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ABSTRACT 
Power method is normally used to determine the largest eigenvalue (in magnitude) and the corresponding eigenvector 
of the system AX Xλ= . In this study, we examine power method for computing the smallest eigenvalue and its 
corresponding eigenvector of real square matrices. Our work is based on choosing of initial vector in power method 
for acceleration purpose. Finally, we illustrate the method with example and results discussed. 
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1. INTRODUCTION 
 
We study the problem of calculating the eigenvalues and eigenvectors. If only a few eigenvalues are to be calculated, 
then the numerical method will be different than if all eigenvalues are required. Eigenvalues and eigenvectors play an 
important part in the applications of linear algebra. The naive method of finding the eigenvalues of a matrix involves 
finding the roots of the characteristic polynomial of the matrix. In industrial sized matrices, however, this method is not 
feasible, and the eigenvalues must be obtained by other means. Fortunately, there exist several other techniques for 
finding eigenvalues and eigenvectors of a matrix, some of which fall under the realm of iterative methods. These 
methods work by repeatedly refining approximations to the eigenvectors or eigenvalues, and can be terminated 
whenever the approximations reach a suitable degree of accuracy. Iterative methods form the basis of much of modern 
day eigenvalue computation.  
 
The general problem of finding all eigenvalues and eigenvectors of a non-symmetric matrix A  can be quite unstable 
with respect to perturbations in the coefficients of A , and this makes more difficult the design of general methods and 
computer programs. The eigenvalues of a symmetric matrix A  are quite stable with respect to perturbations in A . The 
eigenvalues of a matrix are usually calculated first, and they are used in calculating the eigenvectors, if these are 
desired. The main exception to this rule is the power method described in this paper, which is useful in calculating a 
single dominant eigenvalue of a matrix. For obtaining eigenvalues and eigenvectors for low order matrices, 2 2×  and 
3 3× . This involved firstly solving the characteristic equation det( ) 0A Iλ− =  for a given n n×  matrix A . This is 
an nth order polynomial equation and, even for n  as low as 3, solving it is not always straightforward. For large n  
even obtaining the characteristic equation may be different. Consequently, in this paper we give a brief introduction to 
alternative method, essentially numerical in nature, of obtaining eigenvalues and perhaps eigenvectors. Algebraic 
procedures for determining eigenvalues and eigenvectors are impractical for most matrices of large order. Instead, 
numerical methods that are efficient and stable when programmed on high-speed computers have been developed for 
this purpose. Such methods are iterative, and, in the ideal case, converge to the eigenvalues and eigenvectors of interest. 
In this paper, we outline power method, and summarize derivations, procedures and advantages. The method to be 
examined is the power method. 
 
In section 2 of this paper, we have discussed some basic concepts regarding eigenvalues and eigenvectors with example 
required to understand the concepts that are discussed. In section 3, we have presented power method with example for 
approximating smallest eigenvalue and its corresponding eigenvector of the real square matrix A . Finally, in section 4, 
we summarized some concluding remarks that are used in practice. 
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For the purposes of this paper, we restrict our attention to real-valued, square matrices with a full set of real 
eigenvalues. 
 
2. PRELIMINARIES 
 
In this section, we recall some basic concepts which would be used in the sequel. 
 
Definition 2.1: The minor of an element of a determinant of order greater than one is the determinant of next lower 
order obtained by deleting the row and the column of the given determinant in which the element occurs. The minor of 
the element ija  in the determinant  A  is denoted by ijM . 
 
Definition 2.2: The cofactor of an element of a determinant of order greater than one is the coefficient of that element 
in the expansion of the determinant. The cofactor of the element ija  in A  is denoted by ijA . 
 
The cofactor of an element ija  in A  can be determined in terms of its minor as ( 1)i j

ij ijA M+= − . 
 

Definition 2.3: Corresponding to a square matrix ij n n
A a

×
 =    , we form a matrix ij n n

B A
×

 =   ,  where ijA  is the 

cofactor of ija  in A . Then TB  (transpose of B ) is called the Adjoint Matrix or Adjugate Matrix of the  Matrix A  

which is denoted by AdjA . 
 
Definition 2.4: A square matrix A  is invertible if and only if A  is non-singular. 
 
Definition 2.5: Let 1 2, ,........, nλ λ λ  be the eigenvalues of an n n×  matrix A . 1λ  is called the dominant eigenvalue 

of A  if 1 , 2,.....,i i nλ λ> = . The eigenvectors corresponding to 1λ  are called dominant eigenvectors of A . 
 
Definition 2.6: Eigenvectors corresponding to distinct eigenvalues are linearly independent. 
However, two or more linearly independent eigenvectors may correspond to the same eigenvalue. 
 
Definition 2.7: Let (1) (2) (3), , ,........A A A  be a sequence of matrices in m nR × . We say that the sequence of matrices 

converges to a matrix m nA R ×∈  if the sequence ( )
,
k

i jA  of real numbers converges to ,i jA  for every pair 

1 ,1i m j n≤ ≤ ≤ ≤ , as k  approaches infinity. That is, a sequence of matrices converges if the sequences given by 
each entry of the matrix all converge. 
 
2.8. EIGENVALUES AND EIGENVECTORS 
 
Consider the equation AX Xλ=                                                                                                                                    (1)  
 
Here, A  is an n n×  matrix, λ  is a scalar and X  is a non-zero vector. The solution of (1)  requires the solution of 

.λ  The scalar λ  (real or complex) is called the eigenvalue or ‘latent root’ or ‘characteristic value’ of A . X  is called 
the corresponding eigenvector or ‘characteristic vector’ of the matrix A . The eigenvalues of a matrix are of great 
importance in physical problems. They occur in the analysis of stability and in the equations of vibrations in structures 
or electrical circuits. The stability of an aircraft is determined by the location of the eigenvalues of a certain matrix in 
the complex plane.  
 

If ij n n
A a

×
 =    , then (1)  can be written as 

11 12 13 1

21 22 23 2

                       .................
                       .................
................................................................
............................

n

n

a a a a
a a a a
λ

λ
−

−

1 2 3

0
....................................

                              ............n n n nn

X

a a a a λ

 
 
 
  =
 
 
 − 

                                                                                         (2) 
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Or[ ] 0A I Xλ− =                                                                                                                                                          (3)  
 
This is a set of n  linear homogeneous equations. It will have a non-trivial solution if and only if 0;A Iλ− =  that is, 
if and only if 

11 12 13 1

21 22 23 2

                       ...................
                       ...................
..................................................................
......................

n

n

a a a a
a a a a
λ

λ
−

−

1 2 3

0
............................................

                            ...............n n n nna a a a λ

=

−

                                                                                               (4) 

 
The determinant is a polynomial of degree n≤  in λ . The polynomial is called the characteristic polynomial of matrix 
A . It is usually denoted by ( )P λ . The roots of this polynomial are the eigenvalues (or the latent roots or the 

characteristic values) of the matrix  A . If the values of λ  are 1 2, ,.........., nλ λ λ , which may not all be distinct, then 
the eigenvectors of the matrix A  are given by 

1 1 1 2 2 2, ,......., n n nAX X AX X AX Xλ λ λ= = =                                                                                                         (5) 
 
Hence the determination of eigenvalues of a matrix A  is nothing but solving an algebraic equation of degree n . 
 
2.9. TWO IMPORTANT PROPERTIES OF EIGENVALUES AND EIGENVECTORS  
 
Property 1: If X  is an eigenvector of A  corresponding to the eigenvalue λ  and A  is invertible, then X  is an 
eigenvector of 1A−  corresponding to its eigenvalue 1 λ . 
 
Property 2: If A  is a non-singular matrix, then eigenvalues of 1A−  are the reciprocals of the eigenvalues of A . 
 
Proof: Let λ  be an eigenvalue of A  and X  be a corresponding eigenvector. Then     

1 1

1

1

1

( ) ( )
1     (  is non-singular 0)

1

1  is an eigenvalue of  and  is a corresponding eigenvector.

AX X
X A X A X

X A X A

A X X

A X

λ

λ λ

λ
λ

λ

λ

− −

−

−

−

=

⇒ = =

⇒ = ⇒ ≠

⇒ =

⇒

  

Conversely, suppose that k  is an eigenvalue of 1A− . Since A  is non-singular ⇒ 1A−  is non-singular and 
1 1( )A A− − = , therefore it follows from the first part of this property that 1 k  is an eigenvalue of A . Thus each 

eigenvalue of 1A−  is equal to the reciprocal of some eigenvalue of A . Hence the eigenvalues of 1A−  are nothing but 
the reciprocals of the eigenvalues of A . 
 

Example 1: Let us now consider the matrix 
2      12

  1           5
A

− − 
=  
 

  to find the eigenvalues and the corresponding 

eigenvectors by direct method i.e. by algebraic procedures for verifying the above two properties. 
 
Solution: The characteristic equation is 

( ) 0P A Iλ λ= − =  

2        12
0

     1            5
λ

λ
− − −

⇒ =
−
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Which gives 1 21 and 2λ λ= = . 
 
The corresponding eigenvectors are obtained thus: 
 
(i) For 1 1λ =  

Let the eigenvector be 1
1

2

x
X

x
 

=  
 

. Then we have 

1 1

2 2

1 1

2 2

1

2      12
  1           5

x x
A

x x

x x
x x

   
=   

   
− −     

⇒ =    
     

 

 
which gives the equations 1 2 1 1 2 22 12  and 5x x x x x x− − = + =  
 
which gives 1 24x x= −  

Hence the eigenvector for 1 1λ =  is [ ]1 2 24 , TX x x= − . Since 2x  is arbitrary, we can take 2 1x =  and hence the 

eigenvector is [ ]1 4,1 TX = − . 
 
(ii) For 2 2λ =  

Let the eigenvector be 1
2

2

x
X

x
 

=  
 

. Then we have 

1 1

2 2

1 1

2 2

2

22      12
  1           5 2

x x
A

x x

x x
x x

   
=   

   
− −     

⇒ =    
     

 

which gives the equations 1 2 1 1 2 22 12 2  and 5 2x x x x x x− − = + = , which gives 1 23x x= − . 
 

Hence the eigenvector for 2 2λ =  is [ ]2 2 23 , TX x x= − . Since 2x  is arbitrary, we can take 2 1x =  and hence the 

eigenvector is [ ]2 3,1 TX = − . 

Thus, the eigenvalues are 1 21 and 2λ λ= =  and the corresponding eigenvectors are 

[ ] [ ]1 24,1  and 3,1T TX X= − = −  respectively. 
 
Now, to find eigenvalues and eigenvectors of the matrix 1A− , we need to find 1A−  and for that we proceed as follows: 
 
Clearly, the matrix A  is non-singular. 

  5      12
1    2

AdjA  
=  − − 

 

1   5      121       ( A 2)
1    22

5         62        
1     12

AdjAA
A

−  
∴ = = = − − 

 
 =
 − − 


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The characteristic equation of the matrix 1A−  is  

1( ) 0

5               6
2 0

1            1
2

P A Iλ λ

λ

λ

−= − =

−
⇒ =

− − −

 

 

which gives 1 2
11 and 2λ λ= = . 

 
The corresponding eigenvectors are obtained thus: 
(i) For 1 1 λ =  

Let the eigenvector be 1
1

2

x
X

x
 

=  
 

. Then we have 

1 11

2 2

1 1

2 2

1

5           62
1       12

x x
A

x x

x x
x x

−    
=   

   
      ⇒ =    − −     

 

which gives the equations 1 2 1 1 2 2
5 16  and 
2 2

x x x x x x−
+ = − = , which gives 1 24x x= − . 

Hence the eigenvector for 1 1λ =  is [ ]1 2 24 , TX x x= − . Since 2x  is arbitrary, we can take 2 1x =  and hence the 

eigenvector is [ ]1 4,1 TX = − . 
 

(ii) For 2
1

2λ =  

Let the eigenvector be 1
2

2

x
X

x
 

=  
 

. Then we have 

1 11

2 2

1
1

2
2

1
2

15         6 22
11      12 2

x x
A

x x

xx
x x

−    
=   

   
 

     ⇒ =    − −        

 

which gives the equations 1 2 1 1 2 2
5 1 1 16  and 
2 2 2 2

x x x x x x−
+ = − = , which gives 1 23x x= − . 

 

Hence the eigenvector for 2
1

2λ =  is [ ]2 2 23 , TX x x= − . Since 2x  is arbitrary, we can take 2 1x = and hence the 

eigenvector is [ ]2 3,1 TX = − . 
 
From the above example we have seen that if X  is an eigenvector of A  corresponding to the eigenvalue λ  and A  is 

invertible, then X  is an eigenvector of 1A−  corresponding to its eigenvalue 1
λ . Also, we have seen that the 

eigenvalues of 1A−  are the reciprocals of the eigenvalues of A  (obviously, the matrix A  is non-singular i.e. 0A ≠  
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3. THE POWER METHOD (ITERATIVE METHOD) 
 
This method is used for eigenvalue problems where very few roots of the characteristic equation are to be found. Let all 
the eigenvalues be distinct. An arbitrary vector (0)Y  can be expressed as 

(0)
1 1 2 2

1

..........

        ......................(1)

n n
n

r r
r

Y a X a X a X

a X
=

= + + +

=∑
 

 
To find the numerically largest or dominant eigenvalue and its associate eigenvector, we start with an arbitrary vector 

(0)Y . The vector is multiplied successively by the matrix A . A convenient choice for (0)Y  is [ ]1,0 T
 or [ ]1,0,0 T

. It 

can also be taken as [ ]0,1 T
, [ ]1,1 T

, [ ]1, 1 T−  or any other vector of the correct size. It must be noted that all iterative 
procedures require an initial estimate of the quantity sought to be taken. 
Multiplying the equation (1)  by A , we get 

(1) (0)

1 1

n n

r r r r r
r r

Y AY a AX a Xλ
= =

= = =∑ ∑  

Multiplying by A  again and letting (2) (1)Y AY= , we get 

(2) 2

1 1 1

n n n

r r r r r r r r r
r r r

Y A a X a AX a Xλ λ λ
= = =

= = =∑ ∑ ∑  

 
Proceeding like this, we get at the mth iteration 

( )

1

1 1 1 2 2 2      ............

n
m m

r r r
r

m m m
n n n

Y a X

a X a X a X

λ

λ λ λ
=

=

= + + +

∑
 

 
Suppose 1λ  is the largest eigenvalue. Then, 

( )
1 1 1 2 2 1 2 1[ ( ) ............ ( ) ]m m m m

n n nY a X a X a Xλ λ λ λ λ= + + +  
 
The values 1( )  ( 1)m

i iλ λ ≠  tend to zero as m →∞  and hence all the terms become negligible except the first term. 

Therefore, ( )
1 1 1

m mY a Xλ→ , a scalar multiple of 1X , as m →∞ . Also, ( 1) 1
1 1 1

m mY a Xλ+ +→  for large m . 

Therefore, taking the ratio of the magnitudes of ( 1) ( ) and m mY Y+ , we get 
( 1)

1( )

m

m

Y

Y
λ

+

→  for large m , the required 

largest eigenvalue. It is clear that the rate of convergence depends on the ratio of the moduli of the two largest 
eigenvalues. When this ratio is nearly unity, the convergence is very poor. To avoid this, the following procedure is 
adopted: 

(i) The arbitrary vector (0)Y  is selected such that the largest element of this vector is unity; i.e. the vector (0)Y  is 
put into the normalized form with the largest element unity. 

(ii) The normalized vector is multiplied by A . 
(iii) The new vector is normalized by dividing each element by the largest element. Let this largest element be ml . 

(iv) The process is repeated until the values of ml  and 1ml +  differ by some prescribed small value. The value of ml  

gives the value of the largest eigenvalue and the vector ( )mY  is the eigenvector corresponding to ml . 
 
3.1. SMALLEST EIGENVALUE AND ITS CORRESPONDING EIGENVECTOR BY POWER METHOD 
 
We have already stated that the eigenvalues of 1A− , if A  is non-singular, are the reciprocals of the eigenvalues of A . 
Therefore, the smallest eigenvalue of A  is the largest eigenvalue of 1A− . Hence we can use the power method to 
determine the smallest eigenvalue of A  by working with 1A−  instead of A . This procedure is illustrated in example 
2. 
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Example 2: Let us now consider the same matrix of example 1 i.e. 
2      12

  1           5
A

− − 
=  
 

 to approximate the smallest 

eigenvalue and its corresponding eigenvector by applying power method to 1A−  instead of A . 
 

Solution: Here, 
2      12

  1           5
A

− − 
=  
 

. We know that from example 1, 1
5        62
1     12

A−
 
 =
 − − 

. 

Let us find the largest eigenvalue of 1A−  by power method. We begin with an initial approximation [ ]0 1, 1 Tξ = − . 

1
1 0 1 1

1
2 1 2 2

1
3 2 3 3

1
4 3

3.5 7
,   0.5,   

  0.5   1

11.5 4.6
,     2.5,   

   2.5   1.0

5.5 4.230
,   1.3,     

  1.3   1.000

4.575
,   

  1.115

Z A

Z A

Z A

Z A

ξ α ξ

ξ α ξ

ξ α ξ

ξ α

−

−

−

−

− −   
= = = =   

   
− −   

= = = =   
   
− −   

= = = =   
   
− 

= =  
 

4 4

4.103
1.115,   

  1.000
ξ

− 
= =  

 

 

1
5 4 5 5

4.257 4.050
,   1.051,   

  1.051   1.000
Z A ξ α ξ− − −   

= = = =   
   

 

1
6 5 6 6

4.125 4.024
,   1.025,   

  1.025   1.000
Z A ξ α ξ− − −   

= = = =   
   

 

1
7 6 7 7

1
8 7 8 8

4.060 4.011
,   1.012,   

  1.012   1.000

4.027 4.006
,   1.005,   

  1.005   1.000

Z A

Z A

ξ α ξ

ξ α ξ

−

−

− −   
= = = =   

   
− −   

= = = =   
   

 

 
All these computations show that 1 2, ,........α α converges to 1, which is the largest eigenvalue of 1A−  and 

0 1 2, , ,...........ξ ξ ξ converges to [ ]4,1 TX = −  is the corresponding eigenvector. Since the eigenvalues of A  are the 

reciprocals to those of 1A− , the smallest eigenvalue of A  is 1. This is the same as the result we obtained earlier (in 
example 1 by direct method i.e. by algebraic procedures). We have got the corresponding eigenvector also the same as 
the one obtained earlier (in example 1 by direct method i.e. by algebraic procedures). 

 
4. CONCLUSION 
 
In this paper, we have studied power method to approximate the smallest eigenvalue and its corresponding eigenvector 
of real-valued square matrices. Here, we used the new initial vector for the power method. Mainly, in this paper we 
have seen that with examples 1 and 2, if we apply the power method to 1A− , we will get the approximate largest 
eigenvalue of 1A−  and its corresponding eigenvector and consequently we will get the approximate smallest 
eigenvalue of A  with the same eigenvector as if X  is an eigenvector of A  corresponding to the eigenvalue λ  and 

A  is invertible, then X  is an eigenvector of 1A−  corresponding to its eigenvalue 1
λ . This approximate smallest 

eigenvalue and its corresponding eigenvector appear to be approaching the exact smallest eigenvalue and its 
corresponding eigenvector as we have obtained earlier in example 1 by direct method i.e. by algebraic procedures. 
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