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ABSTRACT 
In this paper, some properties of fixed points on the self maps on a group are derived. Some fixed point theorems on 
cyclic groups and normal subgroups are proved.   
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INTRODUCTION 
 
An element x in a group G is called fixed point of a self map f : G →G if f(x) = x. The set of all fixed points of the map 
f is denoted by Ff .In 2006 J.Achari and Neeraj Anant Pande [1] established fixed point theorems for a family of self 
maps on groups using the following concept: Let (G, *) be a group and fi : G→G be a self map on G given by fi (g) = gi 
for every g ∈G, then x ∈ G is a fixed point of fi iff o(x)│i-1. 
 
Later in 2012, I.H. Naga Raja Rao et.al [2] established some results of fixed points on groups by using the above 
concept. In this paper we established some results of fixed points on cyclic groups of a group by using this concept. 
The following will be known from the previous observations. Let (G, *) be a group and fi : G→G be a self map on G 
given by fi (g) = gi for each g ∈G.  
 
The following will be known from the previous observations. 

(i) x ∈ G is a fixed point of fi iff x-1 is a fixed point. 
(ii) If x, y are fixed points of fi implies that x*y is also a fixed point of fi . Ff i the set of all fixed points of fi, is 

itself a group w. r. t to * and hence a sub group of G. 
(iii)  For an abelian group (G, *) Ff i the set of all fixed points of fi, is a normal subgroup of G. 
(iv)  For any group ( G, * ) , the self  map fi on G  is a homomorphism and Ff i and ker fi are such that ker fi is a sub 

group of Ff i iff  ker fi = {e}. 
(v)   If x is a fixed point of fi and fj then x is also a fixed point of fi ο fj. 
(vi)   x is a fixed point of fi  iff o(x)│i-1. 

 
Throughout this paper, For any group G under multiplication, let fi : G→G be a self map on G defined by fi (g) = gi for 
each g ∈G, and Ff i be the set of all fixed points of fi .The following results on cyclic groups are established . 
 
Lemma 1: If G is a cyclic group of order n, then  g is a fixed point of fi where   i< n implies i-1│n. 
 
Proof:   g is a fixed point of fi  ⇒ fi (g) = g 
          ⇒  gi = g  
          ⇒  gi-1 = e  
                              ⇒  i-1│n (since o(G) = n, o(g)│o(G)). 
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Lemma 2:  If G is a cyclic group of order n and G= < g >, and if i-1│n and 𝑛𝑛

𝑖𝑖−1
= 𝑟𝑟 an integer, then gr is a fixed point 

of fi . 
 
Proof:   Suppose G = < g > and 0(G) = n, then gn = e. 
 
Now, i-1│n  ⇒  n = (i-1) r ( 𝑛𝑛

𝑖𝑖−1
= 𝑟𝑟 forsome integer)  

 ⇒  n+r  = ir  
 ⇒  gn+r = gr i  
              ⇒   gn.gr = (gr) i    
              ⇒   gr = ( gr ) i  = fi (gr) (since g n  = e )   
 
Therefore gr is a fixed point of fi  where 𝑛𝑛

𝑖𝑖−1
= 𝑟𝑟. 

 
Theorem 3: If G is a cyclic group of order n and G = < g > and o(G) = n, for i < n, g is a fixed point of fi iff  i-1 = n. 
 

 Proof:  If g is a fixed point of f i , fi (g) =g   
                                           ⇒  g i  =   g  
                                           ⇒  gi-1 = e   
                ⇒  i-1 = n. (since g is the generator of G, G = <g>,  n is least positive integer such that gn=e) 
.      
Conversly, i-1 = n   ⇒ g i-1 = g n = e (since G = < g, o (G) = n)                                 
                                ⇒ g i = g  
                  ⇒ fi (g)  = g . 
 
Therefore g is a fixed point of fi   
 
Example 4: Let G = < i > ={ 1, -1, i, -i }.Then G is a cyclic group of order 4 and  i2 is the fixed point of f3, and i is fixed 
point of f5 . 
 
For, 3-1│4 and 4

2
= 2, an integer, f3 (i2) = i6  = i2.  

        5-1│4 and 4
4

= 1, an integer, f5 (i) = i5  = i. 
 
Lemma 5: If G is a cyclic group of order n , then every element of G is a fixed point of fn+1. 
 
Proof: f n+1 ( g ) = g n+1 = g n .g = e. g = g for each g in G. 
            Therefore f n+1 ( g ) = g  ∀ g ∈ G. 
 
Lemma 6: Let G be a group. Then 
(i) If G is abelian then fi is a homomorphism on G,  
(ii) If G is a cyclic group of order i then ker fi =G iff G is cyclic group of order i. 
 
Proof: 
(i) If G is abelian  
     fi ( ab )=(ab)i =ai bi  =f(a).f(b) 
     Therefore fi is a homomorphism. 
 
(ii) Suppose G is a cyclic group of order  i. 
      Let x ∈ G. Then x i = e       
      ⇒    fi (x) = e  
      ⇒    x ∈  ker f i 
      ∴   G ⊆ ker f i . 
      Clearly ker f i ⊆ G.  
      ∴   G = ker f i . 
 
On the other hand suppose ker f i= G. 
 
That is { x  ∈ G  │ f i (x) = e } = G. 
 
Then f i (x) = x i = e  ∀ x ∈ G. 
 
∴  G is a cyclic group of order  i. 
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Lemma 7: The set {f i : G → G │i  ∈ Z+} is a commutative monoid under composition of  mappings . 
 
Proof:  
(i)   commutativity: For any i, j∈ Z+  
       fi ο  fj(x) = fi(xj)  =  x j i 
                                  = x i j = fj ο fj(x) 
       ∴  fj ο fj = fj j  =  f j i = fj  ο fi  ∀  i,j ∈ Z+. 
(ii)  associativity : It is easy to observe for any i, j, k in Z+  
       ( fj ο fj) ο f k =  f i ο (fj ο fk )   =  fj  j k = f kο (fiο fj ) 
(iii)  Identity: For 1 in Z+ we have                             
        f1 ο fi  = f1 i  =  f i 1 = fi =  fi ο f1 .                 
        ∴  f1 is the identity element of {f i│i ∈ Z+}. 
 
Lemma 8:  If x is a fixed point of fi or fj then x is also a fixed point of flcm(i-1,j-1)+1. 
 
Proof:  x ∈ Ff i ∪ Ff j  ⇒     x ∈ Ff i or x ∈ Ff j                                                                
        ⇒    f i (x) = x or f j (x) = x 
                                   ⇒    x i= x  or x  j = x               
                                   ⇒    o (x) │i-1  or o(x) │j-1 
                                   ⇒    o(x) │lcm (i-1 , j-1) 
                                   ⇒    o(x) │lcm (i-1 , j-1) +1-1 
 
∴ x ∈ Ff lcm(i-1,j-1)+1 , that is, x is a fixed point of f lcm(i-1,j-1)+1. (From (vi)) 
 
Corollary 9: In general if x is a fixed point of fi1,fi2,…fi n then x is a fixed point  of  flcm(i1-1,i2-1,…,in-1)+1 . 
 
Theorem10: If G is a cyclic group of order n , then Ff i is a cyclic subgroup of G. 
 
Proof:  Since Ff i ⊆G, and a subgroup of G [1] 
F f i is cyclic (subgroup of a cyclic group is cyclic) 
 
Also F f i is abelian (Every cyclic group is abelian).  
 
Now, we establish some results of fixed points on normal subgroups. We know that if N is a normal subgroup of a 
group G, then G/N :={xN│x ∈ G } is a group under the operation on G. 
 
Theorem 11: Let N be a normal subgroup of G, and x is a fixed point of  f i : G→G by f i(x) = xi, then xN is a fixed 
point of gi :G/N →G/N defined by g i(xN) = xiN  iff  xi-1∈N . 
 
Proof:   xN is a fixed point of g i   ⇔  xiN = xN 
                                                       ⇔  xi-1 N = N  
                                                       ⇔  xi-1 ∈ N . 
 
In [3] if M, N are two normal subgroups of a group G, M ∩ N = {e} then MN=NM and hence MN is a subgroup of G.  
 
We use this result in the following theorem. 
 
Theorem 12: If M,N are two normal subgroups of G such that M ∩ N = {e} and x is a fixed point of fi│M, y is a fixed 
point of of fi│N, then  xy is a fixed point of  fi│MN. 
 
Proof: Let M, N be normal subgroups of G such that M ∩ N = {e}. Then MN is a sub group of G and every element of 
M commutes with every element of N. 
 
Now  (xy)2 = (xy)(xy) 
                  = xyyx 
                  = xy2x =xxy2=x2y2,  
 
Therefore  (xy)i  = xi yi for any positive integer i. 
 
Let h i:MN→MN defined by h i(xy) = (xy)i. 
 
Then  h i(xy) = (xy)i = xi yi  = xy 
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Therefore  xy  is a fixed point of fi│MN.   
 
Now we observe that to prove the converse of the above it is needed that at least one of o(x) │i-1 or o(y) │j-1. 
 
Corollary 13: If M, N are two normal subgroups of G such that M ∩ N = {e} if o(x) │i-1 or o(y) │j -1 then xy is a 
fixed point of fi│MN,  iff x is a fixed point of fi│M, y is a fixed point of fi│N. 
 
Proof:  If x is a fixed point of fi│M, y is a fixed point of fi│N,then xy is a fixed point of  fi│MN,  was proved in the 
above theorem. 
 
On the other hand suppose xy is a fixed point of fi│MN. 
Then  (xy) i = xy 
        ⇒  xi yi  = xy        
        ⇒  xi-1 yi-1  = e 
        ⇒  xi-1  =  yi-1 ∈  M∩N = {e} 
        ⇒  xi-1 = e,  yi-1  = e 
        ⇒  xi =x,  yi  = y        
 
Therefore x is a fixed point of fi│M and y is a fixed point of fi│N. 
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