set of X by P(X).

Definition: 2.3

A space (X, τ) is called:

- (i) $T_{1/2}$ -space [10] if every g-closed set is closed.
- (ii) T_b-space [7] if every gs-closed set is closed.
- (iii) α T_b-space [6] if every α g-closed set is closed.
- (iv) T ω -space [18] if every ω -closed set is closed.
- (v) T_p*-space [20] if every g*p-closed set in it is closed.
- (vi) *_sT_p-space [20] if every gsp-closed set in it is g*p-closed.
- (vii) α T_d-space [6] if every α g-closed set is g-closed.

© 2011, IJMA. All Rights Reserved

(viii) α -space [15] if every α -closed set is closed.

Definition: 2.4 [14]

Let (X, τ) be a topological space and $A \subseteq X$. We define the gs-closure of A (briefly gs-cl(A)) to be the intersection of all gs-closed sets containing A.

Result: 2.5 [17]

For a topological space X, the following hold:

(i) Every closed set is g''-closed but not conversely.

- (ii) Every g''-closed set is ω -closed but not conversely.
- (iii) Every g''-closed set is g-closed but not conversely.
- (iv) Every g''-closed set is α g-closed but not conversely.

(v) Every g''-closed set is gs-closed but not conversely.

(vi) Every g''-closed set is gsp-closed but not conversely.

Theorem: 2.6[17]

A set A is q''-closed if and only if cl(A) - A contains no nonempty gs-closed set.

3. PROPERTIES OF T g''-**SPACES:**

We introduce the following definition:

Definition: 3.1

A space (X, τ) is called a T g''-space if every g''-closed set in it is closed.

Example: 3.2

Let X = {a, b, c} with $\tau = \{\phi, \{b\}, X\}$. Then $G''' C(X) = \{\phi, \{a, c\}, X\}$. Thus (X, τ) is a T g''-space.

Example: 3.3

Let X = {a, b, c} with $\tau = \{\phi, \{a, c\}, X\}$. Then $G''' C(X) = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Thus (X, τ) is not a T g''-space.

Proposition: 3.4

Every $T_{1/2}$ -space is T g''-space but not conversely.

Proof: Follows from Result 2.5 (iii).

The converse of Proposition 3.4 need not be true as seen from the following example.

Example: 3.5

Let X and τ as in the Example 3.2, $G C(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is not a $T_{1/2}$ -space.

Proposition: 3.6

Every T ω -space is Tg''-space but not conversely.

Proof: Follows from Result 2.5 (ii).

The converse of Proposition 3.6 need not be true as seen from the following example.

© 2011, IJMA. All Rights Reserved

Example: 3.7

Let X = {a, b, c} with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\omega C(X) = P(X)$ and $G''' C(X) = \{\phi, \{a\}, \{b, c\}, X\}$. Thus (X, τ) is Tg''-space but not a $T\omega$ -space.

Proposition: 3.8

Every α T_b-space is T g''-space but not conversely.

Proof: Follows from Result 2.5 (iv).

The converse of Proposition 3.8 need not be true as seen from the following example.

Example: 3.9

Let X and τ as in the Example 3.2, $\alpha G C(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is not a α T_b-space.

Proposition: 3.10

Every $*_{s}T_{p}$ -space and T_{p} *-space is Tg''-space but not conversely.

Proof: Follows from Result 2.5 (vi) and Definition 2.3 (vi) and (v).

The converse of Proposition 3.10 need not be true as seen from the following example.

Example: 3.11

Let X and τ as in the Example 3.2, $GSP C(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $G^*P C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is neither a $*_sT_p$ -space nor a T_p^* -space.

Proposition: 3.12

Every T_b -space is Tg''-space but not conversely.

Proof: Follows from Result 2.5 (v).

The converse of Proposition 3.12 need not be true as seen from the following example.

Example: 3.13

Let X and τ as in the Example 3.2, $GS C(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is not a T_b-space.

Remark: 3.14

We conclude from the next two examples that T g''-spaces and α -spaces are independent.

Example: 3.15

Let X and τ as in the Example 3.2, α C(X) = { ϕ , {a}, {c}, {a, c}, X}. Thus (X, τ) is a T g''-space but not a α -space.

Example: 3.16

Let X and τ as in the Example 3.3, $\alpha C(X) = \{\phi, \{b\}, X\}$. Thus (X, τ) is a α -space but not a T g''-space.

Theorem: 3.17

For a space (X,τ) the following properties are equivalent:

(i) (X, τ) is a T g''-space.

(ii) Every singleton subset of (X, τ) is either gs-closed or open.

Proof: (i) \rightarrow (ii). Assume that for some $x \in X$, the set $\{x\}$ is not a gs-closed in (X, τ) . Then the only gs-open set containing $\{x\}^c$ is X and so $\{x\}^c$ is g'-closed in (X, τ) . By assumption $\{x\}^c$ is closed in (X, τ) or equivalently $\{x\}$ is open. (ii) \rightarrow (i). Let A be a g'-closed subset of (X, τ) and let $x \in cl(A)$. By assumption $\{x\}$ is either gs-closed or open.

Case (a) Suppose that $\{x\}$ is gs-closed. If $x \notin A$, then cl (A) –A contains a nonempty gs-closed set $\{x\}$, which is a contradiction to Theorem 2.6. Therefore $x \in A$.

Case (b) Suppose that $\{x\}$ is open. Since $x \in cl(A)$, $\{x\} \cap A \neq \phi$ and so $x \in A$. Thus in both case, $x \in A$ and therefore $cl(A) \subseteq A$ or equivalently A is a closed set of (X, τ) .

Definition: 3.18

A topological space (X,τ) is called generalized semi- R_0 (briefly gs- R_0) if and only if for each gs-open set G and $x \in G$ implies gs-cl($\{x\}$) $\subset G$.

Definition: 3.19

A topological space (X, τ) is called:

- (i) generalized semi- T_0 (briefly gs- T_0) if and only if to each pair of distinct points x, y of X, there exists a gs-open set containing one but not the other.
- (ii) generalized semi- T_1 (briefly gs- T_1) if and only if to each pair of distinct points x, y of X, there exists a pair of gs-open sets, one containing x but not y, and the other containing y but not x.

Theorem: 3.20

For a topological space X, each of the following statement is equivalent:

(i) X is a $gs-T_1$.

(ii) Each one point set is gs-closed set in X.

Proof: (i) \Rightarrow (ii) Let a space X be gs-T₁ and $x \in X$. Suppose gscl({x}) \neq {x}. Then we can find an element $y \in$ gscl({x}) with $y \neq x$. Since X is gs-T₁, there exist gs-open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Now $x \in V^c$ and V^c is gs-closed. Therefore gscl({x}) $\subseteq V^c$ which implies $y \in V^c$, contradiction. Hence gscl({x}) = {x} or {x} is gs-closed. (ii) \Rightarrow (i) Let x, $y \in X$ with $x \neq y$. Then {x} and {y} are gs-closed. Therefore $U = ({x})^c$ and $V = ({y})^c$ are gs-open and $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Hence X is gs-T₁

Theorem: 3.21

For a space (X, τ) the following properties hold:

(i) If (X, τ) is gs-T₁, then it is T g''.

(ii) If (X, τ) is T g'', then it is gs-T₀.

Proof:

(i) The proof is obvious from Theorem 3.20.

(ii) Let x and y be two distinct elements of X. Since the space (X,τ) is T g'', we have that $\{x\}$ is gs-closed or open. Suppose that $\{x\}$ is open. Then the singleton $\{x\}$ is a gs-open set such that $x \in \{x\}$ and $y \notin \{x\}$. Also, if $\{x\}$ is gs-closed, then $X \setminus \{x\}$ is gs-open such that $y \in X \setminus \{x\}$ and $x \notin X \setminus \{x\}$. Thus, in the above two cases, there exists a gs-open set U of X such that $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$. Thus, the space (X,τ) is gs-T₀.

Theorem: 3.22

For a gs-R₀ topological space (X, τ) the following properties are equivalent:

(i) (X, τ) is gs-T₀.

(ii) (X, τ) is T g''.

(iii) (X, τ) is gs-T₁.

Proof: It suffices to prove only (i) \Rightarrow (iii). Let $x \neq y$ and since (X, τ) is $gs-T_0$, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some gs-open set U. Then $x \in X \setminus gs-cl(\{y\})$ and $X \setminus gs-cl(\{y\})$ is gs-open. Since (X, τ) is $gs-R_0$, we have $gs-cl(\{x\}) \subseteq X \setminus gs-cl(\{y\}) \subseteq X \setminus \{y\}$ and hence $y \notin gs-cl(\{x\})$. There exists gs-open set V such that $y \in V \subseteq X \setminus \{x\}$ and (X, τ) is $gs-T_1$.

4. _gT *g*^{*m*}-**SPACES**:

Definition: 4.1

A space (X, τ) is called a ${}_{g}T g''$ -space if every g-closed set in it is g''-closed.

Example: 4.2

Let X and τ as in the Example 3.3, is a gT g["]-space and the space (X, τ) in the Example 3.2, is not a gT g["]-space.

Proposition: 4.3

Every $T_{1/2}$ -space is ${}_{g}Tg''$ -space but not conversely.

Proof: Follows from Result 2.5 (i).

The converse of Proposition 4.3 need not be true as seen from the following example.

Example: 4.4

Let X and τ as in the Example 3.3, is a ${}_{g}Tg''$ -space but not a $T_{1/2}$ -space.

Remark: 4.5

T g''-space and ${}_{g}T g''$ -space are independent.

Example: 4.6

The space (X, τ) in the Example 3.3, is a $_{g}Tg''$ -space but not a Tg''-space and the space (X, τ) in the Example 3.2, is a Tg''-space but not a $_{g}Tg''$ -space.

Theorem: 4.7

If (X, τ) is a gT g''-space, then every singleton subset of (X, τ) is either g-closed or g''-open.

Proof: Assume that for some $x \in X$, the set $\{x\}$ is not a g-closed in (X, τ) . Then $\{x\}$ is not a closed set, since every closed set is a g-closed set. So $\{x\}^c$ is not open and the only open set containing $\{x\}^c$ is X itself. Therefore $\{x\}^c$ is trivially a g-closed set and by assumption, $\{x\}^c$ is an g'-closed set or equivalently $\{x\}$ is g'-open.

The converse of Theorem 4.7 need not be true as seen from the following example.

Example: 4.8

Let X and τ as in the Example 3.2. The sets {a} and {c} are g-closed in (X, τ) and the set {b} is g''-open. But the space (X, τ) is not a ${}_{g}Tg''$ -space.

Theorem: 4.9

A space (X,τ) is $T_{1/2}$ if and only if it is both Tg'' and ${}_{g}Tg''$.

Proof: Necessity. Follows from Propositions 3.4 and 4.3.

Sufficiency. Assume that (X, τ) is both T g'' and $_{g}T g'''$. Let A be a g-closed set of (X, τ) . Then A is g''-closed, since (X, τ) is a $_{g}T g''$. Again since (X, τ) is a T g'', A is a closed set in (X, τ) and so (X, τ) is a T $_{1/2}$. 5. $\alpha T g''$ -SPACES:

Definition: 5.1

A space (X, τ) is called a α T g''-space if every α g-closed set in it is g''-closed. © 2011, IJMA. All Rights Reserved

Example: 5.2

Let X and τ as in the Example 3.3, is a α T g''-space and the space (X, τ) in the Example 3.2, is not a α T g''-space.

Proposition: 5.3

Every α T_b-space is α T g'''-space but not conversely.

Proof: Follows from Result 2.5 (i).

The converse of Proposition 5.3 need not be true as seen from the following example.

Example: 5.4

Let X and τ in the Example 3.3, is a α T g["]-space but not a α T_b-space.

Proposition: 5.5

Every $\alpha T g''$ -space is a αT_d -space but not conversely.

Proof: Let (X, τ) be an α T g''-space and let A be an α g-closed set of (X, τ) . Then A is a g''-closed subset of (X, τ) and by Result 2.5 (iii), A is g-closed. Therefore (X, τ) is an α T_d-space.

The converse of Proposition 5.5 need not be true as seen from the following example.

Example: 5.6

Let X and τ in the Example 3.3, is a α T_d-space but not a α T g''-space.

Theorem: 5.7

If (X,τ) is a α T g''-space, then every singleton subset of (X,τ) is either α g-closed or g''-open.

Proof: Similar to Theorem 4.7.

The converse of Theorem 5.7 need not be true as seen from the following example.

Example: 5.8

Let X and τ as in the Example 3.2. The sets {a} and {c} are α g-closed in (X, τ) and the set {b} is g''-open. But the space (X, τ) is not a α T g''-space.

REFERENCES:

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] Arenas, F. G., Dontchev, J. and Ganster, M.: On λ-sets and dual of generalized continuity, Questions Answers Gen. Topology, 15(1997), 3-13.
- [4] Arya, S. P. and Nour, T.: Characterization of s-normal spaces, Indian J. Pure Appl. Math., 21(8)(1990), 717-719.
- [5] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [6] Devi, R., Balachandran, K. and Maki, H.: Generalized α -closed maps and α -generalized closed maps, Indian J. Pure Appl. Math., 29(1998), 37-49.
- [7] Devi, R., Balachandran, K. and Maki, H.: Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Kochi Univ. Ser. A. Math., 14(1993), 41-54.
- [8] Dunham, W.: T_{1/2}-spaces, Kyungpook Math. J., 17(1977), 161-169.

- [9] Ganster, M., Jafari, S. and Navalagi, G. B.: Semi-g-regular and semi-g-normal spaces, Demonstratio Math., 35(2) (2002), 415-421.
- [10] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [11] Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [12] Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
- [13] Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N.: On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [14] Navalagi, G. B.: Properties of gs-closed sets and sg-closed sets in topology, Topology Atlas.
- [15] Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [16] Noiri, T., Maki, H. and Umehara, J.: Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math., 19(1998), 13-20.
- [17] Pious Missier, S., Ravi, O., Jeyashri, S. and Herin Wise Bell, P.: g^m-closed sets in topology (submitted).
- [18] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- [19] Veera Kumar, M. K. R. S.: \hat{g} -closed sets in Topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.
- [20] Veera Kumar, M. K. R. S.: g*-preclosed sets, Acta Ciencia Indica, Vol. XXVIIIM, (1) (2002), 51-60.
