International Journal of Mathematical Archive-5(7), 2014, 110-117
@IMA Available online through www.ijma.info ISSN 2229 - 5046

USING SQUARED-LOG ERROR LOSS FUNCTION TO ESTIMATE THE SHAPE PARAMETER
AND THE RELIABILITY FUNCTION OF PARETO TYPE I DISTRIBUTION

Huda, A. Rasheed*
Al-Mustansiriya University, Collage of Science, Dept. of Math., Iraq.

Najam A. Aleawy Al-Gazi
Math teacher at the Ministry of Eduction -Dhi Qar Iraq.

(Received on: 15-06-14; Revised & Accepted on: 16-07-14)

ABSTRACT

In this paper, we derived Bayes estimators for the shape parameter and the reliability function of the Pareto type |
distribution under Squared-Log error loss function. In order to get better understanding of our Bayesian analysis, we
consider non-informative prior for the shape parameter Using Jeffery prior Information as well as informative prior
density represented by Exponential prior. According to Monte-Carlo simulation study, the performance of these
estimators is compared depending on the mean square Errors (MSE’s).

Key words: Pareto distribution, Reliability function, Maximum Likelihood Estimator, Bayes estimator, Squared-Log
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1. INTRODUCTION

The Pareto distribution is named after the economist Vilfredo Pareto (1848-1923), this distribution is first used as a
model for the distribution of incomes a model for city population within a given area, failure model in reliability theory
[1] and a queuing model in operation research [5].

A random variable X, is said to follow the two parameter Pareto distribution if its pdf is given by:
Ba®

W; XZ(X,(X>0,9>0 (1)

f(x;0,0) =
0, otherwise

where a and 0 are the scale and shape parameters respectively.

The cumulative distribution function (CDF) in its simplest form is given by:
0

a .
F(x;a,0) = 1_(;) » X206 00>0 )
0o , otherwise

So, the reliability function is:

R = (5) 3)
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In this paper, for the simplification we’ll assume that « = 1
2. MAXIMUM LIKELIHOOD ESTIMATOR

Given Xg, X,..., X, a random sample of size n from Pareto distribution, we consider estimation using Maximum
likelihood method as follows:

L(Xg, o, X, [0) = Hf(xn;e)

i=1
L(Xl, ,ane) = ene_(e"'l)zll’lx
The Log- likelihood function is given by
n

InL(xy, )%, [8) = nln @ — (8 + 1)2 Inx;
i=1
Differentiating the log likelihood with respect to 6:

lnL(xy, .., %,10)] _n Z“:l
a0 o L i
&

Hence, the MLE of 0 is:

B = n
ML Inx )
o n
Ov = T where T = Zlnxi 4)
i=1

Using the invariant property, the MLER,,;, (t) for R(t) may be obtained by replacing 0 by its MLE®,,, in (3) [6]

_ 1y oML

R = (5) (5)
3. BAYES ESTIMATOR UNDERSQUARED-LOG ERROR LOSS FUNCTION

Bayes estimators for the shape parameter 6 and Reliability function were considered under squared-log error loss
function with non-Informative prior which represented by Jeffrey prior and informative loss function represented by
Exponential prior where the Squared-log error loss function is of the form:

L(8,0) = (In® — In o)

Which is balanced with Limy )., o as® > 0oroo. A balanced loss function takes both error of estimation and
goodness of fit into account but the unbalanced loss function only considers error of estimation. This loss function is

convex for% < e and concave otherwise, but its risk function has a unique minimum with respect to 8. [3]
According to the above mentioned loss functions, we drive the corresponding Bayes' estimators for 6 using Risk
function R(® — @)which minimizes the posterior risk
R(6—6) = E[L(6,6)] = f (108 — 10 8)*h(B]xy . v . %)
0
= (In8)? — 2(Ind) E(In 8|x) + E((In 8)?|x)

e = 2(1nd)z - ZEnO))
R B R
By letting,
oR (é—e)_o

®

The Bayes estimator for the parameter 6 of Pareto distribution under the squared-log error loss function is:

6 = Exp[E(In8|x)] (6)
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According to the Squared-Log error loss function, the corresponding Bayes' estimator for the reliability function will

be:

R(t) = Exp[E(InR(D)[1)]

E(InR(D)[t) = f InR(t) h(0]t)do
0

We have R(t) = (l)e

t

Hence,

E[InR()] = In (%) E[6]

Substituting (8) in (7), we get:
R(t) = Exp [ln (%) E[G]]

4. PRIOR AND POSTERIOR DISTRIBUTIONS

U]

®)

©)

In this paper, we consider informative as well as non-informative prior density for 6 in order to get better understanding

of our Bayesian analysis as follows:

(i) Bayes Estimator Using Jeffery Prior Information

Let us assume that 6 has non-informative prior density defined by using Jeffrey prior information g;(8) which given

by:

g1(0) « /1(8)

where 1(0) represents Fisher information which defined as follows:

d%Inf
1(9) = —nE W

80 = ¢ -ne (T7)

Inf(x; 0) = In6 — (6 + 1)Inx

onf_1_|
0 o =%
#Inf 1
902 o2

. 9%Inf 1
902 | o2
After substitution in (10) we find that:
(o
g1(9)=6\/H

So, the posterior distribution for 6 using Jeffery prior is:
L(xq,...,%,|0 0
b (Bl = 10 [©)81(0)
Jo L(xq, e, %,10)g1(8)dO
~ on e—(9+1)21nx g\/ﬁ
= i
fO Pne—(6+1) X Inx 5\/6 de
Tnen—le—ST

I'(n)

This posterior density is recognized as the density of the gamma distribution;
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n
0~Gamma (n, Z In xi> , with:

i=1

n
E(0) = m, ver(0) = m
Now,

™ o
E(In8|x) = F(n)fo Ine 6 1e®Tde
Let y=0T
Hence,

™ * n-1 d
Enol) = ros fo m) ) e

Tl’l [e'e}
=—— | [lny—InTly" led
r(n)TnfO [Iny —InTly" "e™dy

B f""lnyy“_le_y InT [®
0

_ n-1a-v4
rm Y T, Y Y

E(In6|x) = @(n) —InT
Where, @(n) = % is the digamma function [5]

Substituting (12) in (6), we get
él = Exp[@(n) — InT]

Now, using (9) to estimate Reliability function we reach to:
—~ n 1
R© =B [in ()

We can notice that f{] (t)is equivalent to the Maximum Likelihood Estimator for R(t).

(ii) Posterior Distribution Using Exponential Prior Distribution

Assuming that 6 has informative prior as Exponential prior, which takes the following form:

1 _e
g,(8) =Xe L, 0,A>0

So, the posterior distribution for the parameter 6 given the data (x;, X5, ... X,) iS:

L, f(x;10)g,(6)
Jy” oy £(x;160)g, (0)d6

hz(em) =

Then the posterior distribution became as follows:
n+1 -0 1
[r+2" gneelm]

'(n+1)

h,(6]Y) =
This posterior density is recognized as the density of the gamma distribution

where: 6~Gamma (n + 1,% +>L;In xi> , With:
n+1 n+1
E(®) =————, ver(8) =

1 )
2+ iz Inx G + 2ty Inx;)

The Bayes estimator under Squared-Log error loss function will be:

0, = Exp [f In® h2(9|t)dﬂl
0
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T+ %]nﬂ gne~0[+]
- f In® D 4o (16)
0

Let y=6[T+%]

Substituting in (16), we have:
110+l o n
[r+3l |l 2 I
F(n+1 1 1 1
R I | L 1| LV I R

E(In8|x) =

By simplification, we get:

E(In6|x) = e(n+ 1) +In [T + %]

~

0 = ExP [(p(n +1)+1In [T + %” a7

Now, the corresponding Bayes estimator for Ry (t) with posterior distribution (15), come out as:
(n + DIni)

[7+7]

5. SIMULATION RESULTS

Rp(t) = ExP

In our simulation study, we generated | = 2500 samples of sizes n = 20, 50, and100 from Pareto type | distribution to
represent small, moderate and large sample size with the shape parameter 6 =0.5, 1.5, 2.5 and taking t = 1.5, 3. We
chose two values of A for the Exponential prior (A=0.5, 3).

In this section, Monte — Carlo simulation study is performed to compare the methods of estimation by using mean
square Errors (MSE’s) as an index for precision to compare the efficiency of each of estimators,

S —9)2
where: MSE(0) = %

The results were summarized and tabulated in the following tables for each estimator and for all sample sizes.
6- NUMERICAL VALUES OF ESTIMATOR (8)
The expectations and MSE’s for 0 are schedule in tables (1, 2, and 3) according to the sequence of tables as follows:

Table - 1: Expected Values and MSE’s of the Parameter of Pareto Distribution with 6 = 0.5

N | Criteria Bayes(é]]effery) 1:65.5 )?2153
20 Exp.(0) 0.516100 0.513880 | 0.537547
MSE 0.015625 0.013726 | 0.017743
50 Exp.(0) 0.504876 0.504564 | 0.513291
MSE 0.005465 0.005226 | 0.005760
100 Exp.(0) 0.502409 0.502345 | 0.506610
MSE 0.002633 0.002578 | 0.002706
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Table - 2: Expected Values and MSE’s of the Parameter of Pareto Distribution with 6 = 1.5

N | Criteria Bayes %‘:effery) A:GS g ;9:'33
20 Exp.(8) 1.548297 1.395296 | 1.583429
MSE 0.140624 0.091596 | 0.143131
50 Exp.(8) 1.514626 1.454416 | 1.529289
MSE 0.049183 0.041884 | 0.049711
100 Exp.(8) 1.507228 1.477195 | 1.514685
MSE 0.023701 0.021876 | 0.023851

Table - 3: Expected Values and MSE’s of the Parameter of Pareto Distribution with 6 = 2.5

N | Criteria Bayes %‘:effery) A:GS g ;9:'33
20 Exp.(8) 2.580500 2.125352 | 2.592182
MSE 0.390623 0.295328 | 0.359498
50 Exp.(8) 2.524381 2.332812 | 2.531424
MSE 0.136620 0.122543 | 0.132948
100 Exp.(8) 2.512047 2.414210 | 2.515959
MSE 0.065835 0.062163 | 0.065016

7. DISCUSSION

From tables (1, 2, 3) when 6=0.5, 1.5, 2.5, the simulation results show that 8; with 2=0.5 was the best in performance,
followed by 61 (which equivalent to Ry, (t)) for different size of samples. and we can notice that MSE's increases with
increases of A (A =3). Finally for all sample sizes, an obvious increase in MSE is observed with the increase of the
shape parameter values.

8. NUMERICAL VALUES OF ESTIMATOR R(t)
The numerical results are schedule in tables (4, 5, 6, 7, 8, and 9) according to the sequence of tables as follows:

Table - 4: Expected Values and MSE’s of the Reliability Function of Pareto
Distribution with 8 = 0.5, t = 1.5, (R(t);=15 = 0.816497)

n | Criteria Baye%f\(]te)ffery) )Eétz); sz(;)
20 Exp. R(t) 0.807908 0.808736 | 0.801013
MSE 0.001732 0.001530 | 0.001967
50 Exp. R(t) 0.813546 0.813665 | 0.810787
MSE 0.000602 0.000577 | 0.006373
100 Exp. R(t) 0.814982 0.815011 | 0.813604
MSE 0.000290 0.000284 | 0.000299

Table - 5: Expected Values and MSE’s of the Reliability Function of Pareto

Distribution with 6 = 0.5,t = 3, (R(t);=3 = 0.5773503)

L Bayes (Jeffery) R () R ()
n | Criteria R, (1) );O.S sz
20 Exp. R(t) 0.564311 0.565504 | 0.551550
MSE 0.005720 0.005117 | 0.006282
50 Exp. R(t) 0.572896 0.573075 | 0.567680
MSE 0.002122 0.002035 | 0.002211
100 Exp. R(t) 0.575028 0.575074 | 0.572403
MSE 0.001041 0.001020 | 0.001064
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Table - 6: Expected Values and MSE’s of the Reliability Function of Pareto
Distribution with 6 = 1.5, t = 1.5, (R(t);=15 = 0.5443319)

... | Bayes (Jeffery) | Ry(t) Rp (V)
n | Criteria R,(0) );O.5 f=3
20 Exp. R(t) 0.531299 0.563970 | 0.523920
MSE 0.006138 0.004498 | 0.006157
50 Exp. R(t) 0.539809 0.553024 | 0.536717
MSE 0.002299 0.002036 | 0.002306
100 Exp. R(t) 0.542009 0.548608 | 0.540388
MSE 0.001131 0.001062 | 0.001134

Table - 7: Expected values and MSE’s of the Reliability Function of Pareto

Distribution with 8 = 1.5,t = 3, (R(t),_3 = 0.1924501)

L Bayes (Jeffery) R.(t R.(t
n | Criteria R, );é% f=(3)
20 Exp. R(t) 0.188909 0.100107 | 0.181803
MSE 0.004813 0.002969 | 0.004547
50 Exp. R(t) 0.191610 0.079374 | 0.188568
MSE 0.001980 0.000888 | 0.001931
100 Exp. R(t) 0.191916 0.071787 | 0.190364
MSE 0.001003 0.000380 | 0.000991

Table - 8: Expected Values and MSE’s of the Reliability Function of Pareto

Distribution with 8 = 2.5 ,t = 1.5, (R(t);_5 = 0.3628883)

L Bayes (Jeffer R.(t R.(t
n | Criteria Y ﬁl((t) Y) ;;(55)3 ;152(3)
20 Exp. R(t) 0.352656 0.419037 | 0.350530
MSE 0.006952 0.007480 | 0.006452
50 Exp. R(t) 0.359528 0.387663 | 0.358448
MSE 0.002742 0.002868 | 0.002661
100 Exp. R(t) 0.361080 0.375469 | 0.360505
MSE 0.001371 0.001400 | 0.001351

Table - 9: Expected Values and MSE’s of the Reliability Function of Pareto

Distribution with 6 = 2.5,t = 3, (R(t),=3 = 0.0071278)

... | Bayes (Jeffery) | Rg(t Rp(t
n | Criteria RO );O.E)S ;15:3)
20 Exp. R(t) 0.066859 0.100107 | 0.065278
MSE 0.001538 0.002969 | 0.001385
50 Exp. R(t) 0.065596 0.079374 | 0.064983
MSE 0.000621 0.000888 | 0.000594
100 Exp. R(t) 0.064821 0.071787 | 0.064521
MSE 0.000312 0.000380 | 0.000305

9. DISCUSSION

From tables (4, 5, 6, 7) when 6 =0.5,1.5 and t=1.5,3 the simulation results shows that with all sample
sizes,R () with 2=0.5 was better in performance than each of R;(t)(which equivalent to MLE) and Rg(t) with 2=3.
Also tables (4, 5, 6, and 7) shows that the results of estimators (included MLE) are closed especially with large sample
sizes.
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Tables (8, 9) showing that, with a large value of 6, (6 = 2.5) MSE’s is decreases with increasing of A (A = 3) for the
Bayes estimator with exponential prior so, we can say that Rg(t) with A=3is better than each of the estimator with
Jeffery prior (MLE) and R (t) with 2=0.5.

In general, we conclude that in situations involving estimation of parameter Reliability function of Pareto type |
distribution under Squared-Log error loss function, using exponential prior with small value of A (A = 0.5) is more
appropriate than using Jeffery prior (or MLE) when t,6 are small relatively (t=1.5, 6 = 0.5). Otherwise using
exponential prior with large value of & (A = 3) is better than using Jeffery prior (or MLE).
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