ON SYLOW NUMBERS OF THE ALTERNATING SIMPLE GROUPS ${ }^{1}$

Rulin Shen*
Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, P.R. China, 445000
E-mail: rulinshen@gmail.com

Ronghua Tan

Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, P.R. China, 445000
(Received on: 29-04-11; Accepted on: 11-05-11)

ABSTRACT

In this paper we give the formula of numbers of Sylow subgroups of alternating simple groups. This partially solves a problem posed by Jiping Zhang.
Keywords: symmetric groups, alternating groups, Sylow numbers.
MR (2000): 20D60, 20D06.

1. INTRODUCTION AND LEMMAS:

The structure of normalizer of Sylow 2-subgroup of symmetric groups S_{n} is studied by P. Hall (see Lemma 4 of [1], or [2]), he proved that Sylow 2-subgroup is self-normalized. The study in the numbers of Sylow subgroups (also called the Sylow numbers) is due to Professor Jiping Zhang [5]. He proved a conjecture of Huppert's. Then he put forward a problem in the end of his paper [5]. determine the number of Sylow p-subgroup of finite simple groups. In this paper we give the formula of Sylow numbers of the alternating simple group A_{n}, which partially solves above Zhang's problem. Let $\Omega=\{1,2,3, \ldots, n\}, S(\Omega)$ or S_{n} be symmetric group on Ω and P_{n} be a Sylow p-subgroup of symmetric group S_{n}. Then $\left|P_{n}\right|=(n!)_{p}=p^{s(n)}$, where $s(n)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots$.

Suppose that $n=a_{r} p^{r}+a_{r-1} p^{r-1}+\ldots+a_{1} p+a_{0}$ is the p-adic expansion of the number n, in which $0 \leq a_{i} \leq p-1, i=0,1, \ldots, r$ and $a_{r} \neq 0$. In the following paper, the number p is always a prime. We will prove: Theorem: The number of Sylow p-subgroup of the alternating group $A_{n}(n \geq 6)$ is

$$
\frac{n!}{a_{0}!a_{1}!\ldots a_{r}!p^{s(n)}(p-1)^{a_{1}+2 a_{2}+\ldots+r a_{r}}}
$$

Rulin Shen* and Ronghua Tan/On sylow numbers of the alternating simple groups ${ }^{1} /$ IJMA- 2(5), May. -2011, Page: 753-757 $^{\text {2 }}$ Next we will cite some lemmas.

Lemma: 1 Let $X=\{1,2, \ldots, p\}, \quad Y=\left\{1,2, \ldots, t, i_{1}, i_{2}, \ldots, i_{p-t}\right\}$ and $X \cap Y=\{1,2, \ldots, t\}$ with $1 \leq t \leq p-1$. Suppose that a, b are p-cycles on X and Y, respectively. Then the group $\langle a, b\rangle$ is not a p-group.

Proof: Suppose that $\langle a, b\rangle$ is a p-group. Clearly, it is a transitive permutation on the set $X \cap Y$, and its degree n is $|X \cap Y|=2 p-t$. Since $1 \leq t \leq p-1$, we have $1<n<2 p$. On the other hand, the degree of $\langle a, b\rangle$ is a multiple of p since it is a p-group. In fact, we only need to choose a subgroup P of $\langle a, b\rangle$ whose kernel is 1 and order is maximal, then $n=|\langle a, b\rangle: P|$. So that $p \mid n$, which contradicts the facts that $p<n<2 p$.

Lemma: 2 The normalizer of Sylow p-subgroup of the symmetric group $S_{p}(p \geq 5)$ is the Frobenius $\operatorname{group} Z_{p}: Z_{p-1}$.

Proof: Let $Z_{p}=\langle(123 \ldots p)\rangle$ is a Sylow p-subgroup of S_{p}. Choose an element $b=(12435687 \ldots \ldots)$. It is easy to check that $(123 \ldots p)^{b} \in Z_{p}$, and hence $Z_{p}:\langle a, b\rangle \leq N_{S_{p}}\left(Z_{p}\right)$. On the other hand, S_{p} has $(p-1)$! elements with order p exactly, so the number of subgroups of order p in S_{p} is $(p-2)$!. Obviously, the number $\mid S_{p}: N_{S_{p}}\left(Z_{p}\right)$ |of Sylow p-subgroups is also $(p-2)!\$$, thus $\left|N_{S_{p}}\left(Z_{p}\right)\right|=p(p-1)$. Therefore, $N_{S_{p}}\left(Z_{p}\right)$ is a Frobenius group with order $p(p-1)$.
2. Proof of Theorem: Denote by $A \backslash B$ the wreath product of A and B, in which B regarded as a permutation group. Denote by $G^{m}:=\overbrace{G \times G \times \cdots \times G}^{m \text { copies }}, G^{\imath_{m}}:=\overbrace{G \imath G \imath \cdots \imath G}^{m \text { copies }}$.

It is known that the Sylow p-subgroup $P_{p^{r}}$ of $S_{p^{r}}$ is $Z_{p}^{\ell_{r}}$ (see 1.6.19 in [4]). Of course, it is a transitive group with degree $P^{s\left(p^{r}\right)}$. If G acts on the set Δ and $X \subseteq \Delta$, then N_{X} stands for the global stabilizer of subset X in G. We will use the following steps to complete the proof of the Theorem.

Step: 1 If $n=p^{r}$, then $\quad N_{S_{p^{r}}}\left(P_{p^{r}}\right) \cong Z_{p}^{\ell_{r}}: Z_{p-1}^{r}$.
Let $X=\left\{1,2, \ldots, p^{r}\right\}, \quad X_{i}=\{p(i-1)+1, p(i-1)+2, \ldots, p(i-1)+p\}, \quad$ where $\quad 1 \leq i \leq p^{r-1} . \quad$ Set $\mathrm{D}=\left\{X_{1}, X_{2}, \ldots, X_{p^{r-1}}\right\}$. Then

$$
S(X)_{\mathcal{D}}=\left(S\left(X_{1}\right) \times S\left(X_{2}\right) \times \cdots \times S\left(X_{p^{r-1}}\right)\right): S_{p^{r-1}} \cong S_{p}\left\langle S_{p^{r-1}}\right.
$$

Clearly, $S(X)_{D}$ must include a Sylow p-subgroup $P_{p^{r}}$ of $S(X)$.
Let $K_{i}:=S\left(X_{i}\right), \quad 1 \leq i \leq p^{r-1}$, and $K:=K_{1}$. The class of subgroups conjugate to K in $S(X)$ referred to as the set of the fundamental subgroups in $S(X)$. Set

$$
\Delta=\operatorname{Fun}_{S(X)}\left(P_{p^{r}}\right)=\left\{K^{x} \mid x \in S(X), K^{x} \cap P_{p^{r}} \in \operatorname{Syl}_{p}\left(K^{x}\right)\right\} .
$$

By the definition of Δ, we have $\left\{K_{i} \mid 1 \leq i \leq p^{r-1}\right\} \subseteq \Delta$. Suppose that there exists an element $g \in S(X)$ such that $K^{g} \in \Delta$, and $K^{g} \neq K_{i}$ for each i. Now we let $K^{g}:=S\left(g\left(X_{1}\right)\right)$. of course $g\left(X_{1}\right) \neq K_{i}$ for each i. By the definition of Δ, we know that $K^{g} \cap P_{p^{r}} \in S y l_{p}(S(X))$. Then there exists a Sylow p-subgroup P of K^{g} such that $P \leq P_{p^{r}}$. Without loss of generality, we can assume that $a=(123 \ldots p) \in K \cap P_{n}$, then $\langle a, P\rangle \leq P_{p^{r}}$. Suppose that $X_{i} \cap g\left(X_{1}\right) \neq \varnothing$ for some i, and set $\left|X_{i} \cap g\left(X_{1}\right)\right|=t$, where $1 \leq t \leq p-1$. Then we can assume that $g\left(X_{1}\right)=\left\{1,2, \ldots, t, i_{1}, i_{2}, \ldots, i_{p-t}\right\}$. By the Lemma 1 , for any p-cycle b on $g\left(X_{1}\right)$, we have $\langle a, b\rangle$ is not a p-group. Then such P does not exist, contradicts. So $X_{i} \cap g\left(X_{1}\right)=\varnothing$ for any i, that is $\quad g\left(X_{1}\right) \cap X=g\left(X_{1}\right) \cap\left(\cup_{i=1}^{p^{r-1}} X_{i}\right)=\varnothing \quad$,which \quad contradicts \quad the \quad fact \quad that $\quad K^{g} \leq S(X) \quad$. Thus $\left\{K_{i} \mid 1 \leq i \leq p^{r-1}\right\}=\Delta$. Moreover, by the definition of Δ, we know that $K^{x} \cap P_{p^{r}} \in \operatorname{Syl} l_{p}\left(K^{x}\right)$ for any $K^{x} \in \Delta$. If $g \in N_{S(X)}\left(P_{p^{r}}\right)$, i.e., $P_{p^{r}}{ }^{g}=P_{p^{r}}$, then $K^{x g} \cap P_{p^{r}} \in S y l_{p}\left(K^{x g}\right)$, and hence $K^{x g} \in \Delta$. Thus $g \in N_{S(X)}(\Delta)$, then

$$
N_{S(X)}\left(P_{p^{r}}\right) \leq N_{S(X)}(\Delta)=S(X)_{\mathcal{D}} \cong S_{p}\left\langle S_{p^{r-1}}\right.
$$

Without loss of generality, we suppose that $P_{p^{r}}$ is a Sylow p-subgroup of $\quad S_{p} \backslash S_{p^{r-1}}$. of course, Now we

$$
N_{S(X)}\left(P_{p^{r}}\right)=N_{S_{p} S_{p^{r-1}}}\left(P_{p^{r}}\right) . \text { denote by } \quad G:=S_{p} \backslash S_{p^{r-1}}, A:=S_{p}^{p^{r-1}}
$$

$A:=S_{p}^{p^{p-1}}, B:=S_{p^{r-1}} \quad, \quad P_{A}=P_{p^{r}} \cap A, P_{B}=P_{p^{\prime}} \cap B \quad$. Since $G=A: B \quad$, we have $\quad N_{B}\left(P_{B}\right) \cong$ $N_{G / A}\left(P_{p^{r}} A / A\right)=N_{G}\left(P_{p^{r}}\right) A / A \cong N_{G}\left(P_{p^{r}}\right) / A \cap N_{G}\left(P_{p^{r}}\right)=N_{G}\left(P_{p^{r}}\right) / N_{A}\left(P_{p^{r}}\right)$, so that
$N_{G}\left(P_{p^{r}}\right)=N_{A}\left(P_{p^{r}}\right): N_{B}\left(P_{B}\right)$. In the sequel, we determine the structure of $N_{A}\left(P_{p^{r}}\right)$. Obviously, $P_{p^{r}}=Z_{p}^{Z_{r}}=$ $Z_{p}\left\langle Z_{p}^{l_{r}-1}=Z_{p}^{p^{r-1}}: Z_{p}^{l_{r-1}}\right.$. Choose an element $x=\left(x_{1}, x_{2}, \ldots, x_{p^{r-1}} ; 1\right) \in N_{A}\left(P_{p^{r}}\right)$, then we have $g^{x} \in P_{p^{r}}$ for any element $g=\left(g_{1}, g_{2}, \ldots, g_{p^{r-1}} ; g_{0}\right) \in P_{p^{r}}$, where $g_{0} \in Z_{p}^{l r-1}$. That is

$$
g^{x}=\left(x_{1}^{-1} g_{1} x_{1} g_{0}, x_{2}^{-1} g_{2} x_{29_{0}}, \cdots, x_{p^{r-1}}^{-1} g_{p^{r-1}} x_{\left(p^{r-1}\right) 9_{0}} ; g_{0}\right) \in Z_{p}^{p^{r-1}}: Z_{p}^{l r-1}
$$

Since g_{0} can be chosen randomly, we can get $x_{i} \in N_{S_{p}}\left(Z_{p}\right)$ if we choose $g_{0}=1$, and hence $x_{i}=x_{i^{80}}$. Furthermore, $Z_{p}^{l_{r-1}}$ is a transitive group with degree $p^{s\left(p^{r-1}\right)}$, then for any pairs $i, j \in\left\{1,2, \ldots, p^{r-1}\right\}$, there exists an element $g_{0} \in Z_{p}^{l r-1}$ such that $i^{g_{0}}=j$, and hence $x_{1}=x_{2}=\ldots=x_{p^{r-1}}$. Conversely, if $x=\left(x_{1}, x_{2}, \ldots, x_{p^{r-1}} ; 1\right)$ and $x_{1} \in N_{S_{p}}\left(Z_{p}\right)$, then $x \in N_{A}\left(P_{p^{r}}\right)$. Thus $N_{A}\left(P_{p^{r}}\right)=Z_{p}^{p^{r-1}}: Z_{p-1}$. So we have $N_{A}\left(P_{p^{r}}\right)=N_{A}\left(P_{p^{r}}\right): N_{B}\left(P_{B}\right) \cong\left(Z_{p}^{p^{r-1}}: Z_{p-1}\right): N_{B}\left(P_{B}\right)$. Therefore, $N_{S_{p^{r}}}\left(P_{p^{r}}\right) \cong\left(Z_{p}^{p^{-1}}: Z_{p-1}\right): N_{S_{p^{r-1}}}\left(P_{p^{r-1}}\right)$. By the induction for r, we can obtain $N_{S_{p^{r}}}\left(P_{p^{r}}\right) \cong Z_{p}^{l r}: Z_{p-1}^{r}$.

Step: 2 If $n=a_{r} p^{r}+k$, then $N_{S_{n}}\left(P_{n}\right) \cong N_{S_{k}}\left(P_{k}\right) \times\left(N_{S_{p^{r}}}\left(P_{p^{r}}\right)\left\langle S_{a_{r}}\right)\right.$, here $0 \leq k<p^{r}$.
Let $\Omega=\{1,2,3, \ldots, n\}, X_{i}=\left\{p^{i-1}, p^{i-1}+1, \ldots, p^{i-1}+p^{r}-1\right\}$ in which $1 \leq i \leq a_{r}$ and $X_{0}=\Omega \backslash \cup_{i=1}^{a_{r}} X_{i}$. Set $\mathrm{D}=\left\{X_{0,} X_{1}, X_{2}, \ldots, X_{p^{p-1}}\right\}$. Then

$$
S(\Omega)_{\mathcal{D}}=S\left(X_{0}\right) \times\left(\left(S\left(X_{1}\right) \times S\left(X_{2}\right) \times \cdots \times S\left(X_{p^{r-1}}\right)\right): S_{a_{r}}\right) \cong S_{k} \times\left(S_{p^{r}} / S_{a^{r}}\right)
$$

Clearly, $S(\Omega)_{D}$ includes a Sylow p-subgroup P_{n} of $S(\Omega)$. Denote by $K_{i}:=S\left(X_{i}\right), \quad 1 \leq i \leq a_{r}$, and $K:=K_{1}$.
Set $\quad \Delta=\operatorname{Fun}_{S(\Omega)}\left(P_{n}\right)=\left\{K^{x} \mid x \in S(\Omega), K^{x} \cap P_{n} \in \operatorname{Syl}_{p}\left(K^{x}\right)\right\}$.
In this case, Δ is a maximal set of pair-wise commuting fundamental subgroups of K in $S_{p^{\prime}}$. It is clear that $\left\{K_{i} \mid 1 \leq i<p^{r-1}\right\} \subseteq \Delta$. If there exists an element $g \in S(\Omega)$ such that $K^{g} \in \Delta$ and $K^{g} \neq K_{i}$ for each i. Denote by $K^{g}:=S\left(g\left(X_{1}\right)\right)$. Obviously, $g\left(X_{1}\right) \neq K_{i}$ for each i. Since $K^{g} \cap P_{p^{r}} \in \operatorname{Syl}_{p}(S(\Omega))$, then there is a Sylow p-subgroup P of K^{g} such that $P \leq P_{n}$. Now we can assume that $a=(123 \ldots p) \in K \cap P_{n}$, then $\langle a, P\rangle \leq P_{n}$. Suppose that $X_{i} \cap g\left(X_{1}\right) \neq \varnothing$ for some i, and set $\left|X_{i} \cap g\left(X_{1}\right)\right|=t$, where $1 \leq t \leq p-1$. Without loss of generality, we can assume that $g\left(X_{1}\right)=\left\{1,2, \ldots, t, i_{1}, i_{2}, \ldots, i_{p-t}\right\}$. Similarly, for any p-cycle b on $g\left(X_{1}\right)$, we have $\langle a, b\rangle$ is not a p-group by Lemma 1 . Then such P does not exist, contradicts. So $X_{i} \cap g\left(X_{1}\right)=\varnothing$ for any i, then $g\left(X_{1}\right) \subseteq X_{0}$, which contradicts the fact that $\left|g\left(X_{1}\right)\right|>\left|X_{0}\right|$. Therefore, $\left\{K_{i} \mid 1 \leq i \leq p^{r-1}\right\}=\Delta$. Then

$$
N_{S(\Omega)}\left(P_{n}\right) \leq N_{S(\Omega)}(\Delta)=S(\Omega)_{\mathcal{D}} \cong S_{k} \times\left(S_{p^{n}}\left\langle S_{a_{r}}\right) .\right.
$$

We can assume that P_{n} is a chosen Sylow p-subgroup of It is $S_{k} \times\left(S_{p^{r}} \backslash S_{a_{r}}\right)$. obvious that

$$
N_{S(\Omega)}\left(P_{n}\right)=N_{S_{k} \times\left(S_{p} r\right.} S_{\left.a_{n}\right)}\left(P_{n}\right)
$$ It is easy to see that $P_{n}=P_{k} \times P_{p^{r}}^{a_{r}}$, so $\left.N_{S(\Omega)}\left(P_{n}\right)=N_{S_{k}}\left(P_{k}\right) \times\left(N_{S_{p^{r}}}\left(P_{p^{r}}\right)\right\} S_{a_{r}}\right)$.

Step: 3 Now we continue to decompose k into the sum $a_{r-1} p^{r-1}+k_{1}$, in which $0 \leq k_{1}<p^{r-1} \$$. Next we repeat to decompose k_{1}, and so on. At last we can get the p-adic expansion $a_{r} p^{r}+a_{r-1} p^{r-1}+\ldots+a_{1} p+a_{0}$ by r steps. Using the induction for r by the conclusions of step 1 and 2 , we can obtain the result of the normalizer for general n :

$$
N_{S_{n}}\left(P_{n}\right) \cong\left(\left(Z_{p}^{l^{r}}: Z_{p-1}^{r}\right)\left\langle S_{a_{r}}\right) \times\left(\left(Z_{p}^{l_{n}-1}: Z_{p-1}^{r-1}\right)\left\langle S_{a_{r-1}}\right) \times \cdots \times\left(\left(Z_{p}: Z_{p-1}\right)\left\langle S_{a_{1}}\right) \times S_{a_{0}} .\right.\right.\right.
$$

In the case of $p=2$, it is not hard to see $\left|N_{S_{n}}\left(P_{n}\right)\right|=\left|P_{n}\right|$ since $a_{i}=0$ or 1 ,
then S_{n} has a self-normalized Sylow 2-subgroup. Sincel $S_{n}: A_{n}=2$, we have the Sylow p-number of S_{n} is same as the one of A_{n} for $p>2$. If $p=2$, we use the result of Kondrat'ev's [3]: A_{n} has a self-normalized Sylow 2-subgroup for $n \geq 6$.

So the number of Sylow p-subgroups of the alternating group $A_{n}(n \geq 6)$ is
$\frac{n!}{a_{0}!a_{1}!\ldots a_{r}!p^{s(n)}(p-1)^{a_{1}+2 a_{2}+\ldots+r a_{r}}}$.

REFERENCE:

[1] Carter R., Fong P., The Sylow 2-subgroups of the finite classical groups, J. Algebra, 1(1964) 139-151.
[2] Dmitruk, Yu. V., Sushchanskii V. I., Structure of Sylow 2-subgroups of the alternating groups and normalizers of Sylow subgroups in the symmetric and alternating groups, Ukrainian Mathematical Journal, 3(1981)235-241.
[3] Kondrat'ev A. S., Normalizers of the Sylow 2-Subgroups in Finite Simple Groups, Mathematical Notes 78(34), 338-346.
[4] Robinson D. J. S., A Course in the Theory of Groups, Springer-Verlag, 1982.
[5] Zhang J., Sylow numbers of finite groups, J. Algebra., 176(1995), 111-12.

${ }^{1}$ Project supported by the NNSF of China (No.11026195) and the foundation of Educational Department of Hubei Province in China (No.Q20111901).

