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ABSTRACT

In This paper an exact solution is developed for an oscillatory boundary layer flow bounded by two horizontal flat
plates one of which is oscillating in its own plane & other at rest. Rotating flow of a second grade conducting fluid on
an infinite oscillating plate is investigated when the fluid is permeated by a transverse magnetic field and the Hall
effects are taken into account. It is once again found that an asymptotic solution exists in the presence of both suction
& blowing at the plate. For fixed magnetic field parameter the boundary layer thickness increases with the increase in
Hall parameters.

BASIC EQUATIONS:

It is known that an electrical conductor moving in a magnetic field generates an electromotive force that is
proportional to its speed of motion and the magnetic field strengths. The coupling between the fluid flow equations
and the electromagnetic field equations will take place. The fluid has been electrically conducting. The field of mhd
involves the solution of both the momentum equations characterizing fluid flow and Maxwell equations for the
magnetic field, so it is complicate. In magneto fluid mechanics, Maxwell equations are presented as follows:

VB=0, (1)

VE=0, (2)

VxB=ul, (3)

VxE:—a—B, (4)
ot

Where U, is the magnetic permeability By Ohm’s law the total current flow can be defined as:
J=0(E+VXB), (5)

Where O is the electrical conductivity. In momentum equation we have to include the electromagnetic force Fm tis
expressed as:

F =JxB=0o(VxB)xB. (6)
FORMULATION OF THE PROBLEM:

Consider unsteady flow of a viscous incompressible electrically conducting second grade fluid bounded by an
infinite parallel plates disant h apart, when both fluid & plates rotate with a uniform angular velocity € about the
Z-axis which is normal to the planes of the plates. It is assumed that Plates are electrically non -conducting and a

uniform magnetic field B0 applied parallel to Z-axis.
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Initially (i.e. when time ¢ <0),fluid as well as lower plate is assumed to be at rest (Z=0) and the upper plate (Z=h)

oscillating in its own plane with a velocity U,(t) =U ,(1+ & cos @t) {t>0} about a non—zero uniform mean

velocity U0 along X-direction in its own plane. Since plates of the channel are infinite along X & Y direction and are

electrically non-conducting, all the physical quantities except the pressure depend on Z & t only. The condition of
incompressibility yields @ = constant = 0, since plates are not porous and thus the velocity field is defined as:

V=, (z,t),u,(z,1),0) (7)

We are considering second grade fluid, then we have:

2
%z_la_p_F ) 9 a U +ZQ _nBoul (8)
ot o Ox o oz° o
2 2
Juy 1 E)p+( +a J )a 2Qu1——77B°u2 (9)
ot o dy
1 dp
O=——, 10
o 0z (10

o
In which u, = ﬁ is the kinematic viscosity @ = 1. Equation (10) indicates that p is not a function of Z and
o

hence p is at most depend on x, y & t, so considering

p=px,y.1)
The boundary conditions for the problem are:

u =u,=0,at z=0

u=U,(t)=U,(1+€cosawt), u,=0 atz=h, (11)
Where & isa constant.

Elimination of p from equation (8) — equation (10) by cross differentiation gives:

d’u, d . du, du, 7B; du
— +o— 420 "2 o 7 12
) TR T & "
2 3 2
o"u, :(u2+0{i)a ng _zga&_ﬁ% (13)
070t ot" oz dz O 0z
Integrating above equation gives:
2
aait—( +a g %L? +2Qu, — Bo, +A(t) (14)
2
a”Z = (u, + aa %”j —2Qu, - 771300 21 B(1) (15)

Where A & B are functions of integration. The resulting boundary layer equations of equation (13) & equation (14)
can be combined into following partial differential equation.
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%:(u2+a’% %+ag‘—2iﬂ(r—U1)—n§_§ r-U,) (16)
And the corresponding boundary conditions (11) are:
r=0 at z=0
r=U@) At z=h. (16")
Where  r=u, +iu, (17)

Is the fluid velocity in the complex form.
It should be noted that equation (16) includes the Newtonian fluid as a special case forax =0.
If Q =0, the equation reduces to that of second grad fluid in an inertial frame. Moreover if BO =0, the equation

governing the flow of a non —conducting second grade fluid is obtained.
SOLUTION:

In order to solve equation (16) subject to the boundary conditions (16’), we look for the solution of the form:

r(&.0) =U, [, (&) +§{n(§>e"“” +r(E)e ] (18)
Where fZ%, r0(§)=u10(§)+iu20(§) and

’i(é:)em""”z(é:)eim =u,,(&,1)+iuy (1) (19)

Using equation (18) into equation (16) & boundary conditions (16’) and then collecting harmonic and nonharmonic
terms, we obtain:

2
d-r,

2 — ik +M*)r, =—Q2ik +M?) (20)
2

leg’; —(1+AB)"[2ik + M? +idlr, = —(1+ AB) '[2ik + M* +iA] (21)
2

41 (14 2B) ' [2ik + M2 —idlr, = —(14+ AB) ' [2ik + M —iA] (22)

4

rh=r=r=0, at £=0
n=rn=r=1, at &=1 (23)

From equation (20):

Auxiliary equtn -

m* — 2k +M?)=0

m =+~ 2ik + M’

ThenCf.= Ae' +Be ™ where A, Bare constantsand £ =+/2ik + M?>  &P.l. is
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1 . 25\ 0&
—2ik+M =1
DZ—(Zik+M2){ (2 e

(&)= Ae'* +Be " +1 (24)
Using boundary conditions (23) in equation (24), we obtain

0=A+B+1
I=1+Ae' +Be”’

Solving these equtns we get

! 4
e e

(¢'—e)  2sinh/

-0 -0
e e

T —¢') 2sinh/

A

Making use of equation (24) we finally get:

-/ ¢
_ e 0 € —t¢
r(g)=1+ e’ — e
() 2sinh / 2sinh /

1
1+——
2sinh ¢

(e—/fe/(f _e/ze—/,f)

sinh /(1-¢&)

= =1-
(&) sinh ¢ (25)

Now from equtn (21):

Auxiliary equation —

m’> —(1+AB)'[2ik +M* +il]=0

2ik+ M2 +in ]
m:i _— and
1+ A8

= (E)=1+Ae™ +Be ™

Also from equtn (22):

. 2 2
rz(f)zl“‘Aé’ng-|-Be_m’E Where n=i[w}

1+ A8

Employing the same procedure as for 7, the solution of equation (21) & equation (22) subject to boundary conditions
(23) are given by:

sinhm(1-¢)
sinh m

n&)=1- (26)
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_,_sinhn(1-¢)
And r, & =1 —sinh "

(27)

The solution (25) corresponds to the steady part which gives i, &”zo as the primary and secondary Velocity

components respectively . From equation (25) we have for large k :
—lg¢
u,=l—e ' cosl & (28)

Uy =e " sinl & (29)
Where [, = %[M2 +VM* +4k> 1" and

0= %[—M2 + UM 44k

And R & | in the subscripts indicate the real & imaginary parts. The solution (26) & (27) together give the unsteady
part of the flow. These solutions depend on ,3, for large k the primary and secondary velocity components

U, & U, respectively. For the fluctuating flow are given by:
uy, (E,1) = 2cos ax —e " cos(m,E — ar)—e " cos(n,E + ax) (30)

u, (&,1) = e"re sin(m,& — ax) + e sin(n,& + ax) (31)

nwhich  my =(C,) "' [y/AZ +B2 +A,]
m=(C)"'[yJA? +B2 ~A,]
ne=(C) YA +B2 +A, ]
n=(C)'yAZ+B2 -A,]

A, =M’ +Q2k+)AB
A, =M’ +(2k-A)AB
B, =(2k+A)-M’Af
B, =(k-1)-M?A8

C, =20+ A%

We note that steady solution (25) is independent onﬂ. It means that primary & secondary velocity components

Uy & U,, respectively for present steady flow do not depend upon nature of the fluid.

The amplitudes and phase differences in terms of u,, & U,, are given by:

[ 2
Ry =Juyy +uy,,

u

-1

6, =tan" -2,
U

(32)

And for unsteady flow
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_ [ 2
R, =qJuy, +uy,,

u
6, =tan"' 2L,
Uy

(33)

RESULT AND DISCUSSION:

The investigation of the velocity, magnetic field ,frequency & non-newtonian effects on the flow of an incompressible
conducting fluid bounded between two rigid non-conducting parallel plates have been carried out in the preceding
paragraphs. The solutions are obtained for steady and unsteady velocity field from equation (25) to (27).Numerical
computions are discussed in the following points:

(1) The primary velocity u,,, secondary velocity it,,, resultant velocity Ro and phase angle 90 are shown for
various values ofk & M. It is observed that U,, increases with increase o M for Small k ,however, for large
rotation parameter k, u,, decreases with the increases of M and is approximately one for large k inthe upper

half of the channel width. It shows that u,, increases in the lower half of the channel for small k and becomes

approximately zero in the upper half of the channel width. These observations can also be expected from equation
(28) and (29).

These equations show the existence of a thin boundary layer of order O(ﬁ;) in the vicinity of the lower plate
which decreases with the increase in Hartmann number M or the rotation parameter k. The behavior of R0 is
almost the same as that of , and 90 decreases with increasing M for any value of rotation large to small. It is also

evident that 90 increases with small rotation whereas it decreases with large rotation and is approximately zero in

the upper half of the channel.

(2) The expressions (30) & (31) represent the shear oscillations are % & % and the amplitude of these these
1 1

oscillations decay exponentially with f.These expression also show the emergence of a boundary layer of thickness

of order O(m;) superimposed with a boundary layer of thickness of order O(n;l) . These boundary layers which
are a direct consequence of the cyclonic and anticyclonic components of the imposed harmonic oscillations decrease
with increase in M,,B & k . It may be noted that in second grade fluid the boundary layer thickness increases. Also,

the present analysis exhibits a striking difference between the structure of hydrodynamic & the hydromagnetic
boundary layers.

(3) In case of resonance (2Q — @ = 0or2k — A = 0), the solution of equation which represent the value of m & n in
equation (26) & (27) is :

sinh M(1—-¢)
=l-—" 34
n(e) sinhM 34
Where M? =M*(1+iAB)™ (35)

We note that when M =0 then r, (§) for Newtonian and second grade fluids is the same and is given by

n&)=¢.
CONCLUSION:

The effect of rotation & magnetic field on unsteady couette flow of a viscous incompressible electrically conducting
fluid between two horizontal parallel porous plates in a rotating medium is investigated. It is found that magnetic
field has tendency to retard the fluid flow in both the primary & secondary flow directions. Rotation retards primary
flow whereas it accelerates secondary flow. Also there exists incipient flow reversal near the stationary plate in
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primary flow Direction on increasing rotation parameter. Suction accelerates primary flow whereas it retards
secondary flow.
Injection retards both the primary & secondary flows, fluid flow in both the primary & secondary flow directions
increases on increasing time t and the solution for small values of time t, obtained by Laplace transforms technique
converges more rapidly than that of general solution.
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