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ABSTRACT

In this paper, we devoted to study the existence of mild solutions for quasilinear impulsive integrodifferential equation
in Banach spaces. The results are established by using Hausdorff’s measure of noncompactness and the fixed point
theorems. Application is provided to illustrate the theory.
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1. INTRODUCTION

In various fields of engineering and physics, many problems that are related to linear viscoelasticity, nonlinear
elasticity have mathematical models and are described by the problems of differential or integral equations or
integrodifferential equations. Our work centers on the problems described by the integrodifferential models. It is
important to note that when we describe the systems which are functions of space and time by partial differential
equations, in some situations, such a formulation may not accurately model the physical system because, while
describing the system as a function at a given time, it may fail to take into account the effect of past history. Neutral
differential equations arise in many areas of applied mathematics and for this reason these equations have received
much attention during the last few decades [1, 2, 3]. A good guide to the literature for neutral functional differential
equations is the book by Hale and Verduyn Lunel [4] and the references therein. The existence of solution to evolution
equations with nonlocal conditions in Banach space was studied first by Byszewski [5, 6]. Byszewski and
Lakshmikanthan [7] proved an existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces.
Ntouyas and Tsamatos [8] studied the existence for semilinear evolution equations with nonlocal conditions. The
problem of existence of solutions of evolution equations in Banach space has been studied by several authors [9, 10].

However, one may easily visualize that abrupt changes such as shock, harvesting and disasters may occur in nature.
These phenomena are short time perturbations whose duration is negligible in comparison with the duration of the
whole evolution process. Consequently, it is natural to assume, in modeling these problems, that these perturbations act
instantaneously, that is in the form of impulses. The theory of impulsive differential equation [11, 12, 13] is much
richer than the corresponding theory of differential equations without impulsive effects. The impulsive condition

Au(t, )= u(t )—u(t; )= Lt )),i=1,2,...,m,
is a combination of traditional initial value problems and short-term perturbations whose duration is negligible in

comparison with the duration of the process. Liu [14] discussed the iterative methods for the solution of impulsive
functional differential systems.

Measures of noncompactness are a very useful tool in many branches of mathematics. They are used in the fixed point
theory, linear operators theory, theory of differential and integral equations and others [15]. There are two measures

which are the most important ones. The Kuratowski measure of noncompactness o(X) of a bounded set X in a metric
space is defined as infimum of numbers r>0 such that X can be covered with a finite number of sets of diameter
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smaller than r . The Hausdorff measure of noncompactness y(X) defined as infimum of numbers r>0 such that X

can be covered with a finite number of balls of radii smaller than . There exist many formulae on y(X) in various
spaces [15, 18].

Let Ebe a Banach space and F be a subspace of E. Let y.(X), xr(X),0:(X), 0o (X)denote Hausdorff and

Kuratowski ~ measures  in  spaces E,F,respectively. ~ Then, for any bounded X — Fwe have
XeX) = xe(X) <0 (X)=0:(X) < 2)(X). The notion of a measure of weak compactness was introduced by De

Blasi [16] and was subsequently used in numerous branches of functional analysis and the theory of differential and
integral equations. Several authors have studied the measures of noncompactness in Banach spaces [17, 18, 19].
Motivated by [9, 15, 20, 21], in this paper, we study the existence results for quasilinear equation represented by first-
order neutral integrodifferential equations using the semigroup theory and the measure of noncompactness.

2. PRELIMINARIES

We consider the quasilinear integrodifferential equations with impulsive and nonlocal condition of the form

%[x(t) +e(t, x(t), J.;k (t, s, x(s))ds)]+ A(t, x(t))x(t)

=f (t, x(t)) +'|';g(t,s, X(s))ds,t[0,b], t #t,, (1)
x(0) + h(x) = x,, (2)
AX(t ) =1,(x(t,)), k=123,...,n, (3)

where A[0,b] x X — X'is a continuous function in Banach space X, X, € X, f:[0,b]xX — X,
g4 xX X h:PQ[ 0], X) —>X, e[0,b]xXxX - X kd xX —>X and Ax(z, )= x(t, )—x(t, ), for
allk=1,2,...,m, 0=t, <t <t, <...<t <t . =Db;constitutes an impulsive condition. Here A = {(t,s):O <s<t< b} )

Let X be a Banach space with norm ||-|| Let PC([ 0,b], X) consist of functions u from [0,b] into X, such that
X(t) is continuous at t#t, and left continuous at t=t, and the right limit X(t" ) exists, fori=1,2,3,...,n.
Evidently PC([ 0,b], X) is a Banach space with the norm

e =sup O}
and denoted L([ 0,b], X) by the space of X -valued Bochner integrable functions on [ 0,b] with the form

I, = [Ixofet.

The Hausdorff’s measure of noncompactness y, is defined by
x(B)=inf {r>0, B can be covered by finite number of balls with radii I’} :

for bounded set B in a Banach space Y .

Lemma 2.1: [15]. Let Y be a real Banach space and B,E Y be bounded, with the following properties:

B is precompact if and only if y, (B)=0.

%y (B)= x,(B)= y,(conB),where B and con B mean the closure and convex hull of respectively. B

Xy (B) < xy(E), where B E.

xy(B+E)< y,(B)+ x,(E), where B+E= {X+ y:xeB,ye E}.

Xy (B E) < max {XY (B), xv (E)} -

Xy (AB)<| 4| x,(B),forany 1€ R.

If the map F:D(F)<Y — Z s Lipschitz continuous with constantr, then y, (FB)<ry, (B), for any

N o o &~ e Dh R

bounded subset B < D(F), where Z be a Banach space.
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8. xy(B)=inf {dv (BE);EcCYis precompact} =inf {dY (B,E), E Y is finite valued} , where
d, (B, E) means the non-symmetric (or symmetric) Hausdorff distance between B and E inY .

9. If {W,}'7

_, is decreasing sequence of bounded closed nonempty subsets of Y and lim___ x, (W, )=0, then

+ooW_ is nonempty and compact in Y.

The map F:W Y —Y s said to be a y, -contraction if there exists a positive constant r<l such that
Xy (F(B)) < ry,(B) for any bounded closed subset B W, where Y is a Banach space.

Lemma 2.2: (Darbo-Sadovskii [15]). If W < Y is bounded closed and convex, the continuous map F:-W —W isa
Xy -contraction, the map F has atleast one fixed point in W.

We denote by y the Hausdorff’s measure of noncompactness of X and also denote y, by the Hausdorff’s measure
of noncompactness of PC([ 0,b], X) .

Before we prove the existence results, we need the following Lemmas.

Lemma 2.3: [22] If W < PC([0,b],X) is bounded, then y(W(t)< y.(W), for all te[0,b],where
W(t)= {u(t);u eW} c X. Furthermore if W is equicontinuous on [ 0,b] , then y(W(%)) is continuous on [0,b]

and 1,(W)=sup{ (W), 1 < [0,5]}.

Lemma 2.4: [22, 23]. If {un}::1 c ([ 0,b],X) is uniformly integrable, then the function )(({un(t)}le) is
measurable and

x({[;un (s)ds};) <2[ 7 ({u, ($)}i)ds. @

Lemma 2.5: If W < PC([ 0,b], X) is bounded and equicontinuous, then y(W/(t)) is continuous and
2( I;W(s)ds) < I;Z(W(s))ds, for all t <[0,b], 5)
where I;W(s)ds = {I;u(s)ds ‘Ue W}

The C, semigroup U (t,S) is said to be equicontinuous if (t,S) — {Uu(t,s)u(s):u € B} is equicontinuous for

t>0, for all bounded set B in X. The following lemma is obvious.

Lemma 2.6: If the evolution family {Uu(t,s)} is equicontinuous and 7€ L(/0,b],R" ), then the set

0<s<t<b

{I;Uu(t,s)u(s)ds, [lu(s) |I< 7(s), fora.e s e [0,b] isequicontinuous for t € [ 0,b].

We know that, for any fixed UePC([0,b],X) there exist a wunique continuous function
U,:[0,b] x[0,b] — B(X) defined on [0,b] x[0,b] such that

U,(ts)=1+ L‘Ah(w)uu(w, s)dw, 6)
where B(X) denote the Banach space of bounded linear operators from X to X with the norm
[| F||=sup {|| Full:||ull :1} ,and | stands for the identity operator on X , A, (t)= A(t,u(t)), we have

U, )= LU, (ts)U,(s,r)=U,(tr),(tsr)e [0,b] x[0,b] x[0,b],

ou,(t,s) _

ot
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3 THE EXISTENCE OF MILD SOLUTION

Definition 3.1: A function X € PC([ 0,b], X) is said to be a mild solution of (1)—(3) if it satisfies the integral
equation

x(t) =U., (t,0)%, U (t,0)h(x) +U. (t.0)e(0, x(0),0) —e[t, (o). [kt x(s))ds)
+ [AGXEN, s)e(s, x(9). [kGs.r, x(r))dr)ds

+I;Ux(t, S)[ (s, %(s)) +j:g (s, 7, x(2))dzlds + > U, (Lt )1, (x(t,)), 0t <b.

0<'[k <t

In this paper, we denote M, = Supﬂ|Ux(t,S)|| :(t,s) €[0,b]x[0,b]}, for all x e X. Without loss of generality,

we let x,=0.

Assume the following conditions:
(H1) The evolution family {Ux(t’s)}ossgtsb generated by A(t, X(t)) is equicontinuous and ||U,(t,S)||< M,, for
almost t,s € [ 0,b].
(H2) (i) The function h:PC([ 0,b] x X) — X is continuous and compact.
(ii)There exists N,>0 such that || h(X)||< N,, forallu € PC([ 0,b]; X).
(H3) (i) The nonlinear function f:[0,b] x X — X satisfies the Carathéodory-type conditions; that is, f(-,X)is
measurable for all X € X and f(t,-)is continuous, for a.e t € [a,b].
(ii)There exists a function o € L(/0,b],R" ) such that for every X € X, we have
[ft @) +1x | det. [ebp,
(iii) There exists a function m. € L([0,b],R™) such that, for every bounded K < X, we have
X((t.K) <m()x(K),a.ete[0,b].
(H4) (i) The nonlinear function ¢:[0,0] x[0,b] x X — X satisfies the Carathéodory-type conditions; i.e.,
g(-,-,X) is measurable, forall X € X and g(t,s,-) is continuous for a.e t € [a,b].

(ii) There exist two functions S, € L(/0,b],R") and B, € L(/0,b],R" ) such that for every X e X, we
have

lott.s.xE L ()¢ + X() ). det. [ <bP,

(iiii) There exist functions m,n, € L([0,b],R™) such that, for every bounded K < X, we have
x(8(ts,K)) <my()ny(s)x(K),a.ete[0,].
Assume that the finite bound of I;mg (s)ds is G,.

(H5) (i) The function e:[0,b] x X x X — X satisfies the Carathéodory-type conditions; that is, €(-,X,X, )is
measurable, for all X,x, € X and e(t,-,-) is continuous, for a.e t € [0,b].
(ii) There exists a function y € L(/0,b],R" ) such that for every X, %, € X, we have
letx.xipe + A)f | ede ./ #70,
(iii) The nonlinear function ¢:[0,b] x[0,b] x X — X satisfies the Caratheodory-type conditions; i.e.
K(-,-,X)is measurable, forall x e X and K(t,S,-) is continuous, for a.e t € [ 0,b].

(iv) There exist two functions @, € L(/0,b/,R" ) and @, € L(/0,b],R" ) such that for every X e X, we
have

[ktsxWtw ) + 56 ). der. D,
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(v) There exists a function 7 € L(/0,b], R ) such that for every X,X, € X, we have

|AGx@®)elt,x xfLet A x ) ,ade ./ &]0,
(vi) There exists a function m, € L([0,b],R™ ) such that, for every bounded K, K, = X, we have

et K, )< my(0(u(K)+ (K, ), aet & [0].
Assume that the finite bound of tm,(S)ds is G,.

(vii) There exist functions m, ,n, € L([0,b],R™) such that for every bounded K < X, we have
x(kt,s,K)) <m, (t)n, (s)y(K), a.ete[0,b].
Assume that the finite bound of J;me (s)ds is G,.

(H6) For every t € [ 0,b] and there exist positive constants N, and N, ,the scalar equation

m(t) =M,N, + 7, (1+m(s)) + M, 7, +M,C,o(t)(1+m(s)) + ¥ (t)C, I;ﬂ(t)wl(S)ds
+ 'Vlojot[Of(S)(lJr m(s))ds +C, I;ﬁl(S)(1+ m(s))ds + Zn:dk],

where C, = j:ﬂ(t)dt.

(H7) 1,:X — X is continuous. There exist constants d, >0 k=1,2,3,...,n such that

L (<) < >y, where,k=123,....n.
k=1

For any bounded subset K < X, and there is a constant |, >0 such that

Z(IK(K))sZn:Ii;((K), k=1,2....n.

Theorem 3.1: If assumptions (H, )—(H, ) holds, then the quasilinear neutral impulsive problem (1)—(3)has at
least one mild solution.

Proof: Let m(t) be a solution of the scalar equation

m(®) =M N, + 7, (1+M(8)) + My, + M) L+ M($)) + 7 (1)C, [ 7(t)e, (s)dls
+M, [T (s)(1+m(s))ds +C, ||, ()(1+m(s))ds + S, 7)

Let us assume that the finite bound of .E’BZ (s)ds is C,, for te[0,b]. is C,, for t € [0,b].Consider the map
F:PC([0,b],X) = PC([ 0,b], X) defined by

(FX)(t) =U, (t,0)h(x) +U, (t,0)e(0, x(0),0) — e(t, X(t), J:k(t, S, x(s))dsj
+ [AGXEN, s)e(s, x(9). k.7, x(r))dr)ds

+ j;ux(t, S)[f (s, x(s))+ J'Osg (s,7,x(r))dz]ds
+ ZUX(t,tk)lk(x(tk)), 0<t<hb, forall xePC([0,b], X). (8)

0<tk<t
Let us take W, = {X e PC([ 0,b], X),|| x(©) || m(t), for all t € [O,b]}. Then W, < PC([0,b]; X) is bounded

and convex. We define W, = con K(W, ), where con means the closure of the convex hull in PC([0,b], X). As
U, (t,s) is equicontinuous, his compact and W, < PC([0,b], X) is bounded, due to Lemma 2.6 and using the

assumptions, W, < PC([ 0,b], X) s bounded closed convex nonempty and equicontinuous on [ 0,b].
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Forany X € F(W, ), we know

Ix®)]<|u, t.00h(x)[+ |V, (t.0)e(0, x(0),0)| +
v
" ﬂ
< MyNy +Mqyo + 7, (LX) + Ek(t,s, x(s))ds

My (t) j;He(t x(0). [k(s. . x(r))d z‘)

e(t,x(t), [ k(t,s,x(s))ds)

ds

‘A(t, XU, (t, s)e(t, x(0). [k(s., x(r))drj

U, (t,s)[f(s, x(s))+J':g (s,7,x(s))dr]

0<'[k <t

ds

ML x)ds + [ [l 96,z x(@) ldads] + M, Y (¢, )]
MN, +M, o + 7, (1+ X)) + @, 2) .Ecoz (s)(L+|x]ds

+M[[[2(9)7($)ds + [ o, (8)o, (7)dsd 711+ |

+M, j;a(s)(1+||x(s)||)ds +M, j; j:ﬂl(s) B, () (L+|x(z)])d msmoidk

<MoN + 71 (1+m(8)) + Mgy, + MoCio(t)(1+m(s)) + ﬂ(t)V(t)Clj.;wl(S)dS

M, [[ar(s) 2+ m(s))ds +C, [ A.(s)(L+ m(s)ds + 3d, ]
- m(). _

It follows that W, < W,. We define W_, = con F(W, ), for n=1,2,3,---. From above we know that w,}”

ds+ Y U, (61 (x(E))]

IS a

decreasing sequence of bounded, closed, convex, equicontinuous on [ 0,b] and nonempty subsets in PC(] 0,b], X).

Now for n>1 and t e [0,b],W, (t) and F(W,(t)) are bounded subsets of X, hence, for any £>0, there is a

sequence {Xk}f:l W, , such that (see, e.g. [24], pp.125).
2(W,,1 (1) = 2 (FW, (1))

<27 (e(t 4, ()} [K (6 .06, (0}1)))

+ 2Myp (O 765, A% (0H, [ K5, 7.4 (D)}0)d 7))l

+2M [ (F (504 ()H))ds + M, [ ["(a (s, 7.4, (0)},))dads
2D (0, (4K ) +

<2m, (1) 7%, (O} + 2m, (0 [ m, (8) 2%, ()}, s

+2M (L[, (8) 2% ()35 + 2 ['m, ($)m, (2) 24X, ()¢, d ]
+2M, [, (5) 74U, ()30 )ds+4M, [ ['m, (), () 2 ({u, ()} )d ds

+2M, iliﬂ(({uk (t)h-) +e
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t
<2[m, (t) +m, (1)G, + M ()G, 1 (W, (1)) + 2M,[ L{Zszk ()

M, ()W, ($)ds + 26, ['n, (5) 2(W, (9)dsT + 2M, DT, 2(W, (1 v

Since £>0 is arbitrary, it follows that from the above inequality that

2 (W, (1) <2[m, (1) +m, (G, +Myy ()G, 12(W, (1))
+2My[[[[2G,m, () + M, (5) +2Gqn, ()] 7(W, (5)]ds

+2|v|ozn:|k 2(W.(t,), for all t €[0,b]. (9)
k=1

Because Wn is decreasing for N, we have
A() = lim x (W, (1)),
Nn—o0

forall t € [ 0,b]. From (9), we have
A(t) < 2[m, (t) + m, ()G, + My (1) G, 1A(t)

+ 2M(,[_|.;[2G2mk (s)+my(s)+2Gyn, (s)];t(s)ds+znllkl(tk)],

k=1
for t € [0,b], which implies that A(2)=0, for all t, € [0,b]. By Lemma 2.3, we know that lim__,_ x(W,(t))=0.

Using Lemma 2.1 we know that W =ﬂ:;1W is convex compact and nonempty in PC([0,b],X) and

n
F(W) cW. By the Schauder fixed point theorem, there exist at least one mild solution U of the initial value

problem(1)—(3), where X e W is a fixed point of the continuous map F.

Remark 3.2: If the functions f, g and |, are compact or Lipschitz continuous (see e.g [5, 7]), then (H,)—(H, ) is
automatically satisfied.

In some of the early related results in references and above results, it is supposed that the map h is uniformly bounded.
In fact, if h is compact, then it must be bounded on bounded set. Here we give an existence result under growth
condition of f,g and I,, when h is not uniformly bounded. Precisely, we replace the assumptions (H, )—(H ) by

(H8) There exists a function p € L([0,b],R™) and a increasing function @:R* — R™ such that

| 1) < @ )] |
forae t e [0,b], forall x e PC(] 0,b], X).

(H9) There exist two functions L, €L([0,b],R")and EgE L([O,b],R")and a increasing function
¥:R" — R" such that

—

latt, s, )] <Ly (0) L (s)¥(|x]).
forae t e [0,b] and forall L, € PC([0,b], X). Assume that the finite bound of J:Lg (s)ds is G,.

(H10) There exists a function L, € L([0,b],R™)and a increasing function 7":R" — R such that
Jettxx ) <re@)4 A |
forae t € [0,b] and forall L; € PC([0,b], X). Assume that the finite bound of j;Le (s)ds is G;.
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—

(H11) There exist two functions L, e L([O,b],R")and [, eL( [ ®],R*) and a increasing function
O.R* — R" such that

—

[kt s, )] < L @®) L (5)O(|X]),

fora.e t € [0,b] and forall L, € PC([0,b], X). Assume that the finite bound of J:Lk (s)ds is G,.

Theorem 3.2: Suppose that the assumptions (H,)—(H,) and (Hg)—(H,,) are satisfied, then the equation
(1)—(3) has at least one mild solution if

limsup-{M, () + L, 01+ L, O
£ O() + 7OMIG,T(1) + G0 L, ()]

M AN [ L (s)ds +G, ¥ (n) | L, (9)ds+ 3 d, 13<1, (10)

where ¢(r) = sup{[[h(x) [, [[ x[|I< r}.

Proof: The inequality (10) implies that there exist a constant >0 such that
Mo[(r) + L, (0] + L () (TPXP) + G, L, ()O(r) + 1 (tM,[G, ()

+G,0(n|, L, (s)ds]+ M, 4(r) [[pe)ds+G,¥(n)[ L,()ds+Sd]<r,

As in the proof of Theorem 3.1, let W, = {Xe PC([0,b], X),|| x(t)]I< I’} and leco_n FW,. Then for any

X eW,, we have W, ZEFWO. Then for any x e W,, we have

IX®KU, €O +[U, (t.0)e(0, x(0).0)] + e[t, x(0). [k(t.s. x(s))ds)
v
+]

<My[p(r) + L, (0] + L )C]X) + [ L, () L, (s)(x)ds

ds

‘A(t, XU (t, s)e(t, X0 [k(s.7, x(r))drj

U, (t,s)[ (s, x(s)) +Iosg (s,7,x(s))dr]

ds + 2 ||Ux(t’tk)|i(x(tk ))”

0<tk <t

+7OM, [TpT(XD + [ L, (9) L ()O([xd z]ds

ML O)p(x()ds +[ [L (5) Ly ()W (x(2))dads + idk]
<M[e(r) + L, 0]+ L, () T]x]) + G,L, )O(X])

+OM[G I () +Gs [ L, (5)0(x)ds]

+M,[[ pE)p(()ds +G, [ L, (5)¥([x(s)pds + idkl

© 2014, IJIMA. All Rights Reserved 266



R. Prabakaran** and V. Vinobaz/Existence of Quasilinear Neutral Impulsive Integrodifferential Equations/IJMA- 5(6), June-2014.
[x®)] <M [o(r) + L ()] + L. ()(TPxXP) + G, L, (t)O(r)

FIOMJIG,T (1) +G.0(n)] L, (5)ds]

+M[4(N [ p)ds+G,¥(n) | L, (9)ds+37d,]
<r,

for t € [0,b]. 1t means that W, < W,,. So we can complete the proof similarly to Theorem 3.1.

4. WHEN h IS LIPSCHITZ

In this section, we discuss the equation (1)—(3) when h is Lipschitz and f,g and I, are not Lipschitz. Assume
that
(H12) The function his a Lipschitz continuous in X , there exists a constant L,>0 such that

Ih()—h)| < Ly [x—y|. x,y € PC([0,b], X).

Theorem 4.1: Suppose that the assumptions (H, ) —(H,, ) are satisfied, then the equation (1)—(3) has at least one
mild solution provided that

M,[L +h, (01, (B) +2[m, (1) + m, ()G, + My (1) G,]

+2My[[£2G,m, (5) + m (5) + 2Gyn, (9)3ds+3,]<1. (11)

Proof: Consider the map F:PC([ 0,b], X) - PC([ 0,b], X) is defined by F = F, + F,,where
(le)(t) = U X (t,O)h(U) + U X (t,O)e(O, X(O),O),

(Fu)(®) = [AC XD, s)e(t, x(0). [k(s. 7. x(2))d r)ds _ e(t, x(0). [k(t.s. x(s))ds)
+HU, XN+ [9(s, 7. x(2)dr]ds + 3 U, (Gt (x(t,)),

0<tk <t
for  xePC([0,b],X). As defined in the proof of Theorem 3.1. We define
W, ={xePC([0,b], X) :|| x(t) [ m(t), for all te[O,b]and let W= CO_nFWO. Then from the proof of
Theorem 3.1 we know that W is a bounded closed convex and equicontinuous subset of PC([0O,b],X) and
FW cW. We shall prove that F is y_ contraction onW Then Darbo-Sadovskii’s fixed point theorem can be used
to get a fixed point of F in W, which is a mild solution of (1)—(2). First, for every bounded subset B W, from
(H,, ) and Lemma 2.1 we have
Xo(FB)= 1. (Us(t.0)h(B))+ U (1,0)e(0,8(0)0)
<M,z.[ h(B) He( B( 0
<Mg[L, +h,(t) . (B) (12)

Next, for every bounded subset B W, for t € [ 0,b] and every >0, there is a sequence {Xk }le c B such that

X(F,(B(D) < 2x({Fyxi (1), +e.
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Note that Band F,B are equicontinuous, we can get from Lemma 2.1, Lemma 2.4, Lemma 2.5 and using the
assumptions we get

2 FB1) <27 (et{x ()}, [K(t,5.4x, (O},)ds))
My (1) [ 2 (65 (903 [ K (5, 7.0 (7)) ) s
+2M, [ 21 (5,85 ()30))ds + M, [ [“7(9 (s, 7.{uy (2)}7.,))d s
+zmogzuk({uk(tk)}a»w

<2m, (0) 20, (O} +2m, (O [ m, (5) 2%, ()}, 05
+2Mg (L[, (5) 2%, ()35 + 2 ['m, ($)m, (2) 24X, ()¢, d ]
+2M, [m, () 2 ({u, (9)})ds+aM, [ ['mg (), () 2 ({uy (0)3-,)d s
£ 2M, 2 (U, ()K) + ¢

<2[m, (t)lj m, (t)G, +Mn(t)G,]1x(B)
+2My[[{2G,m, (5) + M, (s)}x/(B))ds +2G, [n, (5) (B)ds]

+2M, > 1, x (B)re.

k=1

Since &>0 is arbitrary, it follows that from the above inequality that

2. (FB®) <2[m, (t) + m, ()G, + My (t)G, 17, (B)

+ ZMO[I;{ZGka (8)+m;(s)+2G,n,(s)}ds + anlk];gc (B) (13)

k=1
for any bounded B cW.

Now, for any subset B — W , due to Lemma 2.1, (12) and (13) we have
Zo (FB) < Zc (FlB) + /{c (FZB)
<Mg[Ly +h, ()12, (B) +2[m, (t) + m, ()G, +Mn(1)G 1 1. (B)
t n
+ 2M0[L{262mk (8)+m;(s)+2G,n,(s)}ds + Zlk];gC (B) (14)
k=1
By (14) we know that F isa y, -contraction onW . By Lemma 2.2, there is a fixed point X of F inW , which is a

solution of (1) —(3) . This completes the proof.

Theorem 4.2: Suppose that the assumptions (H, )—(H,, ) are satisfied, then the equation (1)—(3) has at least one

mild solution if (15)and the following condition are satisfied.

oL, +limsup ML, 0+ L, (07 (1) + G.L, (00(0)
FIOMG.I() + G,0(1) L, ()05

SMH[ L (9)ds +G,¥(1)] L, (9)ds+ Y d, Jp<1. (15)
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Proof: From the equation (15) and fact that L,<1, there exists a constant >0 such that
M, (rL, +Ph(0)P + L, (t)) + L, (t)(T PxP) + G,L, (t)©(r)

.
+7(OM[G,T(r) +G,0(n)| L, (s)ds]
t t n
+M[g(r) [ L (5)ds + G, ¥ ()| L, (s)ds+ Y d T}<r.
k=1
We define W, ={x e PC([0,b], X), Px(t)P <, forall te[0O,b]. Then forevery X €W,, we have

[Fx(®)|<|U, 0)h(u)] + U, (1,0)e(0, x(0),0)] + e(t, (o). [k(t.s, x(s))ds)

t
+]
0
t
+]
0

<My (rLy +[h(0)[+ L, (t)) + L, (t)(Ix) + G, L, ()O(r)

ds

‘A(t, XU (t, s)e(t, X0 [ks.7, x(r))drj

ds + Z ”U ()T (x(E, ))”

0<tk <t

U, (t,s)[f(s, x(s))+josg (s,7,x(s))dr]

FIOMIG.T (1) +G.0()] L, (5)ds]

M AN [ L (s)ds +G, ¥ (n) [ L, (9)ds+Yd,Jp<r.

for t € [ O,b]. This means that FW, cW,. Define W = con FW,,. The above proof also implies that FW cW.
So we can prove the theorem similar with Theorem 4.1 and hence we omit it.

5. APPLICATION

The notion of controllability is of great importance in mathematical control theory. Many fundamental problems of
control theory such as pole-assignment, stabilizability and optimal control may be solved under the assumption that the
system is controllable. It means that it is possible to steer any initial state of the system to any final state in some finite
time using an admissible control. During the last few decades, several authors [25, 27] have discussed the existence,
unigueness, and asymptotic behavior of the solution of these systems. Apart from these, the study of controllability and
observability properties of a system in control theory is certainly, at present, one of the most active interdisciplinary
areas of research. Control theory arises in most modern applications. On the other hand, control theory has remained a
discipline where many mathematical ideas and methods have fused to produce a new body of important mathematics.

As an application of Theorem 3.1 we shall consider the system (1)—(3) with a control parameter such as

%[X(t) +e(t, x(t), j;k (t, s, x(s))ds)H A(t, x(t))x(t)

=f(t, x(t))+Cv(t)+ng (t,s,x(s))ds, t e[0,b], t #t,, (16)
X(0) +h(x) = X,, (17)
AX(t) =1, (x(t)), k=123,...,n, (18)

where A, f,g,h and 1, are as before and Cis a bounded linear operator from a Banach space V into X and the

control function vV € L?(J,V). The mild solution of (16)—(18) is given by
X(t) =U, (t,0)x, —U, (t,0)h(x) +U, (t,0)e(0, x(0),0) - e[t, X(t), I;k(t, S, x(s))ds)

+[ AL XD, s)e(t, X(@), [ k(s.z, x(r))dr)ds

+ j;ux(t, S)[f (s, x(s))+Cv(s)+ _[Osg (s,7,x(r))dz]ds
+ > U ()1 (x(t)), 0<t<b.

o<ty <t
© 2014, IJIMA. All Rights Reserved 269



R. Prabakaran** and V. Vinobaz/Existence of Quasilinear Neutral Impulsive Integrodifferential Equations/IJMA- 5(6), June-2014.

Definition 5.1: ([26, 27]) System (16)—(18) is said to be controllable on the interval J, if for every X,, X, € X,
there exists a control Ve L*(J,V) such that the mild solution u(-) of (16)—(18) satisfies x(0)=X, and

X(b)= x.

To study the controllability result we need the following additional condition:
1. The linear operator W:LZ(J,V) — X, defined by

Wy = [U, (b,5)C(s)ds

induces an inverse operator W ™ defined an L?(J,V)/kerW and there exists a positive constant M,>0 such that

lew < m,.
Theorem 5.1: If the assumptions (H, )—(H ;) are satisfied, then the system (16)—(18) is controllable on J.

Proof. Using the assumption (H,; ), for an arbitrary function u(-),define the control
v(t) =W [u, -U, (b,0)x, +U, (b,0)h(x) -U, (b,0)e(0, x(0),0)

' e(b, x(0). [ k(b.s, x(s))dsj - [P AG.x(0)U, b, s)e(b, x(0). [k(s, 7, x(2))d rjds
[, .91 (5, X(5) - [9(5, 7X@l = 3 U, 061, (XA,

O<tk <t

We shall show that when using this control, the operator H:Z — Z defined by
(HV)(t) = U, (£,0)%, —U.. (t,0)h(x) +U_ (t,0)e(0, x(0),0) —e(t, x(0). [kt x(s))ds)

+ [AC X, s)e(t, x(0). [k(s.7, X(T))drjds

+ UL (6 ST (5,%(9) + CW U, ~U, (. 0)%, +U, (0,0N(x)
~U,(0.0)e(0,x(0).0) +¢{ b, x(0), [ (.5, x())ds |

+ [ A, x(b)U, (b, s)e(b, x(0). [k(s.7, x(r))dr)ds

~[U, B9 f (5. x(8)+ [ 9(s. 7, x(x))d r]ds
= D UL EEILEDIE) + [ g(s, 7, x(@)delds + 3 U, ()1 (X())-

0<tk <t 0<tk <t
has a fixed point. This fixed point is, then a solution of (16 ) —(18). Clearly, (Hv)(b) = x(b) = X, , which means that
the control V steers the system (16)—(18) from the initial state X, to the final state X, attime b, provided we can
obtain a fixed point of the nonlinear operator H. The remaining part of the proof is similar to Theorem 3.1 and hence,
it is omitted.
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