FIXED POINT THEOREMS ON CYCLIC GROUPS AND NORMAL SUBGROUPS

P. Sundarayya and CH. Pragathi*

Department of Mathematics,
GITAM University, Rushikonda, Visakhapatnam-530045, Andhra Pradesh, India.

(Received on: 23-06-14; Revised & Accepted on: 16-07-14)

ABSTRACT

In this paper, some properties of fixed points on the self maps on a group are derived. Some fixed point theorems on cyclic groups and normal subgroups are proved.

Key words: Groups, sub groups, cyclic groups, normal subgroups, homomorphism.

AMS subject classification: 47H10, 54H25.

INTRODUCTION

An element x in a group G is called fixed point of a self map $f : G \rightarrow G$ if $f(x) = x$. The set of all fixed points of the map f is denoted by F_f. In 2006 J. Acharya and Neeraj Anant Pande [1] established fixed point theorems for a family of self maps on groups using the following concept: Let (G, \ast) be a group and $f_i : G \rightarrow G$ be a self map on G given by $f_i(g) = g^i$ for every $g \in G$, then $x \in G$ is a fixed point of f_i iff $o(x) \mid i - 1$.

Later in 2012, I.H. Naga Raja Rao et.al [2] established some results of fixed points on groups by using the above concept. In this paper we established some results of fixed points on cyclic groups of a group by using this concept. The following will be known from the previous observations. Let (G, \ast) be a group and $f_i : G \rightarrow G$ be a self map on G given by $f_i(g) = g^i$ for each $g \in G$.

The following will be known from the previous observations.

(i) $x \in G$ is a fixed point of f_i iff x^{-1} is a fixed point.
(ii) If x, y are fixed points of f_i implies that $x \ast y$ is also a fixed point of f_i. F_{f_i} the set of all fixed points of f_i, is itself a group w. r. t \ast and hence a sub group of G.
(iii) For an abelian group (G, \ast) F_{f_i} the set of all fixed points of f_i, is a normal subgroup of G.
(iv) For any group (G, \ast), the self map f_i on G is a homomorphism and F_{f_i} and ker f_i are such that ker f_i is a sub group of F_{f_i} iff ker $f_i = \{e\}$.
(v) If x is a fixed point of f_i and f_j then x is also a fixed point of $f_i \circ f_j$.
(vi) x is a fixed point of f_i iff $o(x) \mid i - 1$.

Throughout this paper, For any group G under multiplication, let $f_i : G \rightarrow G$ be a self map on G defined by $f_i(g) = g^i$ for each $g \in G$, and F_{f_i} be the set of all fixed points of f_i. The following results on cyclic groups are established.

Lemma 1: If G is a cyclic group of order n, then g is a fixed point of f_i where $i < n$ implies $i - 1 \mid n$.

Proof: g is a fixed point of $f_i \Rightarrow f_i(g) = g$

$\Rightarrow g^i = g$

$\Rightarrow g^{i-1} = e$

$\Rightarrow i - 1 \mid n$ (since $o(G) = n$, $o(g) \mid o(G)$).

Corresponding author: CH. Pragathi*

Department of Mathematics, GITAM University, Rushikonda, Visakhapatnam-530045, Andhra Pradesh, India.
Lemma 2: If G is a cyclic group of order n and G = < g >, and if i-1 \mid n and \frac{n}{i-1} = r an integer, then g^r is a fixed point of f_i.

Proof: Suppose G = < g > and o(G) = n, then g^n = e.

Now, i-1 \mid n \Rightarrow n = (i-1) r (\frac{n}{i-1} = r \text{ forsome integer})

\Rightarrow n+r = ir
\Rightarrow gn+r = gr i
\Rightarrow gn.gr = (gr) i
\Rightarrow gr = (gr) i = f_i (gr) (\text{since } g^n = e)

Therefore g^r is a fixed point of f_i where \frac{n}{i-1} = r.

Theorem 3: If G is a cyclic group of order n and G = < g > and o(G) = n, for i < n, g is a fixed point of f_i iff i-1 = n.

Proof: If g is a fixed point of f_i, f_i (g) = g

\Rightarrow g^{i-1} = g
\Rightarrow g^i = g
\Rightarrow f_i (g) = g

Conversly, i-1 = n \Rightarrow g^{i-1} = g^n = e (\text{since G = < g>, o (G) = n})

\Rightarrow g^i = g
\Rightarrow f_i (g) = g.

Therefore g is a fixed point of f_i.

Example 4: Let G = < i > = { 1, -1, i, -i }.Then G is a cyclic group of order 4 and i^2 is the fixed point of f_3, and i is fixed point of f_5.

For, 3-1 \mid 4 and \frac{4}{4} = 2, an integer, f_3 (i^2) = i^6 = i^2.

5-1 \mid 4 and \frac{4}{4} = 1, an integer, f_5 (i) = i^5 = i.

Lemma 5: If G is a cyclic group of order n, then every element of G is a fixed point of f_{n+1}.

Proof: f_{n+1} (g) = g^{n+1} = g^n .g = e. g = g for each g in G.

Therefore f_{n+1} (g) = g \forall g \in G.

Lemma 6: Let G be a group. Then
(i) If G is abelian then f_i is a homomorphism on G,
(ii) If G is a cyclic group of order i then ker f_i = G iff G is cyclic group of order i.

Proof:
(i) If G is abelian then f_i is a homomorphism.

f_i (ab) = (ab)^i = a^i b^i = f(a).f(b)

Therefore f_i is a homomorphism.

(ii) Suppose G is a cyclic group of order i.

Let x \in G. Then x^i = e

\Rightarrow f_i (x) = e
\Rightarrow x \in ker f_i
\Rightarrow G \subseteq ker f_i.
\Rightarrow ker f_i = G.

On the other hand suppose ker f_i = G.

That is { x \in G \mid f_i (x) = e } = G.\n
Then f_i (x) = x^i = e \forall x \in G.

\Rightarrow G is a cyclic group of order i.
Lemma 7: The set \{f_i : G \rightarrow G \mid i \in Z_+\} is a commutative monoid under composition of mappings.

Proof:
(i) commutativity: For any \(i, j \in Z_+\),
\[f_i \circ f_j(x) = f_i(f_j(x)) = x^{ij} = x^{ji} = f_j \circ f_i(x) \]
\[f_j \circ f_i(x) = f_j(f_i(x)) = x^{ji} = x^{ij} = f_i \circ f_j(x) \]
\(\therefore f_j \circ f_i = f_i \circ f_j \forall i, j \in Z_+\).

(ii) associativity: It is easy to observe for any \(i, j, k \in Z_+\),
\[(f_j \circ f_i) \circ f_k = f_i \circ (f_j \circ f_k) \]
\[= f_j \circ (f_i \circ f_k) \]
\[= f_j \circ (f_k \circ f_i) \]
\[= f_j \circ f_k \circ f_i \]
\[= f_j \circ f_k \circ f_i \]
\[= f_i \circ (f_j \circ f_k) \]
\[= f_i \circ f_j \circ f_k \]
\(\therefore f_i \circ (f_j \circ f_k) = (f_i \circ f_j) \circ f_k \)
\(\forall i, j, k \in Z_+\).

(iii) Identity: For \(1 \in Z_+\) we have
\[f_1 \circ f_i = f_1 = f_i \circ f_1 \]
\(\therefore f_1 \) is the identity element of \{\(f_i \mid i \in Z_+\}\).

Lemma 8: If \(x\) is a fixed point of \(f_i\) or \(f_j\) then \(x\) is also a fixed point of \(f_{\text{lcm}(i-1,j-1)+1}\).

Proof: \(x \in F_{f_i} \cup F_{f_j} \Rightarrow x \in F_{f_i} \) or \(x \in F_{f_j}\)
\[f_i(x) = x \text{ or } f_j(x) = x \]
\[\Leftrightarrow x = x \circ x = x \circ x \]
\[= o(x) \mid i-1 \text{ or } o(x) \mid j-1 \]
\[= o(x) \mid \text{lcm}(i-1,j-1) \]
\[= o(x) \mid \text{lcm}(i-1,j-1) + 1 - 1 \]
\(\therefore x \in F_{f_{\text{lcm}(i-1,j-1)+1}}, \) that is, \(x\) is a fixed point of \(f_{\text{lcm}(i-1,j-1)+1}\). (From (vi))

Corollary 9: In general if \(x\) is a fixed point of \(f_{i_1}, f_{i_2}, \ldots, f_{i_n}\) then \(x\) is a fixed point of \(f_{\text{lcm}(i_1-1,i_2-1,\ldots,i_n-1)+1}\).

Theorem 10: If \(G\) is a cyclic group of order \(n\), then \(F_{f_i}\) is a cyclic subgroup of \(G\).

Proof: Since \(F_{f_i} \subseteq G\), and a subgroup of \(G\) is cyclic (subgroup of a cyclic group is cyclic).
Also \(F_{f_i}\) is abelian (Every cyclic group is abelian).

Now, we establish some results of fixed points on normal subgroups. We know that if \(N\) is a normal subgroup of a group \(G\), then \(G/N \:= \{xN \mid x \in G \}\) is a group under the operation on \(G\).

Theorem 11: Let \(N\) be a normal subgroup of \(G\), and \(x\) is a fixed point of \(f_i : G \rightarrow G\) by \(f_i(x) = x^i\), then \(xN\) is a fixed point of \(g_i : G/N \rightarrow G/N\) defined by \(g_i(xN) = x^iN\) iff \(x^{i-1} \in N\).

Proof: \(xN\) is a fixed point of \(g_i \Leftrightarrow x^iN = xN\)
\[\Leftrightarrow x^iN = xN \]
\[\Leftrightarrow x^{i-1}N = N \]
\[\Leftrightarrow x^{i-1} \in N \]

In [3] if \(M, N\) are two normal subgroups of a group \(G\), \(M \cap N = \{e\}\) then \(MN = NM\) and hence \(MN\) is a subgroup of \(G\).
We use this result in the following theorem.

Theorem 12: If \(M, N\) are two normal subgroups of \(G\) such that \(M \cap N = \{e\}\) and \(x\) is a fixed point of \(f_i \mid M\) and \(y\) is a fixed point of \(f_i \mid N\), then \(xy\) is a fixed point of \(f_i \mid MN\).

Proof: Let \(M, N\) be normal subgroups of \(G\) such that \(M \cap N = \{e\}\). Then \(MN\) is a subgroup of \(G\) and every element of \(M\) commutes with every element of \(N\).

Now \((xy)^2 = (xy)(xy)\)
\[= xyyx \]
\[= x^2y^2 = x^{2i} \]
Therefore \((xy)^i = x^iy^i\) for any positive integer \(i\).

Let \(h : MN \rightarrow MN\) defined by \(h(xy) = (xy)^i\).

Then \(h(xy) = (xy)^i = x^iy^i = xy\)
Therefore xy is a fixed point of $f_i|MN$.

Now we observe that to prove the converse of the above it is needed that at least one of $o(x) | i-1$ or $o(y) | j-1$.

Corollary 13: If M, N are two normal subgroups of G such that $M \cap N = \{e\}$ if $o(x) | i-1$ or $o(y) | j-1$ then xy is a fixed point of $f_i|MN$, iff x is a fixed point of $f_i|M$, y is a fixed point of $f_i|N$.

Proof: If x is a fixed point of $f_i|M$, y is a fixed point of $f_i|N$, then xy is a fixed point of $f_i|MN$, was proved in the above theorem.

On the other hand suppose xy is a fixed point of $f_i|MN$.

Then $(xy)^i = xy$

$\Rightarrow x^iy^i = xy$

$\Rightarrow x^iy^i = e$

$\Rightarrow x^i = y^{-1} \in M \cap N = \{e\}$

$\Rightarrow x^i = e, y^{-1} = e$

$\Rightarrow x = x, y = y$

Therefore x is a fixed point of $f_i|M$ and y is a fixed point of $f_i|N$.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared

[Copyright © 2014. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]