International Journal of Mathematical Archive-2(6), June - 2011, Page: 807-812

Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

On Λ_r -compact and Λ_r -connected spaces

¹M. J. Jeyanthi^{*}, ²S. Pious Missier and ³P. Thangavelu

¹Research Scholar, Research Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628 216 (T.N.), India

E-mail: jeyanthimanickaraj@gmail.com

² Post Graduate and Research Department of Mathematics, V. O. Chidambaram College, Thoothukudi-628 008 (T.N.), India

E-mail: spmissier@gmail.com

³ Research Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628 216 (T.N.), India

E-mail: ptvelu12@gmail.com

(Received on: 12-05-11; Accepted on: 23-05-11)

ABSTRACT

The aim of this paper is to introduce and study two new classes of spaces, called Λ_r -compact and Λ_r -connected spaces. Some basic properties of these spaces are studied by utilizing Λ_r -open set.

Key words and phrases: Λ_r *-open set,* Λ_r *-compact space,* Λ_r *-connected space.*

2000 Mathematics Subject Classification: 54A05.

1. INTRODUCTION:

 Λ_r -open sets is recently introduced by the authors [4] and studied Λ_r -T₀, Λ_r -T₁ and Λ_r -T₂ spaces, Λ_r -homeomorphisms and variants of continuity related to this concept in [4,5,6]. In this paper, we introduce two new classes of topological spaces called Λ_r -compact and Λ_r -connected spaces. To define and investigate these spaces, we use Λ_r -open sets.

Throughout the paper, (X, τ) (or simply X) will always denote a topological space. For a subset S of a topological space X, S is called regular-open if S = *Int cl* S. Then the complement S^c (= X-S) of a regular-open set S is called the regular-closed set. The family of all regular-open sets (resp. regular-closed sets) in (X, τ) will be denoted by RO(X, τ) (resp. RC(X, τ)). A subset S of a topological space (X, τ) is called Λ_r -set [4] if S = $\Lambda_r(S)$ where $\Lambda_r(S) = \bigcap \{G \mid G \in RO(X, \tau) \}$ and S \subseteq G}. The collection of all Λ_r -sets in (X, τ) is denoted by $\Lambda_r(X, \tau)$.

2. PRELIMINARIES:

Throught this paper, we adopt the notations and terminology of [4]. Let A be a subset of a space (X, τ) . Then A is called a Λ_r -closed set if $A = S \cap C$ where S is a Λ_r -set and C is a closed set. The complement of a Λ_r -closed set is called Λ_r -open. The collection of all Λ_r -open (resp. Λ_r -closed) sets in (X, τ) is denoted by $\Lambda_r O(X, \tau)$ (resp. $\Lambda_r C(X, \tau)$). Also note that every open set is Λ_r -open; arbitrary union of Λ_r -open sets is Λ_r -open and arbitrary intersection of Λ_r -closed sets is Λ_r -open at a robust $X \in X$ is called a Λ_r -cluster point of A if for every Λ_r -open set U containing $x, A \cap U \neq \emptyset$. The set of all Λ_r -cluster points of A is called the Λ_r -closure of A and it is denoted by Λ_r -cl(A). Then Λ_r -cl(A) is the intersection of Λ_r -closed sets containing A and it is the smallest Λ_r -closed set containing A. Also A is Λ_r -closed if and only if $A = \Lambda_r$ -cl(A). The union of Λ_r -open sets contained in A is called Λ_r -interior of A and it is denoted by Λ_r -int(A). Also A is Λ_r -int(A) and Λ_r -cl(X-A) = X-(Λ_r -int(A)).

Before we entering into our work, we recall the following definitions.

Corresponding author: ¹M. J. Jeyanthi, *E-mail: jeyanthimanickaraj@gmail.com

Definition: 2.1 A function $f: X \rightarrow Y$ is called

(i) Λ_r -continuous [5] if $f^{-1}(V)$ is a Λ_r -open set in X for each open set V in Y. (ii) Λ_r -irresolute [5] if $f^{-1}(V)$ is a Λ_r -open set in X for each Λ_r -open set V in Y. (iii) Λ_r -open [6] if the image of each open set in X is a Λ_r -open set in Y. (iv) Λ_r^* -open [6] if the image of each Λ_r -open set in X is a Λ_r -open set in Y. (v) Λ_r -closed [6] if the image of each closed set in X is a Λ_r -closed set in Y. (vi) Λ_r^* -closed [6] if the image of each Λ_r -closed set in X is a Λ_r -closed set in Y.

3. Λ_r -COMPACT SPACES:

In this section, we introduce and study a class of compact space called Λ_r -compact space in topological spaces.

Definition: 3.1 A collection $\{A_i: i \in I\}$ of Λ_r -open sets in a topological space (X, \mathcal{T}) is called a Λ_r -open cover of a subset B of X if $B \subseteq \bigcup \{A_i: i \in I\}$.

Definition: 3.2 A topological space (X, τ) is called Λ_r -compact if every Λ_r -open cover of X has a finite subcover.

Definition: 3.3 A subset B of a topological space (X, τ) is said to be Λ_r -compact relative to X if for every collection $\{A_i : i \in I\}$ of Λ_r -open subsets of X such that $B \subseteq \bigcup \{A_i : i \in I\}$, \exists a finite subset I_0 of I such that $B \subseteq \bigcup \{A_i : i \in I_0\}$.

Definition: 3.4 A subset B of a topological space (X, τ) is said to be Λ_r -compact if B is Λ_r -compact as the subspace of X.

Theorem: 3.5 Every Λ_r -closed subset of a Λ_r -compact space X is Λ_r -compact relative to X.

Proof: Let A be a Λ_r -closed subset of a Λ_r -compact space X. Then A^c is Λ_r -open in X. Let $\{G_{\alpha}: \alpha \in I\}$ be any Λ_r -

open cover of A. Then { G_{α} : $\alpha \in I$ } \cup A^c is a Λ_r -open cover of X. Since X is Λ_r -compact, it has a finite subcover, say { $G_1, G_2..., G_n$ }. If this subcover contains A^c, we discard it. Otherwise leave the subcover as it is. Thus we have obtained a finite Λ_r -open subcover of A and so A is Λ_r -compact relative to X.

Theorem: 3.6 Let f be an Λ_r -irresolute surjective function from a topological space X onto a topological space Y. If X is Λ_r -compact, then Y is Λ_r -compact.

Proof: Let $\{A_i : i \in I\}$ be a Λ_r -open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a Λ_r -open cover of X since f is Λ_r -irresolute. Since X is Λ_r -compact, X has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2)... f^{-1}(A_n)\}$. Since f is onto, $\{A_1, A_2... A_n\}$ is a finite subcover of Y and hence Y is Λ_r -compact.

Theorem: 3.7 Let f be an Λ_r -irresolute bijective function from a topological space X onto a topological space Y. If f is Λ_r^* -open and Y is Λ_r -compact, then X is Λ_r -compact.

Proof: Let $\{A_i: i \in I\}$ be a Λ_r -open cover of X. Since f is Λ_r^* -open, $\{f(A_i): i \in I\}$ is a Λ_r -open cover of Y. Since Y is Λ_r -compact, Y has a finite subcover, say $\{f(A_1), f(A_2), ..., f(A_n)\}$. Since f is Λ_r -irresolute, $\{f^{-1}(f(A_1)), f^{-1}(f(A_2)), ..., f^{-1}(f(A_n))\}$ is a finite subcover of X. That is, $\{A_1, A_2, ..., A_n\}$ is a finite subcover of X. Hence X is Λ_r -compact.

Theorem: 3.8 A topological space X is Λ_r -compact if and only if for every family { F_{α} : $\alpha \in I$ } of Λ_r -closed sets with finite intersection property, $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$.

Proof: Necessity: Let X be a Λ_r -compact space and suppose that $\{F_{\alpha} : \alpha \in I\}$ be a family of Λ_r -closed subsets of X with finite intersection property such that $\bigcap_{\alpha \in I} F_{\alpha} = \emptyset$.

Let us consider the Λ_r -open sets $U_{\alpha} = X - F_{\alpha}$. Then $\cup \{U_{\alpha} : \alpha \in I\} = \cup \{X - F_{\alpha} : \alpha \in I\} = X - \cap \{F_{\alpha} : \alpha \in I\} = X - \emptyset = X$.

Hence $\{U_{\alpha}: \alpha \in I\}$ is a Λ_r -open cover of X.

Since X is Λ_r -compact, it has a finite subcover $\{U_{\alpha_i} : \alpha_i \in I_0\}$ where $I_0 = \{1, 2, ..., n\}$.

Then X = $\cup \{ U_{\alpha_i} : \alpha_i \in I_0 \} = \bigcup \{ X - F_{\alpha_i} : \alpha_i \in I_0 \} = X - \cap \{ F_{\alpha_i} : \alpha_i \in I_0 \}.$

Hence $\cap \{F_{\alpha_i} : \alpha_i \in I_0\} = \emptyset$, which is a contradiction. Thus, if the family $\{F_{\alpha} : \alpha \in I\}$ of Λ_r -closed sets with finite intersection property, then $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$.

Sufficiency: Suppose that for every family { F_{α} : $\alpha \in I$ } of Λr -closed sets with finite intersection property, $\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$. Let { U_{α} : $\alpha \in I$ } be a Λ_r -open cover of X.

Then $X = \bigcup \{ U_{\alpha} : \alpha \in I \}$. Now, $\emptyset = X - \bigcup \{ U_{\alpha} : \alpha \in I \} = \bigcap \{ X - U_{\alpha} : \alpha \in I \}$.

Hence {X - U_{α}: $\alpha \in I$ } is a family of Λ_r -closed sets with an empty intersection.

By the hypothesis, \exists a finite subset {X - U_{$\alpha_i} : \alpha_i \in I_0$ } such that \cap {X - U_{$\alpha_i} : \alpha_i \in I_0$ } = \emptyset . Hence X = X - \cap {X - U_{$\alpha_i} : \alpha_i \in I_0$ } = \cup {X - (X - U_{$\alpha_i}) : \alpha_i \in I_0$ } = \cup {U_{$\alpha_i} : \alpha_i \in I_0$ }.</sub></sub></sub></sub></sub>

This shows that $\{U_{\alpha_i} : \alpha_i \in I_0\}$ is a finite subcover of X and hence X is Λ_r -compact.

Theorem: 3.9 For any topological space X, the following properties are equivalent:

(i) X is Λ_r -compact

(ii) Every proper Λ_r -closed set is Λ_r -compact relative to X.

Proof: (i) \rightarrow (ii) By Theorem 3.5, it is obvious. (ii) \rightarrow (i) Let {V_{α}: $\alpha \in I$ } be a Λ_r -open cover of X. Then X $\subseteq \cup$ {V_{α}: $\alpha \in I$ }.

We choose and fix one $\alpha_0 \in I$.

Then X-V_{α_0} is a proper Λ_r -closed subset of X and X-V_{$\alpha_0} <math>\subseteq \cup \{ V_\alpha : \alpha \in I - \{ \alpha_0 \} \}.$ </sub>

Therefore $\{ V_{\alpha} : \alpha \in I - \{ \alpha_0 \} \}$ is a Λ_r -open cover of X-V_{α_0}.

By the hypothesis, \exists a finite subset I_0 of I-{ α_0 } such that X-V $_{\alpha_0} \subseteq \{V_{\alpha} : \alpha \in I_0\}$.

Therefore $X \subseteq \bigcup \{ V_{\alpha} : \alpha \in I_0 \cup \{ \alpha_0 \} \}$. Hence X is Λ_r -compact.

Theorem: 3.10 If a function $f : X \to Y$ is Λ_r -irresolute and a subset B of X is Λ_r -compact relative to X, then the image f(B) is Λ_r -compact relative to Y.

Proof: Let $\{A_i : i \in I\}$ be a family of Λ_r -open subsets of Y such that $f(B) \subseteq \bigcup \{A_i : i \in I\}$. Then $B \subseteq \bigcup \{f^{-1}(A_i) : i \in I\}$. By using assumption, \exists a finite subset I_0 of I such that

 $B \subseteq \bigcup \{f^{-1}(A_i) : i \in I_0\}$. Then we have $f(B) \subseteq \bigcup \{A_i : i \in I_0\}$.

This shows that f(B) is Λ_r -compact relative to Y.

Theorem: 3.11 Every Λ_r -continuous image of a Λ_r -compact space is compact.

Proof: Let $f: X \to Y$ be a Λ_r -continuous function from a Λ_r -compact space X onto a topological space Y. Let $\{A_i : i \in I\}$ be an open cover of Y. Since f is Λ_r -continuous, $\{f^{-1}(A_i): i \in I\}$ is a Λ_r -open cover of X. Since X is Λ_r -compact, it has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2)... f^{-1}(A_n)\}$. Since f is onto, $\{A_1, A_2... A_n\}$ is an open cover of Y and hence Y is compact.

Theorem: 3.12 If f: X \rightarrow Y is a Λ_r^* -closed surjective function such that for each $y \in Y$, $f^{-1}(y)$ } is Λ_r -compact relative to X and Y is Λ_r -compact, then X is Λ_r -compact.

Proof: Let $\{U_{\alpha} : \alpha \in I\}$ be a Λ_r -open cover of X. Then $X = \bigcup_{\alpha \in I} U_{\alpha}$.

For each $y \in Y$, {f⁻¹(y)} is Λ_r -compact relative to X. Then \exists a finite subset I_0 of I such that {f⁻¹(y)} $\subseteq \bigcup \{U_{\alpha} : \alpha \in I_0\}$.

Take $U_y = \bigcup \{U_{\alpha} : \alpha \in I_0\}$ and $V_y = Y - f(X-U_y)$.

Then U_y is Λ_r -open and so X-U_y is Λ_r -closed. Since f is Λ_r^* -closed, f(X-U_y) is Λ_r -closed in Y. Hence Y - f(X-U_y) is Λ_r -open and hence V_y is Λ_r -open in Y. Now, f⁻¹(y) \in U_y. That is, f⁻¹(y) \notin X-U_y. That implies f(f⁻¹(y)) \notin f(X-U_y). Since f is onto, y \notin f(X-U_y) and hence y \in Y - f(X-U_y) = V_y. Also V_y = Y - f(X-U_y).

That implies $f^{-1}(V_y) = f^{-1}(Y - f(X - U_y)) = f^{-1}(Y) - f^{-1}(f(X - U_y)) = X - f^{-1}(f(X - U_y))$ (since f is onto) $\subseteq X - (X - U_y) = U_y$. Thus V_y is a Λ_r -open set in Y containing y such that $f^{-1}(V_y) \subseteq U_y$. Hence $\{V_y : y \in Y\}$ is a Λ_r -open cover of Y. Since Y is Λ_r -compact, it has a finite subcover, say $\{V_{y_1}, V_{y_2}, ..., V_{y_n}\}$. That is, $Y = \bigcup \{V_{y_i} : i = 1, 2, ..., n\}$. Therefore $X = f^{-1}(Y) = f^{-1}(\bigcup \{V_{y_i} : i = 1, 2, ..., n\}) = \bigcup \{f^{-1}(V_{y_i}) : i = 1, 2, ..., n\} \subseteq \bigcup \{U_{y_i} : i = 1, 2, ..., n\} = \bigcup \{U_{\alpha} : \alpha \in I_i, i = 1, 2, ..., n\}$. This shows that X is Λ_r -compact.

4. Λ_r -CONNECTED SPACES:

In this section, we introduce a new class of connected space called Λ_r -connected space and prove some of its properties.

Definition: 4.1 A topological space X is said to be Λ_r -connected if there does not exist a pair A, B of non-empty disjoint Λ_r -open subsets of X such that $X = A \cup B$, otherwise X is called Λ_r -disconnected. In this case, the pair (A, B) is called a Λ_r -disconnection of X. A subset A of a space X is Λ_r -connected if it is Λ_r -connected as a subspace.

Theorem: 4.2 For a topological space X, the following are equivalent:

(i) X is Λ_r -connected

(ii) The only subsets of X which are both Λ_r -open and Λ_r -closed are the sets X and Ø

(iii) Each Λ_r -continuous function of X into a discrete space Y with at least two points is a constant function

Proof: (1) \rightarrow (2) Let U be a both Λ_r -open and Λ_r -closed subset of X. Then X-U is both Λ_r -open and Λ_r -closed. Since X is Λ_r -connected and X is the disjoint union of Λ_r -open sets U and X-U, one of these must be empty. Hence either $U = \emptyset$ or U = X. (2) \rightarrow (1) Suppose that X is Λ_r -disconnected. Then $X = A \cup B$ where A and B are nonempty Λ_r -open sets such that $A \cap B = \emptyset$. Since B = X-A is Λ_r -open, A is both Λ_r -open and Λ_r -closed. Hence by (2), $A = \emptyset$ or X. That is, either $A = \emptyset$ or $B = \emptyset$, which is a contradiction. Therefore X is Λ_r -connected. (2) \rightarrow (3) Let f: $X \rightarrow Y$ be a Λ_r -continuous function from a topological space X into a discrete topological space Y. For each $y \in Y$, {y} is both open and closed in Y since Y is a discrete topological space. Since f is Λ_r -continuous, $f^{-1}(y) = \emptyset$ or X for each $y \in Y$. If $f^{-1}(y) = \emptyset$ for each $y \in Y$, then f fails to be a map. Hence \exists only one point $y \in Y$ such that $f^{-1}(y) = X$ which shows that f is a constant function. (3) \rightarrow (2) Let U be both Λ_r -open and Λ_r -closed in X. Suppose $U \neq \emptyset$. Let f: $X \rightarrow Y$ be a Λ_r -continuous function from a topological space X into a discrete topological space Y and $f^{-1}(y) = X$ which shows that f is a constant function. (3) \rightarrow (2) Let U be both Λ_r -open and Λ_r -closed in X. Suppose $U \neq \emptyset$. Let f: $X \rightarrow Y$ be a Λ_r -continuous function from a topological space X into a discrete topological space Y defined by f (U) = {y} and f(X-U) = {w} where $y, w \in Y$ and $y \neq w$. By (3), f is constant. Hence U = X.

Theorem: 4.3 Every Λ_r -connected space is connected.

Proof: Let X be a Λ_r -connected space. If possible, let X be not connected. Then X can be written as $X = A \cup B$ where A and B are disjoint nonempty open sets in X. Since every open set is Λ_r -open, $X = A \cup B$ where A and B are disjoint nonempty Λ_r -open sets in X. Therefore X is Λ_r -disconnected. This is a contradiction. Hence X is connected.

Remark: 4.4 The following example shows that the converse of the above theorem need not be true.

Example: 4.5 Let $X = \{a,b,c,d\}$ and $\tau = \{X,\emptyset,\{a\},\{b,c\},\{a,b,c\}\}$. Then $\Lambda_rO(X, \tau) = \{X,\emptyset, \{a\},\{a,d\},\{b,c\},\{a,b,c\},\{b,c,d\}\}$. Here (X, τ) is connected but Λ_r -disconnected since $X = \{a,d\} \cup \{b,c\}$ where $\{a,d\}$ and $\{b,c\}$ are two disjoint nonempty Λ_r -open sets in X.

Definition: 4.6 Let (X, τ) be a topological space and A be a subset of X. Then we define the Λ_r -frontier of A by Λ_r - $Fr(A) = \Lambda_r$ - $cl(A) \setminus \Lambda_r$ - $nr(A) = \Lambda_r$ - $cl(A) \cap \Lambda_r$ -cl(X-A).

Next, we characterize Λ_r -connectedness interms of Λ_r -frontier.

Theorem: 4.7 A space X is Λ_r -connected if and only if every non-empty proper subset of X has a non-empty Λ_r -frontier.

Proof: Suppose that X is Λ_r -connected and A be a proper non-empty subset of X. If possible, let Λ_r - $Fr(A) = \emptyset$. Then Λ_r - $cl(A) \cap \Lambda_r$ - $cl(X-A) = \emptyset$.

This implies that Λ_r - $cl(A) \subseteq X$ - $(\Lambda_r$ -cl(X-A)) = X- $(X-\Lambda_r$ - $int(A)) = \Lambda_r$ -int(A). This shows that Λ_r - $int(A) = A = \Lambda_r$ -cl(A) and hence A is both Λ_r -open and Λ_r -closed. Then by Theorem 4.2, X is Λ_r -disconnected. This contradiction proves that A has a non-empty Λ_r -frontier.

Conversely, suppose that X is Λ_r -disconnected. Then X can be written as $X = A \cup B$ where A and B are two non-empty disjoint Λ_r -open subsets of X. Since B = X-A is Λ_r -open, A is both Λ_r -open and Λ_r -closed. Hence $A = \Lambda_r$ -*int*(A) and A = Λ_r -*cl*(A). Now we have

 Λ_r -*Fr*(A) = Λ_r -*cl*(A) $\cap \Lambda_r$ -*cl*(X-A) = A $\cap (X-\Lambda_r$ -*int*(A)) = A $\cap (X-A) = \emptyset$. So A has empty Λ_r -frontier. By this contradiction, X is Λ_r -connected.

Definition: 4.8 Let (X, τ) be a topological space and A be a subspace of X. Then the class of Λ_r -open sets in A is defined in a natural way as: $\Lambda_r O(A, \tau_A) = \{A \cap O : O \in \Lambda_r O(X, \tau)\}$ where $\Lambda_r O(X, \tau)$ is the class of Λ_r -open sets in X. That is, G is Λ_r -open in A if and only if $G = A \cap O$, where O is Λ_r -open in X.

Theorem: 4.9 Let (A, B) be a Λ_r -disconnection of a space X and C be a Λ_r -connected subspace of X. Then C is contained in A or in B.

Proof: Suppose that C is neither contained in A nor in B. Since (A, B) is a Λ_r -disconnection of a space X, X = A \cup B where A and B are non-empty disjoint Λ_r -open subsets of X. Then C \cap A and C \cap B are both non-empty Λ_r -open sets of C such that (C \cap A) \cap (C \cap B) = Ø and (C \cap A) \cup (C \cap B) = C. This gives that (C \cap A, C \cap B) is a Λ_r -disconnection of C. Hence C is Λ_r -disconnected. This contradiction proves the theorem.

Theorem: 4.10 Let $X = \bigcup_{\alpha \in I} \{X_{\alpha}\}$, where each X_{α} is Λ_r -connected and $\bigcap_{\alpha \in I} \{X_{\alpha}\} \neq \emptyset$. Then X is Λ_r -connected.

Proof: Suppose that X is Λ_r -disconnected and (A, B) is a Λ_r -disconnection of X. Since each X_{α} is Λ_r -connected, by Theorem 4.9, $X_{\alpha} \subseteq A$ or $X_{\alpha} \subseteq B$. Since $\bigcap_{\alpha \in I} \{X_{\alpha}\} \neq \emptyset$, all X_{α} are contained in A or in B. This gives that $X \subseteq A$ or $X \subseteq A$ or A or $X \subseteq A$ or X or $X \subseteq A$ or X or $X \subseteq A$ or $X \subseteq A$ or $X \subseteq A$ or X or X

B. If $X \subseteq A$, then $B = \emptyset$ or if $X \subseteq B$, then $A = \emptyset$. This contradiction proves that X is Λ_r -connected.

Theorem: 4.11 A space X is Λ_r -connected if and only if for every pair of points x, y in X, there is a Λ_r -connected subset of X which contains both x and y.

Proof: Necessity: Since the Λ_r -connected space X itself contain these two points, it is obvious. Sufficiency: Suppose that for any two points x and y of X, there is a Λ_r -connected subspace $C_{x, y}$ of X such that x, $y \in C_{x, y}$. Let $a \in X$ be a fixed point and $\{C_{a, x} : x \in X\}$ be a class of all Λ_r -connected subspace of X which contain the points a and x. Then $X = \bigcup_{x \in X} \{C_{a, x}\}$ and $\bigcap_{x \in X} \{C_{a, x}\} \neq \emptyset$. Therefore by Theorem 4.10, X is Λ_r -connected.

Theorem: 4.12 If $f: X \to Y$ is a Λ_r -continuous surjective function and X is Λ_r -connected, then Y is connected.

Proof: Suppose that Y is not connected. Then Y can be written as $Y = A \cup B$ where A and B are disjoint nonempty open sets in Y. Since f is Λ_r -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are Λ_r -open in X. Since f is onto, $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. Thus, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty Λ_r -open sets in X such that $f^{-1}(A) \cap f^{-1}(B) = \phi$. Therefore X

is Λ_r -disconnected, which is a contradiction. Hence Y is connected.

Theorem: 4.13 If $f: X \to Y$ is a Λ_r -irresolute surjective function and X is Λ_r -connected, then Y is Λ_r -connected.

Proof: Suppose that Y is Λ_r -disconnected. Then Y can be written as $Y = A \cup B$ where A and B are disjoint nonempty Λ_r -open sets in Y. Since f is Λ_r -irresolute, $f^{-1}(A)$ and $f^{-1}(B)$ are Λ_r -open in X. Since f is onto, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty subsets of X and $X = f^{-1}(Y)$. Thus, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint nonempty Λ_r -open sets in X. Hence X is Λ_r -disconnected, which is a contradiction. Therefore Y is Λ_r -connected.

Theorem: 4.14 If $f: X \to Y$ is a Λ_r^* -open bijective function and Y is Λ_r -connected, then X is Λ_r -connected.

Proof: Suppose that X is Λ_r -disconnected. Then X can be written as $X = A \cup B$ where A and B are disjoint nonempty Λ_r -open subsets of X. Since f is Λ_r^* -open, f (A) and f (B) are Λ_r -open in Y. Also f (A) and f (B) are nonempty subsets of Y. Since f is injective,

 $f(A) \cap f(B) = f(A \cap B) = f(\phi) = \phi$. Since f is onto, f(X) = Y. Thus, $Y = f(X) = f(A \cup B) = f(A) \cup f(B)$

where f(A) and f(B) are disjoint nonempty Λ_r -open sets in Y and so Y is Λ_r -disconnected. This is a contradiction.

Hence X is Λ_r -connected.

Theorem: 4.15 If $f: X \to Y$ is a Λ_r -open bijective function and Y is Λ_r -connected, then X is connected.

Proof: Suppose that X is not connected. Then $X = A \cup B$ where A and B are disjoint nonempty open sets in X. Since f is Λ_r -open, f (A) and f (B) are Λ_r -open in Y. Since f is bijective, f(A) \cap f(B) = ϕ and f(X) = Y. Therefore Y = f(A) \cup f(B) where f(A) and f(B) are disjoint nonempty Λ_r -open sets in Y. Hence Y is Λ_r -disconnected, which is a contradiction.

Hence X is connected.

REFERENCES:

[1] Ahmad Al-Omari and Mohd. Salmi Md. Noorani – New Characterization of compact spaces – Proceedings of the 5th Asian Mathematical Conference, Malaysia 2009.

[2] K. Balachandran, P. Sundaram and H. Maki – On generalized continuous maps in topological spaces – *Mem. Fac. Sci. Kochi. Univ. (Math)*12 (1991), 5-13.

[3] S. Eswaran and A. Pushpalatha - τ^* -generalized compact spaces and τ^* -generalized connected spaces in topological spaces – *International Journal of Engineering Science and Technology* – Vol. 2(5), 2010, 2466-2469.

[4] M. J. Jeyanthi, Adem Kilicman, S. Pious Missier and P. Thangavelu, Λ_r -sets and Separation Axioms, *Malaysian Journal of Mathematical Sciences*, 5 (1) 2011 : 45-60

[5] Jeyanthi.M. J, Pious Missier.S and Thangavelu. P, Λ_r -homeomorphisms and Λ_r^* -homeomorphisms, *Journal of Mathematical Sciences and Computer Applications*. (To appear).

[6] M. J. Jeyanthi, S. Pious Missier and P. Thangavelu, On Λr-open sets and functions. (Submitted)

[7] Miguel Galdas Cueva – Semi-generalized continuous maps in topological spaces – *Portugaliae Mathematica* – Vol. 52 Fasc.4 – 1995.
