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In the present paper, we define the subclasses V (A, B,a,c)

ABSTRACT

and K (A, B,a,c) of analytic functions by

using L(a,c). For functions belonging to these classes, we obtain co-efficient estimates, distortion bounds and many

more properties.
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INTRODUCTION:

Let A denote the class of all analytic
functions of the form

fl@)=z+> a,z"

m=2
defined in the unit disc U ={z:|z|<1}. Let N
denote the subclass of A consisting of functions

normalized by f(0)=0 and f' (O) =1which are

univalent in U.

Silverman [5] defined the class V(Hm )as the class
=6, for all
m. If further there exists a real number £ such that
6, +(m—1)B = z(mod 27), then f is said to be in the
class V(6,,). The union of V(6, /) taken over all

possible sequences {Hm} and all possible real

of all functions in N such that arga,,

numbers [ is denoted by V .
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The class A is closed under convolution or
Hadamard product

(f*g) _z+Za b,z", ze U,

where f is given by (1.1) and g(z —z+meZ .
m=2

Let ®(a,c;7)= z+z mlzm, c#0,-1-2,--,

m:2

Where (a)m is the Pochhammer symbol defined
interms of Gamma functions by,

form=0
-(a+m—l), forme N

F(a+m

_ )_JL
@) =) _{a(a+1)(a+2)--
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Further, fo fe€ A,a linear operator on A called
Carlson — Shaffer operator [2] defined by

+Z "”

L(a,c)f(z) CI)(a c;z *f

Here * stands for the hadamard product of two
power series as given by (1.2).

If a=0,-1,-2,---, then L(a,c)f is a polynomial. If
a#0,-1,-2,-

that the infinite series for L(a,c) f has the same

-, application of the root test shows

radius of convergence as that for f. Also, L(a,c) f
has a continuous inverse L(a,c) f and is a one to

one mapping on A onto itself. This convolution
operator provides a convenient representation of
differentiation.

LILDf = f(z), LQRIf=z'" In fact, the
Ruscheweyh derivatives of f are
Lin+11)f,n=0,12,--
V(A,B ,a,c) consisting of functions f € V, such that

-. Now we define the class

Hatldf@) _I+Adz)
Laof) 1+Baz)

and zeU.

—1<A<B<], ac#042---

Here @(z) is analytic,

w(0)=0 and |w(z)<l, zeU.

Let K (A, B,a,c) denote the class of functions f eV
such that zf 'e V(A, B,a,c).

MAIN RESULTS:

THEOREM 2.1: Let function f €V isin
V(A, B,a,c) if and only if

i F(a +m - 1)F(c)

“Te+m-1)0(a+1)

.| < (B - 4),

where

D, =[(B+la+m-1)+(A+1)d, —1<A<B<l,aceR\Z,
Proof: Since f € V(A, B,a,c). Then

Hatldf@) _1+Ad)
Laof(d 1+Ba)’

From this we get,
© 2010, IJMA. All Rights Reserved

—1<A<B<l, acA01-2--- and zeU.

La,o)f(2)—La_1,0)f(z)

U BlarLof@-ALaore M 1HA
Implies
- I(a+m—1) c) [
—————|a—(a+m— 1)]amz
‘QXZ)‘ m—zl—(c"'r’z1 1)1—(11_( <l
(B— A)+;#[B(a+m - Ad 2™

Since feV, f liesin V(8,,/) for sequence {8, }
and there exists real a number [, such that
6, +(m-1)p=
ip

m?

7(mod 27x).

Setting z =re

o a+m—1) c) B A
| Sicomien b

A+ a-+m I)I(c) o "6, ey
l“ﬁéi—m>m -Aday

, we get

<l

Z a+m1()

szc+m II‘( )

Ha+m—1)c)
B A Y )

[a—(a+m- 1)]|a |r'”l

nH < ( B A)

—a+m l)f(c) +la+m— +Dajja,
2Tt )[<B la+m=)~(A+1d]

= Ha+m-1I{c
,,Z;‘l’(c+m—l)l'(a+l)

Letting r — 1, we get (2.1)

a,r <(B-A,

Hence

m m

f eV and satisfies (2.1). In

m—1

Conversely, suppose

view of (2.4), which is implied by (2.1), since r <1,

we have

i a+m—l)F( )

“T(c+m-1)(a+1)

[a —(a +m—1)] |am|zm_l

F(a +m-— I)F(c)
T ZT(c+m-1(a+1)

m—1

[a—(a+m—1)]|am|r
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m-1

<B4 szr(rc(i;ml)ﬁm>
<(B-A)- l’(a+m—1)l’(c)

joery c+m—1)l’(a+1)
Which gives (2.2) and hence
feV(A,B,a,c).

[Bla+m-1-Ad|a,|r

m-l

[Aa—B(a+m—1)Ham Z

it follows that

Corollary 2.2: If feV isin V(A,B,a,c), then

ja,| <
Tie+m-a+) (B-4
Ta+m-ld D,

The equality holds for the function f given by

, fom=22—-1<A<B<laceR\Z,.

Ne+m—1[a+1) (B—A) oo
Na+m-1c) D

m

f@=z+ zeU.

For parametric values a=n+1, c=1, we get the

following result proved by Padmanabhan and
Jayamala [3] as corollaries to the above Theorem.

Corollary 2.3: Let f e V. Then feV, (A B) if and

only if
i — D!
D (n+m-—1)! C.la,|< (B A),
m (n+1D!(m—1)!

where C, = (B+1)(n+m)—(A+D)(n+1).

The equality holds for the functions f is given by,

He+m-1(a+1) (B-A) S
Da+m-1I(c) C

m

f@)=z+ eU.

THEOREM 2.4: Let function fe€V isin
K(A,B,a,c) if and only if

mDm|am| <(B-A),

i a+m—l)T(c)

c+m—1)F(a+1)

where

D, =[(B+1fa+m-1)+(A+1)a, —1<A<B<l aceR\Z,

Now we examine the Extreme points of the

class V(A,B,a,c).
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THEOREM 2.5: Let f € V(A,B,a,c)with
arga, =6, where [0, +(m—1)B]= z(mod2x).
Define f,(z) =z and

Termllat) B-A
SO fmild B, ©

feV(A,B,a,c) if and only if f can be expressed as

f()= Z,um (2) where u, 20 and Z,um

m=1 m=1

m=23 - —1<A<B<laceRZ, zelU.

>ou, =1

m=l

Proof: If f(z)= i,umfm (z) with

M, =0, then

r(c+m )(a+1) (B-A)
I'(a+m I)F(c) D,

= >, (B-A) = (1~ f4)(B-A) < (B—A).
Hence f e V(A,B,a,c).

i I'la+m-DI'(c)
SI(c+m-DI(a+1) mt

Conversely, let f(z)=z+ Zamzm € V(A,B,a,c), define

m=2

= Daxm=D0© _|a Dy o
T(c+m—DC(a+1) (B-A)

From Theorem?2.1,

and define y, =1- z M,

m=2

i,um <1 and so y, 2 0. Since
m=2
My fn(D) =1, f +a,z”,
> .. <z>—z+2amz = 1.

m=l

THEOREM 2.6: Define f,(z) =z and

F =2+ I{c+m—DI{a+1) (B—A) -
Ia+m-1DI{c) D

m

m:ZB’c-o’

—-1<A<B<l,a,ce R\Z,,zeU.
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Then fe€ K(A,B,a,c) if and only if fcan be

expressed as f(z)= Z M, [, (z) where ¢, 20 and

m=1
Z lllm = 1
m=1

THEOREM 2.7: The class V(A,B,a,c)
under convex linear combination.

is closed

Proof: Let f, g€ V(A,B,a,c) and let

f@=z+Ya,2", g@=z+)b,"
m=2 m=2

For 77 such that 0 <7 <1,it is suffices to show that
the function defined by h(z)=0-7)f(z)+ng(2),
z€ U belongs to V(A, B,a,c). Now

Wz)=z+ Z[(l—?])am +7ﬂ?m] Z".Applying Theorem 2.1,

m=2

to f,geV(A,B,a,c), we have

i INa+m—-DI(c)

D,1-ma, -
2 etmotiaen ld=ma,~t,]

_ i I{a+m—DI(c) D

Zctma+y " ZH Dp,

Sl {c+m-{a+])
S(A-n)B-A)+n(B-A) = (B-A).
This implies that he V(A,B,a,c).

Corollary 2.8: If f (2), f,(z) are in V(A,B,a,c)
then the function defined by

g(z)= %[fl(z) + fz(z)] isalsoin V(A,B,a,c).

THEOREM 2.9: The class K(A,B,a,c) is closed
under convex linear combination.

THEOREM 2.10: Let for

J=12-m  fi(2)= Z+Za Z"eV(A,B,a,c)and

m=2

O</1j <1 such that Z/ij

J=1

=1, then the function
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F(z) defined by F(z)= i/ljff (z) is also
=1

inV(A,B,a,c).

Proof: For each je {1,2,3,---,m} we obtain

i I'la+m—-1DI'(¢c)
“T(c+m-DI'(a+1)

Since F(z)= Z/lj(z— Zam’jzm)
j=1 m=2

_ Z_i(izjam,j}m

m=2\_j=1

00 F(a+m—1)F(C) m
mZ:Z I'(c+m~-1)I'(a+1) b, {Z_ /Ijamd}

j=1

=i {i C(a+m-1T(c) Dm}

“T(c+m-DT(a+1)

< Z/I,(B—A)< (B — A).
j=1
Therefore F(z)e V(A,B,a,c).

THEOREM 2.11: Let f(z)e V(A,B,a,c). Komato
operator of f is defined by

-1
i t“(loglj Mdt
t t

o L(»)
k(z)e V(A,B,a,c).

, c>—1, 720 then

I'(y)

1 r-1
Proof: We have jtc [log lj dt = —
0 t (c+1)

1 7-1
J‘tm-%—c—l (log lj dt — F(}/) , m= 2’3’... )
t (c+1)7”

0

(c+1) 1y 1y
K9="r {jz (logj zdt+2z j ﬂlogtj dt}
Z”: ( c+1 j Zm

c+m

+1Y
Since f e V(A,B,a,c) and since (C j <1, we
c+m

have
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a+m—DIc c+1 THEOREM 2.14: Let f € V(A, B,a,c). Then for
ZI—KH A0 [(1+A) m(l+B)]( mj <B-A every 0<0 <1 the function
m=2

c+m—I{a+

In the next theorem we will find the distortion bound

for L(a,c) f(2).

THEOREM 2.12: If f € V(A,B,a,c), then

H;=(1-0)f(2) +5J.@dte V(A,B,a,c).

< )
Proof: We have H;(z) =2+ Z[l+— — 5jamzm.
m=2 m

(B=AI(c+]), 2 (B=AI{(c+])
M ‘Z‘ S‘L(a,c)f(z)‘ _‘d D.Ic) M Since (1 + é - 5) <1,m =2, soby Theorem 2.1,

Do)

Proof: Let f(z)e V(A,B,a,c). Using Theorem 2.1, z

= (B—A)(c+1)
2,y < D,T(c) )

Therefore

IYCISEEDY

L e+m—Da+) " DI

and

Ha+m—-DIeo) >4 (B— A)Hc+1)‘ £

Haof@ R r T e

REMARK 2.13: For parametric values of
a=1,c=1 and a=2,c=1 we get the upper and

lower bounds for | f (z)| and | f '(z)| respectively.

(B—A(c+1) <14, (B=ATc+D
- <l e} P

(B—A(c+1)
l4- i<

(B—AT(c+1)
D) of sl I,

D)
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Na+m-DIe) i+ (B—A)l’(c+l)‘ £

m

i( L9 5) T(a+m—1DT(c)
~ "M e+ m—D(a+1)

- z a I'la+m—-DI(c)
= I'(c+m—-DI(a+1)

m=2

Therefore H; € V(A,B,a,c).
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