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ABSTRACT

In this paper, the shifted first, second, third and fourth kind Chevelets wavelets ¥} (t) \¥2, (t) .2, (¢) and ¥, ()
properties are presented.

The main aim is:

1. Generalize the first, second operational matrix to the fractional derivatives . In this approach, a truncated first,
second matrix of fractional derivatives are used.

2. Presented a new proposal formula expressing of fractional derivative o>0 operational matrix of shifted first
kind Chybeshev wavelets D*¥}, (t) interms of D"@(x), @(x) = [T;(X), Ty (x), ....T;(x)]", and a formula
expressing the fractional derivative o>0 of second kind Chebyshev wavelets D@2, (t) interms of
D*p(x), () = [U5(¥) , Ui (x) , -..,Uz (x)]"-

3. Presented a new proposal formula expressing of fractional derivative o>0 operational matrix of shifted third
and fourth kind Chybeshev wavelets D*¥3, (t), D*¥;}, (t)interms of W2, (t) and¥2, _;(t), and a formula
expressing of fractional derivative o>0 of first kind Chebyshev wavelets D*¥},, (t)interms of ¥2, (t) and

l‘”r%m -2 (t)

All the proposed results are of direct interest in many applications.

1. INTRODUCTION

The Chebyshev polynomials are one of the most useful polynomials, which are suitable in numerical analysis including
polynomial approximation, integral and differential equations and spectral methods for partial differential equations [4,
9, 10, 17]. One of the attractive concepts in the initial and boundary value problems is differentiation and integration of
fractional order [8, 16, 18, 19]. Many researchers extend classical methods in studies of differential and integral
equations of integer order to fractional type of these problems [15, 21]. One of the wide classes of researches focuses to
constructing the operational matrix of derivative in some spectral methods. Recently, a lot of attention has been
devoted to construct operational matrix of fractional derivative[4,14,20].For example the fractional type first kind
chebyshev polynomials are used to solving fractional diffusion equations[3,7] also are used to solve multi-order
fractional equation,[12].

In this paper we use shifted chebyshev polynomials of first, second, third and fourth kind and recall some important
properties. Next we used obtain the operational matrix of fractional derivative. Wavelets theory is a relatively new
emerging in mathematical research [5, 6, 11, 23]. It has been applied in a wide range of engineering disciplines,
particularly, shifted first kind chebyshev wavelets play an important role in establishing algebraic methods for the
solution of multi-order fractional differential equations, [22 ] and initial and boundary values problems of fractional
order,[13].New Spectral Second Kind Chebyshev Wavelets Algorithm for Solving Linear and Nonlinear Second-Order
Differential Equations,[2].
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2. PROPOSAL OPERATIONAL MATRIX OF CHEBYSHEV'S FRACTIONAL DERIVATIVE

A. It well know the first kind chebyshev polynomial T,(z) of degree n, [22], which defined on [-1,1] by:

Ta(z) = Cos(n 6) where z= Cos(0)6 € [0,x]

and can be determined with the aid of the following recurrence formula:

The1(2) =22T(2) - Tha(2). n=1,2,3,.....

To(z) =1, T1(2) =z

The analytic form of chebyshev polynomial T(x) of degree (n) is given by:

T =5 2(-1) 22 B g g (1)
and are orthogonal on [1-,1] with respect to the weight function o(t) = 1/v1 — 22, that is:

m i=j=0

1 Ti@T @, _)n L
f_lﬁdz— 2 1—]¢0
0 i %]

In order to use these polynomials on the interval [0, 1], we define the shifted chebyshev polynomials by introducing the
change variable z=2x-1, then T, (X) can be obtained as follows:

T () =2(2x-1) TF(X) - T_1 (X)  i=1, 2,...

whereT; (x)=1,T; (X) =2x-1 and the analytic form is T;(x) = ¥ o(—1)' 2**2 % x"'n=2, 3,...and are orthogonal
with respect to the weight function o(x)=1/vx — x?2, that is:
m i=j=0
1T; (0).T] () L
fO ?dx =33 i=j#0
0 i#j

The function u(x) square integrable in [0, 1], may be expressed in the term of shifted first kind chebyshev polynomial
as:

Yizo ¢ T (%)
where the coefficients c; are given by

. 2 i=0
u(x) T (x)dx, o, = {1 i 20

noj rl

G =7 Jo

In practice, only the first (m+1)-terms shifted first kind chebyshev polynomial are considered. Then we have:
Uy (x) = Z T () =CTo(x)
i=0
where the shifted first kind chebyshev coefficient vector C and the shifted first kind chebyshev vector @(x) are given

by:CT = [eo (), ¢1 (0, e (9], B() = [T (9, T (), ..., T (0]

For the Caputo's derivative we have, [22]: D“C =0, C is a constant.
'(n+1) n—a

D= {Tr(n+1-a) X n = [O(] for neN, (2)
0 n<[a] forneN,

forN, ={0,1,1,...}.

In the following theorem we will define the fractional derivative of the vector @(x).

Theorem 2.1: Let @(x) be shifted first kind chebyshev vector defined as @(x) = [T (X) , T; (X) , ....... ,T(x)]" and also
suppose o>0 then D*@(x) = A @(x)

where A® is (m+1) X (m+1) is an operational matrix of fractional derivative of order a>0 in the caputo sense and is
defined as follows :
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0 0 0
0 0 0
1) . ™
A= Wo,0i Wo,1,i Wo,m,i
n—al , (1) n—fal . (1) nefal (1)
Lico W, —[al0,i Yizo Wi Jlal,i - Yizo n—lal,m,i
6D m 6D (€))]
:n oWm ,0,i Zi=10 Wm,l,i ZIZO Wm m,i
and
w0 l|s given by:
e - i@z n(2n—i-1)2j—k—1)! [(n—i-a+j—k+3)
Wh—lalji= \/— il(2n—2D! [(n—i—a+1)k!(2j—2Kk)! [(n—i—a+j—k+1)
_ (1 j=0
where n=[a] ..mand o —{2 %0

Note that in A% the first[a] rows, are all zero.

Proof: Let Ty, (x) be shifted first kind chebyshev polynomial then by using (1) and (2) we can find that:
DTy (x) =0, n <[a] and for n =[a]

ok — i o2n-2i n2n—i—1! g ni
D*TR () = Zino(=1)" 27 55 =55 DX

—yn-lal,_4Ni o2n-2i n(2n—i-1)! n-i-at
=i (F1) 2 i1(2n—2D! [(n—i—a+1) X

n-i-o:

Now, approximate (x" %) by (m+1)-terms of shifted first kind chebyshev polynomial, we have
X" = $md T (X) whered, ;= 2 fl T (x) dx

T]*(X) - ZLZO(_l)k 22] 2k j(2j—k-1)! j—k’ then

k!(2j—2k)!
=iy Kk 22k j@j—k=1)! (1xPTiaHik
dn—l] T 0( 1) 2 k'(Z] Zk)‘f m dX

_%) v  \ko2i2k j@j—k—D)! [(n—i—a+j— k+2)\/—
n Zk=0( 1) 2 k!(2j—2k)! [(n—i—a+j—k+1)
where,
1 =0
o _{2 (%0 then

o n—[al vy m ,_ qyi 92n-2i n(2n—i-1)!(n-i)! *
D'Ti(X) =Xy XiZo(—1D)'2 1Zn—2)! [(n—i—a+1) dp—i Ty (X)
=mol T w1509, for n=fa] .
:[2:0[“] Wr(ll—)[a],i,O' 2:0[“] Wxgl—)[a],i,l Iy Z:t)[a] Wr(ll—)m,i,m]q)(x)v for n >[a]
and D*T;(x) =[O,...... 0]19(x), n<[a].
B. The second kind of degree (n), [6], which defined on the interval [-1, 1] as:
U,(z )—wwherez—cosﬂ 0 # nm + 2kmn. B

These polynomials satisfy the following recurrence relation
Uo(z) = 1,U,(z) = 2z,
U, (Z) = 2ZUn—l (Z) — Uy (Z): n=23,:-

For using this polynomials on interval (0,1) which called shifted chebyshev polynomials,[6], by introducing the change
variable (2x — 1) and satisfy the following U}, (x) = (4x — 2)U;_;(x) — U;_,(x), n = 2,3,

where Ug(x) = 1, Uj(x) = 4x— 2
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and the analytic form of shifted chebyshev polynomials uj, (x) of degree (n) is given by

* — n+1 n+1—r _(n+1)! 22t r—1
Un(X) - r( 1) (n+1-r)! 2r!
and are orthogonal with respect to the weight function o(x)=1/vx — x?2 , that is:
TU

®)

R CIRRIMGY) — m=n
——— ~dx =18
0 Vx —x? 0 m #n

The function f(x) square integrable in [0, 1], may be expressed in the term of shifted first kind chebyshev polynomial
as:

2iZo 6 Ui (%)

where the coefficients c; are given by

G == [} fOT (x)dx,

In practice, only the first (m+1)-terms shifted first kind chebyshev polynomial are considered. Then we have:
fn () = ZZo 6 T (x) =CTp(x)

where the shifted first kind chebyshev coefficient vector C and the shifted first kind chebyshev vector ¢(x) are given
by:CT = [co (%), ¢1 (X), wer, € ()], B(X) = [UG(X), Ui (X) , LLUE T

In the following theorem we will define the fractional derivative of the vector ¢(x).

Theorem 2.2: Let @(x) be shifted second kind chebyshev vector defined in @(x) = [U§(x), U;(x), -, U (x)]" also
suppose «> 0 then

D¥p(x) = A% (x)

where A is the (m; + 1) x (m; + 1) operational Matrix of fractional derivative of order o in the Caputo sense and
defined as follows:

0 0 0
0 0 0
[x]+1
(2) @) )
2 Wis+1,0 ¢ ZW«]H 1r Zw[oc +1,myqr
=[]+1
A°‘=
n+1 n+1 n+1
) ) ()
Wn+1 ,0,r Wn+1 Ao Wn+1 ,mq,r
r=[oc]+1 r=[o]+ r=[o]+1
@) @) )
Z Wml,O,r Z Wml 1,r Z Wml ,mq,r
=[oc]+1 =[oc]+1 r=[oc]+1
and
@ 8 RO £(—1)M P2 (n 4 1)1 (p + £)! (r — 1)1 220402 [(r—oc +4 + %)
w =—
n+lpor \/_Z (n+1-=0)! 2r [r=)(p+ 1 =) 2¢! [(r—< +£ + 2)

Note that in A® the first[a] + 1 rows, are all zero

Proof: Let U} (X) be shifted scondt kind chebyshev polynomial then by using (2) and (3) we can find that:
D*U; (x) = On < [«] and for (n = [«] + 1 ... m) we have

(+r)1227=1 g

(n+1-1)! 2r!

naler A2 "le—1y o g
- Z °(]+1 r(-1 (n+1-1)! 2r![(r—o) X

DMU;(X) — n+1r( 1)n+1 T
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Now, approximate (x"~*~1) by (m + 1)-terms of shifted second kind chebyshev series, we have
Xr_oc_l = 231:10 dr—l ,p U;) (X)

8 1
drog p = Ef X x = x2Up (%) dx

+12(-D)PH 1~ (ptp)1 22671 1 e
—Zp P x — x2x" %71 dx

(p+1-0)! 20! 0
__Zpﬂ £(=1)P 1 (p40)1 22470T (r—oct 43T
=0 (p+1—8)! 20! T (r—oc+£+2)
n+1 mq
(n+ )27 (-1
D¥U! (x) = Z Zr—l““_r d._ ,U(x
n() D (m+1-1)! 2r! [(r—oc) 1P n()
r=[u]+1 p=0
= S [Zr e Wi U GO
_ 1 () 1 () 1
= [ n+M+1 Wht1,0,r 7 n+[o<]+1 Wift1r 07" n+[°(]+1 Wn+1 my r]‘P(X)

for n=[] + 1...m; and D*U;;(x) = [0, -+, 0]e(x)n < [«].
3. PROPOSAL OPERATIONAL MATRIX OF CHEBYSHEVWAVELETS FRACTIONAL DERIVATIVE
A. This shifted first kind chebyshev wavelets WL (t) = W(k,ii,m,t) have four arguments; keN, n=1,2,...,2%"1 and

fi = 2n — 1; moreover, m is the order of the chebyshev polynomials of the first kind and t is the normalized time, and
they are defined on the interval [0,1) as, [12]:

k/zr* @kt—n) -1 i
‘P,%m(t):{z m 2 St
0 o.w

%Tm m =0
where T, = 5
\/;Tm m> 0

m=0,1..M-1,n=12,....25 and A=0,1,......2%-1, the weight function

1

J(Zk t-A)— (2k t -A)?
A function f(t) defined over [0,1) my be expanded as follows
(1) = £%0 2% Cm Wik (1) where

w=w(2t— 1) and w; (t) = w(2“t-7i) where w(2"t-7) =

Cum = (f) ) Wi (0 )o = fol W) f(©). Pin(t) dt and f(O) = X7y Xinoo Cam ¥ im () =W 5 (0)

Where C = [COO y COl g treaaes C2"—1,M g treaaes CZk—l,l yuenae CZk—l,M]
Thus,

1 — 1 1 1 1 1 1 T
Vim ®=[%0 Yo1,-Foru, o, ¥ ke v 2k 11 . 4 2k—1,M]

Theorem 3.1: Let ¥}, (t) be shifted of first kind chebyshev vector and also suppose o > 0) then

k/ —
a 1 - a Cm 2712 k _ (0() 1 :{ 1 m = 0 o
DWWz, (6)(t) = D" (—=—Tn((2* t- 7)) = Y. (1), such that C,, VI m>0’ whereA* is the (m+1)x(m+1)

operational matrix derl;//;tzve of order (@) in the caputo sense and is defined as follows:
0 0 0
0 0 0
A% = Wo,0,i Wo,1,i oo Wo,umi
Z?:OM Wi _a]0,i Z?:o[a_] Wi al1,i = ZZH:EM Wr:l—[cf],M,i
. Zl OWMOLZL oWm1i e Z:n:lgW&,M,i
And wy, 4, 1S given by
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m (2m—i—1)!(m—i)!j(2j—k—1)! [(m—i—tx+j—k+%)

~ _dj _ 1 \k+i 92(j+m)-2(k +i)
Win—lalji = Z 0( 1) 2 Til2m=2i)! [((m—i—a+1)k!(2j—2Kk)! [(m—i—a+k+1)
where,
__{1 j=0
91712 j=0

Note that in A% the first[a] rows, are all zero.

Proof: D* T, (2% t-#) =0m <[a] and for (m > [a])

* N\ i -2i m(2m—i—1)!
D Tm (2k t-n)— ;n=0(_1)l 22m2lm D& (Zk )ml
— ym—la] i 52m-2i m@2m—i—1! S\ M-i-a
“lim CD2 gy BT

Now, approximate (2% t - 71)™"* by (m+1) terms of shifted first kind chebyshev wavelet , we have

@ t-m)" =N dyyy T (25 t- )

_ojlop e T 2K ¢ — )
R e
n) @2 t-n)
Iy 1)k g2 @Ik @kt —1) dt
7TZk=O( ) k1(2j —2k)! O\I(Zkt—ﬁ)—(zkt—ﬁ)z
where,
(1 j=0
a,-—{z thO,then
U] 1Nk 922k j(2j—k—1)! [(m—i—a+j k+—)
dm —ij = Z ( 1) 2 k!(2j—2k)! [(m—i—a+k+1)
Therefore,

a k m—[a] ¢my , 4N\i 92m-2i m((2m—i—1)!(m—i)!
DY Tn (2°t-1) = Z Z' o(=D"2 il(2m—2i)! [(m—i—a+1)

=S Wi i 1 T (¢t £,

dm—i,j Tr; (Zk t- ﬁ)

DU (t) = [Zin;aw Wi —[a]i,07 2{15“” Wl:q—[a],i,l""iziria[a] Wi _aqim | Pam (@), for m >[a]

and D*¥L () =[0,...01 1, (t) form <[al.

B. Second kindchebyshev wavelets W2, (t) =¥? (k, n, m, t) have four argumentsk, n can assume any positive integer, m
is the order of second kind chebyshev polynomials, and t is the normalized time. They are defined on the interval [0, 1]

by: [2]
n+1

W2 (1) = —u n(2t-n) te [x,5r] m=01,...Mn=0,1,....2¢1

k+3

0. W
and w(2t-1) has to be dilated and translated as follows:

w, (2K t-n) =/(2k t — n) — (2k t — n)? and the function approximation

A function (t) defined over [0, 1] may be expanded in terms of second kind Chebyshevwavelets as

f(0) = Xm0 X =0 Cum Prim (©

Cm = (F(1), W2, (1) = fol w(t). f(t). W2, (t)dt and

(t) =Vt — t 2 If the infinite series is truncated, then (t) can be approximated as
f(t) = 225" T oo Com P (0 = "9, (©)

where C and P(t) are 2% (M + 1) x 1 matrices defined by
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_ T
C=1[coo,Co1ys oo Cole_q g » weeerer Cok 11 1eeCok_q ]

W2 () = [Weo, WE1, . Wi, -, W2 p?

2k_1m 2k—1,1 0 Zk—l,M]

Theorem 3.2: Let %2, (t) be second kind chebyshev wavelets and suppose

k+3

a> 0 then DW2, (£) = 2= = D*(uy, 2k t—n) = AEZ (1)

where A% is (M+1)x(M+1) operational matrix derivative of order « in the caputo sense and defined as follow:
r 0 0 .

0 -
0 0 0
Joc]+1 2
Z Wis 41,0 r zwo(Hllr ZW 1+1,M r
=[oc]+1 r=2
A= s
m+1 n+1 n+1
Wni1,0,r Z Whit i, Z Wnti M
r=[«]+1 r=[«]+1 r=[«]+1
M M M
z WM 0, z WMir - Z WM M r
L r=[«]+1 r=[oc]+1 r=[«]+1 E
and

_ 8 g+ re (=) PR 1)1(p+)1 22ETD2E (r—ock£47):
w, =—
m+1p,r ™ &=0 (m+1—-7)! 27! [(r—a(p+1—£)! 24 T (r—oc+£+2)

Proof: From (), we have that,
N _ (m+r)1 2271 _
Um(Zkt—n)— m+1r( 1)m+1 r(r;"_‘_lr_w(zk t-n)" 1

Also, we have that
D*U;, (2 t—=n)=n < [«] and for (n = [o] + 1 ... M) we have

(m+r)1 2271 < ok r—1
(m+1-r)! 2r!D (2 t n)

— ym+1 _qymti—r A2 ek e-nyrma!
=Yt T (1) S i

D*Uy (2 t-n) = E7!r (-1

Now, approximate (2% t - n) "=*~1 by (M+1) — term of shifted second kind chebyshev wavelets, we have:

(Zk t- n) Tl = ZQ/I:O dr—l,p U; (Zk t- n)

dr_1p= f(Zkt—n)U* @k t-n)/(2kt — n) — (2Kt — n)2dt
_8 P+1f( 1)p+l {’(p+{7)|22£’ 1 T — — A — 5 X B
= Z{z 0 1Dl 20 G tia) f J@t —n)— @2kt — )22kt — n)dt
p+1e( Py 2201 [ — a+€+—)\/—
Z (p+1-0)! 28 [(r+f—a+2)

oCy* k —_vm+1 M +1— (m+r)!1 2271 —1)!
D% (25 1=1) =2 ZP‘Or(_l)m Jem e —

O[Z +1 Wit p | Un (2K t=n)

dy_1p Uy (2K t=n)

k+3

2 2
Dxy2, (t)=f | m+[1]+1 Wit p o) Un (28 t=n), thus

1 1 ~
Doclpnm (t) [ Ir‘n-'[—o( +1 Wm+1 o,r, Zr [ec]+1 Wm+1 Lroee Z:"H:To(]+1 Wmn+1,M,r ]lpx%m (t)
k+3

and D*W2_ (t) = D°‘U* (2t-n)=[00,....0] W2, (1) n<[x].
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4. Operational Matrices of Fractional Derivative Chebyshev wavelets

The third and fourth — kind chebyshev wavelets W3, (t) = W, ()=¥(k,n,m,t) has four argument, k, n€ N, m is the
order of the polynomial V;; (t) or W, (t) and t is the normalized time . they are defined explicitly on the interval [0,1]
as: [1]

k+1 k+1

272 272 n  n+l

w3 =fv;{(2k t-n ¥t = fw;;(zk t-n)fort€ [, -1 m=01,..M, n=0,1,...,2K-1and ¥3,=¥2 =0

otherwise. and the weight function;
w_ | @kt-n) v |1-@Kt-n)
Wi= \) 1—Fcomy W2~ \) (2% t-n)

A function nd the function f(t) defined over [0,1] may be expanded in terms of chebyshev wavelets as:

f(t) = Zr-0 Zinzo Com Pam (),

where
Com = Jy Wi,H(t) . WA (D) dit

— y2k— 3,4
f(t) - x21:01 g:O Cnm lpnm (t)
— T
c= [COO y cOl . CO,M ) sennes CZk—l,l yessesanas CZk—l,M ]
3,4 - 3,4 3,4 3,4 3,4 3,4 3,4 T
W () = [Woo, Yo Wt PR R et ]

4.1. New Relation between Operational Matrices of Fractional Derivative for W2, (t) and W3,,(t)

k+1

272, +1
‘Pnzm(t):jfUm(zk t-n) te€ly , o

0 0.w
m=0, 1,........ m, n=0,1,......... 2k —l,U,jl(t):\/%Um (t)

k+1

- +1
Wn%n(t)={ @ e-m) el S

0 0.w

Vi® ==V (O

V,2kt-n)=U,Q"t-n)-U,_1(2¢t- n)

\EVm(Zk t-n) =\/§Um(2k t-n) —\/%Um_l(Zk t-n)

V2vp(2kt-n) = U, (2%t - n) - Uy (2Kt - n)
k43 k+3 k+3
272 ., _27 ., 22 .,
\/ffVm(Zk t - Tl) —ﬁUm(Zk t- n) -fUm_l(Zk t- n)
2\/7"”713171 (t) = lPnz‘m (t) - lpr%m -1 (t)
Theorem 4.1.1: Let &3, (t) be third kind chebyshev vector and suppose (a >0) then:

k+3

~ ~ —_ ZT * * —
(Zrl}:[—ol(]+1 Wi+t Mr — Zrlrﬂz[c(]+1 W M ,r) Doqpn?:m (t) _Zﬁ_ﬁDM(Um (Zk t- n)'Um—l(Zk t- n)) - Ao('1Un3m (t)

where A% is the (M+1)x(M+1) operational matrix derivative of order « in the caputo sense and defined as follow
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Ao(
0 0 0
0 0 0
[oc]+1 [oc]+1 [oc]+1 [oc]+1 [oc]+1 [oc]+1
( Z Wisd41,0r — Z W[oc]+1 or) ( Z Wieds1 1,6 — Z W[o(]+1 1 r e ( Z Wied+1 M r — Z W[ic]+1,M )
r=[o]+1 r=[«]+1 r=[oc|+1 r=[oc|+1 r=[oc]+1 r=[oc]+1
1
2\/? m+1 m
1 ~ ~ 1
s ( Z Wh+1,1,r = Z Wm,l,r) s
( Z m+1 or — Z Wm ,0 r) r=[oc]+1 r=[o]+1 ( Z m+1 M,r Z Wm M r)
r=[«]+1 r=[«]+1 : r=[«]+1 r=[«]+1
M Y ' M oM
~ ~ M ~ =~
( Z WMo~ Z Wit ,0,r) N 2 - ( WM M,r— Z Wit M 1)
r=Ta+1 r=To1 ( Wy 1~ Z Wit ) e r=fa+1 r=fa+1
r=[o|+1 r=[oc]+1
where
_ 8 qp1 TP G 1)) )i (p o) 22002 (r—acte4)
W1 p 'r_ﬁzko (m+1—r)1 2r1[(r =) (p+1—8)1 21 [(r+£—oc+2)

rA(=DPHHED - 1) m = 1+ (p + ) 22002 | (r—oc £+ )
Wi pr = \/—Z (m—1)! 2r1 [r—o)(p + L — &) 28! [(r + f— +2)

Note that in A*, the first[a] + 1 rows, are all zero .
Proof: Fromtheorem(2.2), we have that
p+1 TP A2 )1 () (40! 22042 (r—oct043)

* k 4+ _
D*Un, (2 t n) re [“ 1+1 ZP Od—zf 0 (m+1—1) 27 [(r—c) (p+1—£)! 28! [(r +—oc+2)
DXUE_, (2% ¢ - n)
p+1

and

i rA(=1PHED - ) (m = 1+ + ) 22002 [(r—oc £+ )
_Z Z\/_Z (m—-—r) 2r [r—=)(p+1—-4)! 28! [(r +£—c< +2)
Then e
DU, (2% ¢ - n) = D*U;,_1(2¥ t - n)=

(Z =0 Zr [al+1 W;l+1 P ,r) U;'L (Zkt - Tl) - (ZpMzo ZT:[a]+1 Wi P ,I’)U;’l (Zkt - Tl),
Thus,

k+3

nm (t)_Z\/—\/— O[Zm+ +1 Wm+1 pr le:n=[o<]+1 Wr; P ,r] Urjl (Zk t- n)’ then

1
D“'me (t):ﬁ[ (ZTT&(Hl Wm+1 or — Zr [oc]+1 Wn ,0 r) (Z o<]+1 Wm+1 1r

- Zr:[o(]+1 Wny 1 ,r) (Z;n-‘fn}c +1 Wm+1 Mr — Zr:[o(]+1 Wm M ,r ]-Wn?zm (t) and

k+3

\/_\/_
ﬁ[ 00,....0]¥3, (1) n<x]

D*Y3 (t) = —=—— (DU, (2¥ t - n) — D*U;, 1 (2¥ t - n))

4.2. New Relation between Operational Matrices of Fractional Derivative for W2, (t) and W, (t)

k+3

2z n n+1
lpﬁm(t): ﬁUm(Z t—n) te€ Z—k,z—k]
0 o.w

m=0,1,-,Mn=0,1,-,2% -1,
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2
Un(t) = \/;Um ®)

k+1
. 272 .ok n n+1
Wi () = | =W =) te [ ]
0 0.W.
m=0,1,,Mn=0,1,-,2F -1,
. 1
Wm (t) = \/_EWm (t)

W, (2%t —n) = U,, (2"t —n) + U,,_ (2t —n)

2 2
J; W, (2%t —n) = j;Um(Zkt -n)+U,_1(2*t —n)

VZ W2kt —n) = Uz, (2Kt —n) + Us,_, (2t — n)

r=[o]+1

S8 e -
2 2 2
V2 i —— W2t —n) =—U, 2"t —n) + —U;,_ 2"t — n
k+1
\/— T W (Zkt - Tl) - lpr%m (t) nm—l(t)
zﬁlp;llm (t) lPr%m (t) nm -1 (t)
Theorem 4.2.1: Let ¢}, (t) be fourth kind chebyshev vector and suppose o> 0, Then:
k+3
DY (b) = \/_ - DX(Uy (2Kt —n) + Uy 1 (2Kt — n)) = AW (¢)
where A® s the (M + 1) X (M + 1) operational Matrix derivative of order o« in the Caputoense and defined as
follow:
A =
i 0 0
0 0
[oc]+1 [oc]+1 [oc]+1 [oc]+1 [oc]+1
( Z Wed+1,0,0 — Z Wigs100)  ( Z Wi 1,1, Wﬁ:c]+1,1,r) - ( Z Wit M- —
r=[oc]+1 r=[oc]+1 r=[oc|+1 r=[oc]+1 r=[oc]+1
1
2\/2 m+1
m+1 m m+1
( m+1 Ar T Wm 1 r)
( Z Wnit1,0r — Wi o) r:;+1 r [Z-c]:ﬂ ( Z Wt M —
r=[oc]+1 r=[oc]+1 : r=[oc]+1
M M M
(D Wige— D Wil - () Wit
r=[«]+1 r=[o|+1 ( Z WM~ Z WM 1 ,r) r=lo+1
r=[oc]+1 r=[oc]+1
where
p+1re( DP A2 (1)) ()1 +)! 220072 (r—oct£45)
Win+1pr= £=0 (Mm+1-1)! 2r![(r =) (p+1—€)! 28! [(r+f—oc+2)
) o P (=P 1) = 1+ (p + ) 22002 | (rmoc £+ )
Wmpr = ﬁ; (m—r) 2r [(r—c)(p + 1 — €)1 28! [(r + £~ +2)
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Note that in A*, the firstfa] + 1 rows, are all zero .

4.3. New Relation between Operational Matrices of Fractional Derivative for®2, (t) , W3, (t) and W2, (t)

k+3

5 22 n n+1
w2 (t) = - Un (2%t —n) te [Z_k’—zk ]
0 o.w.

m=0,1,-,Mn=0,1,-,25—1,U;(t) =\/§Um(t)

k+1

22 i n n+1
l{Jg’m(t) = ﬁvm(z t—n) t e Z_k ,z_k]
0 0.W.

. 1
m=0,1,-,Mn=0,1,-,2k =1, V() ==V

k+1

22 K n n+1
wr o) = ﬁWm(Z t—n) te [z_kz—k]
0 o.w.

" 1
m=0,1,-,Mn=0,1,-,2k—1, W) = =W, (®)

2U,, (2t —n) = V,, 2kt — n) + W,, (2%t — n)

12 by _ oy = Ly (okp oy o L Ky
x/?j;um(zt n) \/EVm(Zt n)+\/EWm(2t n)

k+3 k+

w

k+3

272 22 22
ﬁ.ﬁU;(Zkt—n)z\/EV,;{(Zkt—n)+ﬁW,;;(2kt—n)
27 25 25
\/E—\/EU,’;I(Zkt—n) =ﬁVn’{(2kt—n)+ﬁWn’{(2kt—n)

1w — w3 4

Theorem 4.3.1: Let W2, (), %3, (H)and¥;}, (t) are shifted second, third and fourth kind chebyshev vector

respectively and suppose «> 0, Then:
k+1

272
1 22T
=575 093, (O + AW (1)
where A is the (M + 1) x (M + 1) operational Matrix derivative of order « in the Caputo derivative.

D*WZ, (t) = AWE, () = D*(vy (2Kt — n) + wi (2t —n))

4.4. New Relation between Operational Matrices of Fractional Derivative for W, (t) and W2, (t)

K/

2702 A—1 A
wlo(t) = _\/E T, (2%t — 1) te [—Zk Z_k]

0 0.W.
where

(Lo —0
‘V?f nl( ) m =

T,;z(t)=l :
Lj;Tm(t) m>0
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k+3
22
w2 (t) = ﬁum(z t—n)
0

2
Un(®©) = |=Un(®

n n+1
2k zk]

2T, 2%t —n) =U, 2"t -n) +U,,_,2kt —n)m=2,3, -

22T(2kt )= ZU(Zkt ) 2U 2kt —n)
7_L_m n_n_m n nm—Z n

2T (2t —n) = U, 2kt —n) + U;,,_,(2¥t — n)

Theorem 4.4.1: Let ¥}, (t) be fourth kind chebyshev vector and suppose o> 0, Then:

272

—Un 22"t —n)

k+3

Vr

DX(Uy, (2Kt —n) + Uy, _1 (2%t —n)) = AD¥2 ()

where A is the (M + 1) x (M + 1) operational Matrix derivative of order « in the Caputo sense and defined as

0
0
[oc]+1 [oc]+1
( Z Wied1,1 0~ W11
r=[oc]+1 r=[oc|+1
m+1 m—1
( Wt~ Who1,1,0) -
r=[«]+1 r=[«]+1
M M
( Z Wl\jl Ar WI\7,1 ,r)
r=[x|+1

r=[ec]+1

k+3 k+3
2 CER T (2Kt —n) 2z U, (2%t —n) +
. —n) = -n
N N
c _{1 m=20
"W2Z m=#0
W2
C—lpr%m(t) = l'pr%m (t) - lPr%m—Z(t) m=2 ,3 IR
m
C ZkL3
2
DYWL (t)(t) = ———
OO =
follow:
A
0
0
[x]+1 Joc]+1
( Z Wisd+1,0,r ~ Z Wie+1,0.1)
r=[o|+1 r=[o]+1
p— Cm
42,
m+1 m-—1
( W10, Wir1,0r)
r=[oc]+1 r=[oc]+1
M : M
( WI\7[ o,r Z WI\:;l 0 r)
r=[«]+1 r=[«]+1
where

p1 TLEDP A2 1)) () +0)! 220072 (r—oct£47)

- 8
Wm+1,p,r _\/_; Z{’:O

p+1

Mm+1-r)2r![(r—)(p+1—0)! 24! [(r+£—o+2)

93

[oc]+1 Joc]+1

- ( Z Wied1 M r — Z WFD(]+1,M,r)

r=[«]+1 r=[«]+1

m+1

m-—1
Wi+l Mr Z Who1 M)
=[x+1

r=[oc|+1
M M
( Z WI\~/I,M,1‘_ Z WI\:/‘I,M,r)
r=[oc]+1 r=[oc|+1

r (=P = )L m = 2+ (p + ) 220072 | (rmoc £+ 3)

Wm—2pr =
,pr \/_
I
=0

Note that in A*, the first[a] + 1 rows, are all zero .
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Proof:
p+1 TP G 1)1 () (p+0)! 22002 (v oc++y)

oy k +_ — ym+1
D*Un (2 t-mn) 2 a1 Zp= 0\/’24’ 0 (m+1-r)1 2r![(r =) (p+1—£)! 26! [(r +£—oc+2) and

) p1 TACDP = 1) (m—24r)1(p+0)! 22002 (r—oct-£47)
m-2(2ft-m) =5 al+1zp W‘Zf 0 (m—1-)1 2r![(r—c) (p+1—£)! 28! [(r+£—c+2)

Then
DU, (2% t - n) — D*U;, ,(2* t - n)=
(Zgl=o Z;n;f;]+1 Wr;1+1 p ,r) U;:l (Zkt - n) - (Zy:o r= [a]+1 Wm 1,p, r)U (Zkt - n)

Thus,
k43
Cn2 2 _ - .
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