International Journal of Mathematical Archive-5(7), 2014, 1-7
IMA Available online through www.ijma.info ISSN 2229-5046

ON AN UPPER BOUND FOR STRUCTURE GRACEFUL INDEX OF COMPLETE GRAPHS

R. B. Gnanajothi
Associate Professor, Vanniaperumal College for Women, Virudhunagar-626 001, India.
R. Ezhil Mary*
Assistant Professor, V. H. N. Senthikumara Nadar College, Virudhunagar-626001, India.

(Received On: 07-07-14; Revised \& Accepted On: 23-07-14)

Abstract

A graph structure $G=\left(V, R_{1}, R_{2}, \ldots, R_{k}\right)$ consists of a non-empty set V together with relations $R_{1}, R_{2}, \ldots, R_{k}$ on V which are mutually disjoint such that each $R_{i}, 1 \leq i \leq k$, is symmetric and irreflexive. If $(u, v) \varepsilon R_{i}$ for some $i, 1 \leq i \leq k$, we call it a $R_{i}-$ edge and write it as uv. The structure graceful index of a graph G is defined as the minimum k for which G is k structure graceful. Let us denote it by $\operatorname{SGI}(G)$. In our previous paper, we prove that the $\operatorname{SGI}\left(K_{n}\right)=2$, for $4<n<11$. In this paper we obtain the upper bound for the $\operatorname{SGI}\left(K_{n}\right)$, for $n>10$.

INTRODUCTION

In many real life situations, we are using complete graphs. Also, graceful labeling plays a vital role. But the complete graph K_{n} is not graceful for $\mathrm{n}>4$.

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is said to be k -structure graceful if E can be partitioned into k disjoint subsets $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ such that the graph structure $\left(V(G), E_{1}, E_{2}, \ldots, E_{k}\right)$ is graceful. The structure graceful index of a graph G is defined as the minimum k for which G is k -structure graceful. Let us denote it by $\operatorname{SGI}(\mathrm{G})$.

In our previous paper, we proved $\operatorname{SGI}\left(\mathrm{K}_{\mathrm{n}}\right)=2,4<\mathrm{n}<11$. In the course of the proof, we found a graph G_{n}, which is graceful for $n>4$. A G_{n} graph has $V\left(G_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(G_{n}\right)=\left\{v_{1} v_{i} / i>1\right\} \cup\left\{v_{2} v_{i} / i>2\right\} \cup\left\{v_{3} v_{i} / i>3\right\} \cup$ $\left\{v_{j} v_{n} / 5 \leq j<n\right\}$, for $n>4$. Using this G_{n} graph, we find the upper bound for the structure graceful index of $K_{n}, n>10$.

Definitions:

1. A graph structure $G=\left(V, R_{1}, R_{2}, \ldots, R_{k}\right)$ consists of a non-empty set V together with relations $R_{1}, R_{2}, \ldots, R_{k}$ on V which are mutually disjoint such that each $\mathrm{R}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$, is symmetric and irreflexive.
2. A graph $G=(V, E)$ is said to be k-structure graceful if E can be partitioned into k disjoint subsets $E_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ such that the graph structure $\left(V(G), E_{1}, E_{2}, \ldots, E_{k}\right)$ is graceful.
3. The structure graceful index of a graph G is defined as the minimum k for which G is k -structure graceful. Let us denote it by $\operatorname{SGI}(\mathrm{G})$.

Theorem: $\quad\left\{\begin{array}{l}{\left[\frac{n-5}{4}\right]+1, \text { when } \mathrm{n} \equiv 1(\bmod 4)} \\ {\left[\frac{n-6}{4}\right]+1, \text { when } \mathrm{n} \equiv 2(\bmod 4)} \\ {\left[\frac{n-7}{4}\right]+2, \text { when } \mathrm{n} \equiv 3(\bmod 4)} \\ {\left[\frac{n-8}{4}\right]+2, \text { when } \mathrm{n} \equiv 0(\bmod 4)}\end{array}\right.$
where $\mathrm{n}>10$.

To prove this theorem we need the following lemma.
Lemma: One point union of K_{m} and $\mathrm{K}_{1, \mathrm{n}}$ is graceful for $2<\mathrm{m}<7$.
Proof: Let G be a one point union of K_{m} and $K_{1, n}, n>0$. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{m+n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}} / 2 \leq \mathrm{i} \leq \mathrm{m}+\mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{k}} / 2 \leq \mathrm{j}<\mathrm{k} \leq \mathrm{m}\right\}$.

Case - (i): When m = 3

$$
\text { Define } \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
0, \mathrm{i}=1 \\
\mathrm{i}, \mathrm{i}>1
\end{array}\right.
$$

$\underline{\mathrm{f} \text { is injective: }}$

$f\left(v_{1}\right) \neq f\left(v_{i}\right)$, since $f\left(v_{1}\right)$ is 0 and $f\left(v_{i}\right)$ is a positive integer for $i>1$.
Also $f\left(v_{i}\right) \neq f\left(v_{j}\right)$ if $i \neq j$. Therefore f is an injective function.

$$
\text { Let } \begin{align*}
\mathrm{A}_{1} & =\left\{\ell\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right) / 2 \leq \mathrm{i} \leq 3+\mathrm{n}\right\}=\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{\mathrm{i}}\right)\right| / 2 \leq \mathrm{i} \leq 3+\mathrm{n}\right\} \\
& =\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{2}\right)\right|\right\} \cup\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{3}\right)\right| \cup \ldots . . \cup\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{3+\mathrm{n}}\right)\right|\right\}\right. \\
& =\{2,3, \ldots, 3+\mathrm{n}\} \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{A}_{2}=\left\{\ell\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)\right\}=\left\{\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{3}\right)\right|\right\}=\{|2-3|\}=\{1\} \tag{2}
\end{equation*}
$$

From (1) \& (2) $A_{1} \cup A_{2}=\{1,2, \ldots 3+n\}$
Thus $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{Z}_{3+\mathrm{n}}$ is an injective function and the edges receive the labels from $\{1,2, \ldots 3+\mathrm{n}\}$. Hence one point union of K_{3} and $K_{1, n}$ is graceful.

Case - (ii): When m = 4

$$
\text { Define } f\left(v_{i}\right)=\left\{\begin{array}{l}
0, i=1 \\
6, i=2 \\
5, i=3 \\
2, i=4 \\
i+2,5 \leq i \leq 4+n
\end{array}\right.
$$

$\underline{\mathrm{f} \text { is injective: }}$
$f\left(v_{1}\right) \neq f\left(v_{i}\right)$, for $\mathrm{i}>1$, since $f\left(v_{1}\right)$ is 0 and $f\left(v_{i}\right)$ is not 0 for $i>1$.
For $\mathrm{i} \geq 5, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right) \geq 7$. Therefore $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)$ when $\mathrm{i} \geq 5$ and $1 \leq \mathrm{j} \leq 4$.
Clearly, $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)$ for $5 \leq \mathrm{i}, \mathrm{j} \leq 4+\mathrm{n}$. Therefore f is an injective function.
Let $\mathrm{A}_{3}=\left\{\ell\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right) / 2 \leq \mathrm{i} \leq 4+\mathrm{n}\right\}=\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{\mathrm{i}}\right)\right| / 2 \leq \mathrm{i} \leq 4+\mathrm{n}\right\}$
$=\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{2}\right)\right|,\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{3}\right)\right|, \ldots .,\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{4+\mathrm{n}}\right)\right|\right\}$
$=\{|0-6|,|0-5|,|0-2|,|0-7|,|0-8|, \ldots,|0-(\mathrm{n}+6)|\}$
$=\{6,5,2,7,8, \ldots, n+6\}$

$$
\begin{align*}
\mathrm{A}_{4} & =\left\{\ell\left(\mathrm{v}_{2} \mathrm{v}_{\mathrm{i}}\right) / 3 \leq \mathrm{i} \leq \mathrm{m}\right\}=\left\{\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{\mathrm{i}}\right)\right| / 3 \leq \mathrm{i} \leq \mathrm{m}\right\} \tag{3}\\
& =\left\{\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{3}\right)\right|,\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{4}\right)\right|\right\} \\
& =\{|6-5|,|6-2|\}=\{1,4\} \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{A}_{5}=\left\{\ell\left(\mathrm{v}_{3} \mathrm{v}_{4}\right)\right\}=\left\{\left|\ell\left(\mathrm{v}_{3}\right)-\ell\left(\mathrm{v}_{4}\right)\right|\right\}=\{|5-2|\}=\{3\} \tag{5}
\end{equation*}
$$

From (3), (4) \& (5) $A_{3} \cup A_{4} \cup A_{5}=\{1,2, \ldots, n+6\}$
Thus $f: V(G) \rightarrow Z_{6+n}$ is an injective function and the edges receive the labels from $\{1,2, \ldots 6+n\}$. Hence one point union of K_{4} and $K_{1, n}$ is graceful.

Case - (iii): When $m=5$

$$
\text { Define } f\left(v_{i}\right)=\left\{\begin{array}{l}
0, i=1 \\
11, i=2 \\
10, i=3 \\
2, i=4 \\
7, i=5 \\
6, i=6 \\
i+5,7 \leq i \leq 5+n
\end{array}\right.
$$

f is injective:

$f\left(v_{1}\right) \neq f\left(v_{i}\right)$, since $f\left(v_{1}\right)$ is 0 and $f\left(v_{i}\right)$ is a positive integer for $i>1$.
Also $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right) \neq \mathrm{f}\left(\mathrm{v}_{\mathrm{j}}\right)$, for $2 \leq \mathrm{i}<\mathrm{j} \leq 5+\mathrm{n}$. Therefore f is an injective function.

$$
\text { Let } \begin{align*}
\mathrm{A}_{6} & =\left\{\ell\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right) / 2 \leq \mathrm{i} \leq 5+\mathrm{n}\right\}=\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{\mathrm{i}}\right)\right| / 2 \leq \mathrm{i} \leq 5+\mathrm{n}\right\} \\
& =\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{2}\right)\right|,\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{3}\right)\right|, \ldots \ldots,\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{5+\mathrm{n}}\right)\right|\right\} \\
& =\{|0-11|,|0-10|,|0-2|,|0-7|,|0-6|,|0-12|,|0-13|, \ldots,|0-(\mathrm{n}+10)|\} \\
& =\{11,10,2,7,6,12,13, \ldots, \mathrm{n}+10\} \tag{6}
\end{align*}
$$

$$
\begin{align*}
\mathrm{A}_{7} & =\left\{\ell\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right) / 2 \leq \mathrm{i}<\mathrm{j} \leq 5\right\}=\left\{\left|\ell\left(\mathrm{v}_{\mathrm{i}}\right)-\ell\left(\mathrm{v}_{\mathrm{i}}\right)\right| / 2 \leq \mathrm{i}<\mathrm{j} \leq 5\right\} \\
& =\left\{\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{3}\right)\right|,\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{4}\right)\right|,\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{5}\right)\right|\right\} \cup\left\{\left|\ell\left(\mathrm{v}_{3}\right)-\ell\left(\mathrm{v}_{4}\right)\right|,\left(\mathrm{v}_{3}\right)-\ell\left(\mathrm{v}_{5}\right) \mid\right\} \cup\left\{\left|\ell\left(\mathrm{v}_{4}\right)-\ell\left(\mathrm{v}_{5}\right)\right|\right\} \\
& =\{|11-10|,|11-2|, \mid 11-7\} \cup\{|10-2|,|10-7|\} \cup\{2-7 \mid\}=\{1,9,4,8,3,5\} \tag{7}
\end{align*}
$$

From (6) \& (7) $\mathrm{A}_{6} \cup \mathrm{~A}_{7}=\{1,2, \ldots, \mathrm{n}+10\}$
Thus $f: V(G) \rightarrow Z_{10+n}$ is an injective function and the edges receive the labels from $\{1,2, \ldots 10+n\}$. Hence one point union of K_{5} and $K_{1, n}$ is graceful.

Case - (iv): When m = 6

$$
\text { Define } f\left(v_{i}\right)=\left\{\begin{array}{l}
0, i=1 \\
17, i=2 \\
16, i=3 \\
2, i=4 \\
13, i=5 \\
7, i=6 \\
8, i=7 \\
12, i=8 \\
i+9,9 \leq i \leq 6+n
\end{array}\right.
$$

f is injective:
$f\left(v_{1}\right) \neq f\left(v_{i}\right)$, since $f\left(v_{1}\right)$ is 0 and $f\left(v_{i}\right)$ is a positive integer for $i>1$.
Also $f\left(v_{i}\right) \neq f\left(v_{j}\right)$ if $\mathrm{i} \neq \mathrm{j}$, for $2 \leq \mathrm{i}, \mathrm{j} \leq 6+\mathrm{n}$. Therefore f is an injective function.

$$
\text { Let } \begin{align*}
\mathrm{A}_{8}= & \left\{\ell\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{i}}\right) / 2 \leq \mathrm{i} \leq 6+\mathrm{n}\right\}=\left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{\mathrm{i}}\right)\right| / 2 \leq \mathrm{i} \leq 6+\mathrm{n}\right\} \\
= & \left\{\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{2}\right)\right|,\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{3}\right)\right|, \ldots \ldots,\left|\ell\left(\mathrm{v}_{1}\right)-\ell\left(\mathrm{v}_{6+\mathrm{n}}\right)\right|\right\} \\
= & \{|0-17|,|0-16|,|0-2|,|0-13|,|0-7|,|0-8|,|0-12|,|0-18|,|0-19|, \ldots,|0-(\mathrm{n}+15)|\} \\
= & \{17,16,2,13,7,8,12,18,19, \ldots, \mathrm{n}+15\} \tag{8}\\
\mathrm{A}_{9}= & \left\{\ell\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right) / 2 \leq \mathrm{i}, \mathrm{j} \leq 6, \mathrm{i}<\mathrm{j}\right\}=\left\{\left|\ell\left(\mathrm{v}_{\mathrm{i}}\right)-\ell\left(\mathrm{v}_{\mathrm{i}}\right)\right| / 2 \leq \mathrm{i}, \mathrm{j} \leq 6, \mathrm{i}<\mathrm{j}\right\} \\
= & \left\{\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{3}\right)\right|,\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{4}\right)\right|, \ldots,\left|\ell\left(\mathrm{v}_{2}\right)-\ell\left(\mathrm{v}_{6}\right)\right|\right\} \cup\left\{\left|\ell\left(\mathrm{v}_{3}\right)-\ell\left(\mathrm{v}_{4}\right)\right|,\left|\ell\left(\mathrm{v}_{3}\right)-\ell\left(\mathrm{v}_{5}\right)\right|,\right. \\
& \left.\left|\ell\left(\mathrm{v}_{3}\right)-\ell\left(\mathrm{v}_{6}\right)\right|\right\} \cup\left\{\left|\ell\left(\mathrm{v}_{4}\right)-\ell\left(\mathrm{v}_{5}\right)\right|,\left|\ell\left(\mathrm{v}_{4}\right)-\ell\left(\mathrm{v}_{6}\right)\right|\right\} \cup\left\{\left|\ell\left(\mathrm{v}_{5}\right)-\ell\left(\mathrm{v}_{6}\right)\right|\right\} \\
= & \{|17-16|,|17-2|,|17-13|,|17-7|\} \cup\{|16-2|,|16-13|,|16-7|\} \cup\{|2-13|,|2-7|\} \cup\{|13-7|\} \\
= & \{1,15,4,10\} \cup\{14,3,9\} \cup\{11,5\} \cup\{6\} \\
= & \{1,3,4,5,6,9,10,11,14,15\} \tag{9}
\end{align*}
$$

From (8) \& (9) $A_{8} \cup A_{9}=\{1,2, \ldots, n+15\}$

Thus $f: V(G) \rightarrow Z_{15+n}$ is an injective function and the edges receive the labels from $\{1,2, \ldots 15+n\}$. Hence one point union of K_{6} and $K_{1, n}$ is graceful.

Proof for the theorem: Partition the edges of K_{n} ie) $E\left(K_{n}\right)$ into two sets namely, $E\left(G_{n}\right)$ and $E\left(K_{n} \backslash G_{n}\right)$, then $E\left(K_{n} \backslash G_{n}\right)$
 $\left(\mathrm{E}\left(\overline{K_{n} \backslash G_{n} \backslash G_{n-4}} \backslash \mathrm{G}_{\mathrm{n}-8}\right)\right.$ into $\mathrm{E}\left(\mathrm{G}_{\mathrm{n}-12}\right)$ and $\overline{K_{n} \backslash G_{n} \backslash G_{n-4} \backslash G_{n-8}} \backslash G_{n-12}$ and so on.

From this partition, in the last step we arrive the following cases:
(i) $\mathrm{E}\left(\mathrm{G}_{9}\right)$ and edges in one point union of K_{5} and $K_{1,\left\lfloor\frac{n}{4}\right\rfloor-1}$, when $\mathrm{n} \equiv 1(\bmod 4)$
(ii) $\mathrm{E}\left(\mathrm{G}_{10}\right)$ and edges in one point union of K_{6} and $K_{\left.1, \left\lvert\, \frac{n}{4}\right.\right\rceil_{-1}}$, when $\mathrm{n} \equiv 2(\bmod 4)$
(iii) $\mathrm{E}\left(\mathrm{G}_{7}\right)$ and edges in one point union of K_{3} and $K_{1,\left\lfloor\frac{n}{4}\right\rfloor}$, when $\mathrm{n} \equiv 3(\bmod 4)$
(iv) $\mathrm{E}\left(\mathrm{G}_{8}\right)$ and edges in one point union of K_{4} and $K_{1,\left\lfloor\frac{n}{4}\right\rfloor}$, when $\mathrm{n} \equiv 0(\bmod 4)$

When $n \equiv 1(\bmod 4)$:

We have subgraphs which contain the edges of $G_{n}, G_{n-4}, G_{n-8}, \ldots, G_{9}$ and one point union of K_{5} and $K_{1,\left\lfloor\frac{n}{4}\right\rfloor-1}$.
Let $G_{n}^{(j)}=<\mathrm{A}_{\mathrm{j}}>, \mathrm{j}=1,2, \ldots, \mathrm{~m}+1$, where $\mathrm{m}=\left[\frac{n-5}{4}\right]$
where $<A_{1}>$ is the subgraph of K_{n} induced by the edges in G_{n}.
$<A_{2}>$ is the subgraph of $K_{n} \backslash G_{n}$ induced by the edges in G_{n-4}.
$<A_{m}$ > is the subgraph of $K_{n} \backslash G_{n} \backslash G_{n-4} \backslash \ldots \backslash G_{13}$ induced by the edges in G_{9} and
$<A_{m+1}>$ is the subgraph of $K_{n} \backslash G_{n} \backslash G_{n-4} \backslash \ldots \backslash G_{13}$ induced by the edges in one point union of K_{5} and $K_{1,\left\lfloor\frac{n}{4}\right\rfloor-1}$.
We have already proved that the graph G_{n} is graceful for $n>4$. Therefore $G_{n}^{(j)}, j=1,2, \ldots, m$ is graceful. By case (iii), $G_{n}^{(j)}, \mathrm{j}=\mathrm{m}+1$ is graceful. Totally we have $\mathrm{m}+1=\left[\frac{n-5}{4}\right]+1$ graceful subgraphs. $\therefore \mathrm{SHI}\left(\mathrm{K}_{\mathrm{n}}\right) \leq\left[\frac{n-5}{4}\right]+1$.

When $n \equiv 2(\bmod 4)$:

We have sub graphs which contain the edges of $\mathrm{G}_{\mathrm{n}}, \mathrm{G}_{\mathrm{n}-4}, \mathrm{G}_{\mathrm{n}-8}, \ldots, \mathrm{G}_{10}$ and one point union of K_{6} and $K_{1,\left\lceil\frac{n}{4}\right\rceil-1}$.
Let $G_{n}^{(j)}=<\mathrm{A}_{\mathrm{j}}>, \mathrm{j}=1,2, \ldots, \mathrm{~m}+1$, where $\mathrm{m}=\left[\frac{n-6}{4}\right]$
where $<A_{1}>$ is the subgraph of K_{n} induced by the edges in G_{n}.
$<A_{2}>$ is the subgraph of $K_{n} \backslash G_{n}$ induced by the edges in G_{n-4}.
$<A_{m}>$ is the subgraph of $K_{n} \backslash G_{n} \backslash G_{n-4} \backslash \ldots \backslash G_{14}$ induced by the edges in G_{10} and
$<\mathrm{A}_{\mathrm{m}+1}>$ is the subgraph of $\mathrm{K}_{\mathrm{n}} \backslash \mathrm{G}_{\mathrm{n}} \backslash \mathrm{G}_{\mathrm{n}-4} \backslash \ldots \backslash \mathrm{G}_{14}$ induced by the edges in one point union of K_{6} and $K_{1,\left[\frac{n}{4}\right]-1}$.
Again $G_{n}^{(j)}, \mathrm{j}=1,2, \ldots, \mathrm{~m}$ are graceful and by case (iv), $G_{n}^{(j)}, \mathrm{j}=\mathrm{m}+1$ is also graceful. we have $m+1=\left[\frac{n-6}{4}\right]+1$ graceful subgraphs.
\therefore SHI $\left(\mathrm{K}_{\mathrm{n}}\right) \leq\left[\frac{n-6}{4}\right]+1$.
When $n \equiv 3(\bmod 4)$:
We have sub graphs which contain the edges of $G_{n}, G_{n-4}, G_{n-8}, \ldots, G_{7}$ and one point union of K_{3} and $K_{1,\left\lfloor\frac{n}{4}\right.}$.
Let $G_{n}^{(j)}=<\mathrm{A}_{\mathrm{j}}>, \mathrm{j}=1,2, \ldots, \mathrm{~m}+2$, where $\mathrm{m}=\left[\frac{n-7}{4}\right]$
where $<A_{1}>$ is the subgraph of K_{n} induced by the edges in G_{n}.
$<A_{2}>$ is the subgraph of $K_{n} \backslash G_{n}$ induced by the edges in G_{n-4}.
$<A_{m+1}>$ is the subgraph of $K_{n} \backslash G_{n} \backslash G_{n-4} \backslash \ldots \backslash G_{11}$ induced by the edges in G_{7} and
$<A_{m+2}>$ is the subgraph of $K_{n} \backslash G_{n} \backslash G_{n-4} \backslash \ldots \backslash G_{11}$ induced by the edges in one point union of K_{3} and $K_{1,\left\lfloor\frac{n}{4}\right\rfloor}$.
Here also $G_{n}^{(j)}, \mathrm{j}=1,2, \ldots, \mathrm{~m}+1$ are graceful and by case (i), $G_{n}^{(j)}, \mathrm{j}=\mathrm{m}+2$ is graceful. And we have
$\mathrm{m}+2=\left[\frac{n-6}{4}\right]+2$ graceful subgraphs.
\therefore SHI $\left(\mathrm{K}_{\mathrm{n}}\right) \leq\left[\frac{n-7}{4}\right]+2$
When $\mathrm{n} \equiv 0(\bmod 4)$:

In this form we have subgraphs which contain the edges of $\mathrm{G}_{\mathrm{n}}, \mathrm{G}_{\mathrm{n}-4}, \mathrm{G}_{\mathrm{n}-8}, \ldots, \mathrm{G}_{8}$ and one point union of K_{4} and $K_{1,\left\lfloor\frac{n}{4}\right.}$.
Again let $G_{n}^{(j)}=<\mathrm{A}_{\mathrm{j}}>, \mathrm{j}=1,2, \ldots, \mathrm{~m}+2$, where $\mathrm{m}=\left[\frac{n-8}{4}\right]$
where $<A_{1}>$ is the subgraph of K_{n} induced by the edges in G_{n}.
$<A_{2}>$ is the subgraph of $K_{n} \backslash G_{n}$ induced by the edges in G_{n-4}.
$<A_{m+1}>$ is the subgraph of $K_{n} \backslash G_{n} \backslash G_{n-4} \backslash \ldots \backslash G_{12}$ induced by the edges in G_{8} and
$<A_{m+2}>$ is the subgraph of $K_{n} \backslash G_{n} \backslash G_{n-4} \backslash \ldots \backslash G_{12}$ induced by the edges in one point union of K_{4} and K \qquad
$G_{n}^{(j)}, \mathrm{j}=1,2, \ldots, \mathrm{~m}+1$ are graceful and by case (ii), $G_{n}^{(j)}, \mathrm{j}=\mathrm{m}+2$ is graceful. And we have $\mathrm{m}+2=\left[\frac{n-6}{4}\right]+2$ graceful subgraphs.
\therefore SHI $\left(\mathrm{K}_{\mathrm{n}}\right) \leq\left[\frac{n-8}{4}\right]+2$.
Hence the proof.
Illustration: The 3-structure graceful labeling of K_{13} is shown below:
Here we have $13 \equiv 1(\bmod 4)$.
Hence by the above result, SGI $\left(\mathrm{K}_{13}\right)=\left[\frac{n-5}{4}\right]+1=2+1=3$.

For, partition the edges of K_{13} into $\mathrm{E}\left(\mathrm{G}_{13}\right)$ and $\mathrm{E}\left(\mathrm{K}_{13} \backslash \mathrm{G}_{13}\right)$. We have

Fig. 1

$$
\mathrm{K}_{\mathrm{n}} \backslash \mathrm{G}_{\mathrm{n}}=\mathrm{K}_{13} \backslash \mathrm{G}_{13}
$$

Fig. 2

Partition the edges of $\mathrm{K}_{13} \backslash \mathrm{G}_{13}$ into $\mathrm{E}\left(\mathrm{G}_{\mathrm{n}-4}=\mathrm{G}_{9}\right)$ and $\mathrm{E}\left(\overline{K_{13} \backslash G_{13}} \backslash \mathrm{G}_{9}\right)$

Hence SGI $\left(\mathrm{K}_{13}\right)=3$.
3-structure graceful labeling of \mathbf{K}_{13}

Fig. 5

CONCLUSION

Decomposition of complete graphs K_{n} into graceful subgraphs has been got for $n>10$. This work may contribute much on application side. The sharpness of upper bounds for SGI $\left(\mathrm{K}_{\mathrm{n}}\right)$ is yet to be tested. The extension of this sort of work to other important families of graphs such as Petersen graphs, etc. is our next target.

REFERENCES

[1] Rose. A, On certain valuations of the vertices of a graph, Theory of graphs Proceedings of the symposium, Rome, (July 1966), Gordon and Breach, New York and Dunod, Paris (1967), pp 349-355.
[2] SampathKumar. E., Generalized Graph Structures, Lecture Notes.
[3] Gnana Jothi. R.B., Graceful Graph Structures, International Journal of Algorithms Computing and Mathematics, Volume III, no.1, Feb2010.
[4] Gnana Jothi. R. B and Ezhil Mary. R., Some Properties of Generalized Graph Structures, Proceedings of International Conference on Mathematics and Computer Science (ICMCS 2011).

Source of support: Nil, Conflict of interest: None Declared

[Copy right © 2014. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

